Field investigation of efficient thermal conductivity of snow cover on Spitsbergen

This paper presents results of field investigations of coefficient of efficient thermal conductivity of snow with different structures and densities. Observations were performed in spring of 2013 in the vicinity of meteorological station Barentsburg. The data obtained were processed by means of the...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: N. Osokin I., A. Sosnovsky V., Н. Осокин И., А. Сосновский В.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/55
https://doi.org/10.15356/2076-6734-2014-3-50-58
id ftjias:oai:oai.ice.elpub.ru:article/55
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Coefficient of heat conductivity;deep hoar;snow density;thermal resistance of a snow
Глубинная изморозь;коэффициент теплопроводности;плотность снега;термическое сопротивление снега
spellingShingle Coefficient of heat conductivity;deep hoar;snow density;thermal resistance of a snow
Глубинная изморозь;коэффициент теплопроводности;плотность снега;термическое сопротивление снега
N. Osokin I.
A. Sosnovsky V.
Н. Осокин И.
А. Сосновский В.
Field investigation of efficient thermal conductivity of snow cover on Spitsbergen
topic_facet Coefficient of heat conductivity;deep hoar;snow density;thermal resistance of a snow
Глубинная изморозь;коэффициент теплопроводности;плотность снега;термическое сопротивление снега
description This paper presents results of field investigations of coefficient of efficient thermal conductivity of snow with different structures and densities. Observations were performed in spring of 2013 in the vicinity of meteorological station Barentsburg. The data obtained were processed by means of the Fourier technique that allowed deriving relationship between thermal conductivity and snow temperature in regimes of cooling and warming of the snow cover surface. It was found that coefficient of efficient thermal conductivity increases with rising of the snow temperature in the regime of the snow surface cooling, and it does decrease under regime of warming. This can be possibly caused by the following: under the snow surface warming a water vapor flux moves inward, and when the snow temperature drops the water vapor condensation grows. That results in additional temperature rise and creates effect of growth of thermal conductivity at the lower temperature. When the snow surface cools down this effect is absent, and when the snow temperature drops a contribution of water vapor diffusion into thermal conductivity also decreases, and as a result, the coefficient drops too. Average value of coefficient of efficient thermal conductivity of the depth hoar with density of 280 kg/m3 is 0.12 W/(mK) that in 3–4 times smaller than the same coefficient of granular and frozen together snow with density of 370–390 kg/m3. Представлены результаты полевых исследований коэффициента эффективной теплопроводности снега разной структуры и плотности, выполненные весной 2013 г. в районе метеостанции Баренцбург. Их обработка с помощью уравнения Фурье позволила получить зависимости коэффициента теплопроводности от температуры снега в режимах охлаждения и нагревания поверхности снежного покрова. Установлено увеличение коэффициента эффективной теплопроводности снега с ростом его температуры в режиме охлаждения поверхности и уменьшение значений – в режиме нагревания поверхности. Возможно, это обусловлено тем, что при нагревании поверхности ...
format Article in Journal/Newspaper
author N. Osokin I.
A. Sosnovsky V.
Н. Осокин И.
А. Сосновский В.
author_facet N. Osokin I.
A. Sosnovsky V.
Н. Осокин И.
А. Сосновский В.
author_sort N. Osokin I.
title Field investigation of efficient thermal conductivity of snow cover on Spitsbergen
title_short Field investigation of efficient thermal conductivity of snow cover on Spitsbergen
title_full Field investigation of efficient thermal conductivity of snow cover on Spitsbergen
title_fullStr Field investigation of efficient thermal conductivity of snow cover on Spitsbergen
title_full_unstemmed Field investigation of efficient thermal conductivity of snow cover on Spitsbergen
title_sort field investigation of efficient thermal conductivity of snow cover on spitsbergen
publisher IGRAS
publishDate 2015
url https://ice-snow.igras.ru/jour/article/view/55
https://doi.org/10.15356/2076-6734-2014-3-50-58
long_lat ENVELOPE(14.212,14.212,78.064,78.064)
geographic Barentsburg
geographic_facet Barentsburg
genre Annals of Glaciology
Barentsburg
The Cryosphere
Spitsbergen
genre_facet Annals of Glaciology
Barentsburg
The Cryosphere
Spitsbergen
op_source Ice and Snow; Том 54, № 3 (2014); 50-58
Лёд и Снег; Том 54, № 3 (2014); 50-58
2412-3765
2076-6734
10.15356/2076-6734-2014-3
op_relation https://ice-snow.igras.ru/jour/article/view/55/31
Kotlyakov V.M., Osokin N.I., Sosnovsky A.V. Mathematical modeling of thermo- and mass-exchange in the snow cover under melting. Kriosfera Zemli. Earth Cryosphere. 2004, 8 (1): 78–83. [In Russian].
Osokin N.I., Samoylov R.S., Sosnovsky A.V., Sokratov S.A. On the role of some natural factors in ground freezing. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2000, 88: 41–65. [In Russian].
Osokin N.I., Samoylov R.S., Sosnovsky A.V. Estimation of influence of snow cover thickness to the degradation of permafrost under climate warming. Izvestiya Ross. Akad. Nauk, Seriya Geogr. Proc. of the RAS, Geographical Series. 2006, 4: 40–46. [In Russian].
Osokin N.I., Samoylov R.S., Sosnovsky A.V., Zhidkov V.A., Kitaev L.M., Chernov R.A. Impact of snow cover to the heat exchange with the underlying surface. Oledenenie Severnoy Evrazii v nedavnem proshlom i blizhayshem budushchem. Glaciation in North Eurasia in the Recent Past and Immediate Future. Ed. V.M. Kotlyakov. Moscow: Nauka, 2007: 15–54. [In Russian].
Osokin N.I., Sosnovsky A.V., Shevchenko A.V. Influence of the temperature and density of snow on mass-transfer in the snow cover. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2012, 1: 3–8. [In Russian].
Osokin N.I., Sosnovsky A.V., Chernov R.A. Influence of the stratigraphy of snow cover on its thermic resistance Led i Sneg. Ice and Snow. 2013, 3 (123): 63–70. [In Russian].
Pavlov A.V. Monitoring kriolitozony. Monitoring of the cryolithozone. Novosibirsk: GEO, 2008: 230 p. [In Russian].
Calonne N., Flin F., Morin S., Lesaffre B., du Roscoat S. R., Geindreau C. Numerical and experimental investigations of the effective thermal conductivity of snow. Geophys. Research Letters. 2011; 38. L23501. doi:10.1029/2011GL049234.
Kamata Y., Sokratov S.A., Sato A. Temperature and temperature gradient dependence of snow recrystallization in depth hoar snow. Advances in Cold Regions Thermal Engineering and Sciences. Еds. K. Hutter, Y. Wang, H. Beer. Verlag: Springer, 1999: 395–402.
Kotlyakov V.M., Rototaeva O.V., Desinov L.V., Osokin N.I. Cause and consequences of the catastrophic advance of the Kolka surging glacier in the Central Caucasus. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2003, 389 (3): 447–451. [In Russian].
Osokin N.I., Samoylov R.S., Sosnovsky A.V., Sokratov S.A., Zhidkov V.A. Model of the influence of snow cover on soil freezing. Annals of Glaciology. 2000, 31: 417–421.
Pinzer B.R., Schneebeli M. Snow metamorphism under alternating temperature gradients: Morphology and recrystallization in surface snow. Geophys. Research Letters. 2009, 36: L23503 doi:10.1029/2009GL039618.
Riche F., Schneebeli M. Thermal conductivity of snow measured by three independent methods and anisotropy considerations. The Cryosphere. 2013, 7: 217–227.
Sturm M., Holmgren J., Konig M., Morris K. The thermal conductivity of seasonal snow. Journ. of Glaciology. 1997, 43 (143): 26–41.
https://ice-snow.igras.ru/jour/article/view/55
doi:10.15356/2076-6734-2014-3-50-58
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2014-3-50-58
https://doi.org/10.15356/2076-6734-2014-3
https://doi.org/10.1029/2011GL049234
https://doi.org/10.1029/2009GL039618
container_title Ice and Snow
container_volume 127
container_issue 3
container_start_page 50
_version_ 1766003631174189056
spelling ftjias:oai:oai.ice.elpub.ru:article/55 2023-05-15T13:29:50+02:00 Field investigation of efficient thermal conductivity of snow cover on Spitsbergen Экспериментальные исследования коэффициента эффективной теплопроводности снежного покрова на Западном Шпицбергене N. Osokin I. A. Sosnovsky V. Н. Осокин И. А. Сосновский В. 2015-03-27 application/pdf https://ice-snow.igras.ru/jour/article/view/55 https://doi.org/10.15356/2076-6734-2014-3-50-58 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/55/31 Kotlyakov V.M., Osokin N.I., Sosnovsky A.V. Mathematical modeling of thermo- and mass-exchange in the snow cover under melting. Kriosfera Zemli. Earth Cryosphere. 2004, 8 (1): 78–83. [In Russian]. Osokin N.I., Samoylov R.S., Sosnovsky A.V., Sokratov S.A. On the role of some natural factors in ground freezing. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2000, 88: 41–65. [In Russian]. Osokin N.I., Samoylov R.S., Sosnovsky A.V. Estimation of influence of snow cover thickness to the degradation of permafrost under climate warming. Izvestiya Ross. Akad. Nauk, Seriya Geogr. Proc. of the RAS, Geographical Series. 2006, 4: 40–46. [In Russian]. Osokin N.I., Samoylov R.S., Sosnovsky A.V., Zhidkov V.A., Kitaev L.M., Chernov R.A. Impact of snow cover to the heat exchange with the underlying surface. Oledenenie Severnoy Evrazii v nedavnem proshlom i blizhayshem budushchem. Glaciation in North Eurasia in the Recent Past and Immediate Future. Ed. V.M. Kotlyakov. Moscow: Nauka, 2007: 15–54. [In Russian]. Osokin N.I., Sosnovsky A.V., Shevchenko A.V. Influence of the temperature and density of snow on mass-transfer in the snow cover. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2012, 1: 3–8. [In Russian]. Osokin N.I., Sosnovsky A.V., Chernov R.A. Influence of the stratigraphy of snow cover on its thermic resistance Led i Sneg. Ice and Snow. 2013, 3 (123): 63–70. [In Russian]. Pavlov A.V. Monitoring kriolitozony. Monitoring of the cryolithozone. Novosibirsk: GEO, 2008: 230 p. [In Russian]. Calonne N., Flin F., Morin S., Lesaffre B., du Roscoat S. R., Geindreau C. Numerical and experimental investigations of the effective thermal conductivity of snow. Geophys. Research Letters. 2011; 38. L23501. doi:10.1029/2011GL049234. Kamata Y., Sokratov S.A., Sato A. Temperature and temperature gradient dependence of snow recrystallization in depth hoar snow. Advances in Cold Regions Thermal Engineering and Sciences. Еds. K. Hutter, Y. Wang, H. Beer. Verlag: Springer, 1999: 395–402. Kotlyakov V.M., Rototaeva O.V., Desinov L.V., Osokin N.I. Cause and consequences of the catastrophic advance of the Kolka surging glacier in the Central Caucasus. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2003, 389 (3): 447–451. [In Russian]. Osokin N.I., Samoylov R.S., Sosnovsky A.V., Sokratov S.A., Zhidkov V.A. Model of the influence of snow cover on soil freezing. Annals of Glaciology. 2000, 31: 417–421. Pinzer B.R., Schneebeli M. Snow metamorphism under alternating temperature gradients: Morphology and recrystallization in surface snow. Geophys. Research Letters. 2009, 36: L23503 doi:10.1029/2009GL039618. Riche F., Schneebeli M. Thermal conductivity of snow measured by three independent methods and anisotropy considerations. The Cryosphere. 2013, 7: 217–227. Sturm M., Holmgren J., Konig M., Morris K. The thermal conductivity of seasonal snow. Journ. of Glaciology. 1997, 43 (143): 26–41. https://ice-snow.igras.ru/jour/article/view/55 doi:10.15356/2076-6734-2014-3-50-58 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 54, № 3 (2014); 50-58 Лёд и Снег; Том 54, № 3 (2014); 50-58 2412-3765 2076-6734 10.15356/2076-6734-2014-3 Coefficient of heat conductivity;deep hoar;snow density;thermal resistance of a snow Глубинная изморозь;коэффициент теплопроводности;плотность снега;термическое сопротивление снега info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2014-3-50-58 https://doi.org/10.15356/2076-6734-2014-3 https://doi.org/10.1029/2011GL049234 https://doi.org/10.1029/2009GL039618 2022-12-20T13:29:52Z This paper presents results of field investigations of coefficient of efficient thermal conductivity of snow with different structures and densities. Observations were performed in spring of 2013 in the vicinity of meteorological station Barentsburg. The data obtained were processed by means of the Fourier technique that allowed deriving relationship between thermal conductivity and snow temperature in regimes of cooling and warming of the snow cover surface. It was found that coefficient of efficient thermal conductivity increases with rising of the snow temperature in the regime of the snow surface cooling, and it does decrease under regime of warming. This can be possibly caused by the following: under the snow surface warming a water vapor flux moves inward, and when the snow temperature drops the water vapor condensation grows. That results in additional temperature rise and creates effect of growth of thermal conductivity at the lower temperature. When the snow surface cools down this effect is absent, and when the snow temperature drops a contribution of water vapor diffusion into thermal conductivity also decreases, and as a result, the coefficient drops too. Average value of coefficient of efficient thermal conductivity of the depth hoar with density of 280 kg/m3 is 0.12 W/(mK) that in 3–4 times smaller than the same coefficient of granular and frozen together snow with density of 370–390 kg/m3. Представлены результаты полевых исследований коэффициента эффективной теплопроводности снега разной структуры и плотности, выполненные весной 2013 г. в районе метеостанции Баренцбург. Их обработка с помощью уравнения Фурье позволила получить зависимости коэффициента теплопроводности от температуры снега в режимах охлаждения и нагревания поверхности снежного покрова. Установлено увеличение коэффициента эффективной теплопроводности снега с ростом его температуры в режиме охлаждения поверхности и уменьшение значений – в режиме нагревания поверхности. Возможно, это обусловлено тем, что при нагревании поверхности ... Article in Journal/Newspaper Annals of Glaciology Barentsburg The Cryosphere Spitsbergen Ice and Snow (E-Journal) Barentsburg ENVELOPE(14.212,14.212,78.064,78.064) Ice and Snow 127 3 50