Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades

Data on thickness and area of 16 glaciers on the Nordenskiöld Land (Svalbard) were obtained in 1999 and 2010–2013. These data were used to determine volume of the glaciers and to establish statistical local relationship between the volume V and the area A (V–A scaling) in the form of the power funct...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: I. Lavrentiev I., A. Glazovsky F., Yu. Macheret Ya., V. Matskovsky V., A. Muravyev Ya., И. Лаврентьев И., А. Глазовский Ф., Ю. Мачерет Я., В. Мацковский В., А. Муравьев Я.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2019
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/538
https://doi.org/10.15356/2076-6734-2019-1-23-38
id ftjias:oai:oai.ice.elpub.ru:article/538
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic glaciers;ground-based radio-echo sounding;ice thickness and volume;Svalbard
ледники;наземное радиозондирование;толщина и объём льда;Шпицберген
spellingShingle glaciers;ground-based radio-echo sounding;ice thickness and volume;Svalbard
ледники;наземное радиозондирование;толщина и объём льда;Шпицберген
I. Lavrentiev I.
A. Glazovsky F.
Yu. Macheret Ya.
V. Matskovsky V.
A. Muravyev Ya.
И. Лаврентьев И.
А. Глазовский Ф.
Ю. Мачерет Я.
В. Мацковский В.
А. Муравьев Я.
Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades
topic_facet glaciers;ground-based radio-echo sounding;ice thickness and volume;Svalbard
ледники;наземное радиозондирование;толщина и объём льда;Шпицберген
description Data on thickness and area of 16 glaciers on the Nordenskiöld Land (Svalbard) were obtained in 1999 and 2010–2013. These data were used to determine volume of the glaciers and to establish statistical local relationship between the volume V and the area A (V–A scaling) in the form of the power function V = cAγ, and then to calculate the total ice volume of all 202 glaciers in this area and its changes during the period since 1936 to 2002–2008. The total area of 16 glaciers was 129.9±0.35 km2, 14 of which had areas from 0.2 to 8.1 km2. The two largest ones, the Fridtjof and the West Grenfjord, had the areas 17.5 and 47.3 km2, respectively, and thus occupied about 50% (64.8 km2) of the total area of 16 glaciers. These two glaciers account for 67% of the total measured volume (10,034 km3) of the 16 glaciers. A nonlinear least-squares method was used to estimate ice reserves in all 202 glaciers from data on the volume and area of 16 glaciers. The relation between volume V and area A of the glaciers (V–A scaling) was obtained as the ratio V = 0.03637A1,283 with 95%‑th confidence intervals of the coefficients с and γ, (0.02303–0,4971) and (1.184–1.381), respectively. This made possible to calculate total volume of 202 glaciers as of 2002-2008 state using data from RGI v.6.0, and that prove to be equal to 32.89 (16.75–56.63) km3. To verify this estimation, we applied the bootstrapping method for chosen 43 glaciers and calculated the volume by means of sequential use of data for large and smaller glaciers. According to this estimate, the total volume of 202 glaciers amounted to 30.34 km3 with a 95% confidence interval of 15.42–44.27 km3, that turned out to be slightly smaller than the volume calculated by nonlinear least squares method basing on measurements on 16 glaciers. Despite the large error (on the average, from −49% to +84%) in estimating the total volume of 202 glaciers in the Nordenskiöld Land, the data obtained were used for assessment of relative changes in the total volume of glaciers in this area over ...
format Article in Journal/Newspaper
author I. Lavrentiev I.
A. Glazovsky F.
Yu. Macheret Ya.
V. Matskovsky V.
A. Muravyev Ya.
И. Лаврентьев И.
А. Глазовский Ф.
Ю. Мачерет Я.
В. Мацковский В.
А. Муравьев Я.
author_facet I. Lavrentiev I.
A. Glazovsky F.
Yu. Macheret Ya.
V. Matskovsky V.
A. Muravyev Ya.
И. Лаврентьев И.
А. Глазовский Ф.
Ю. Мачерет Я.
В. Мацковский В.
А. Муравьев Я.
author_sort I. Lavrentiev I.
title Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades
title_short Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades
title_full Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades
title_fullStr Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades
title_full_unstemmed Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades
title_sort reserve of ice in glaciers on the nordenskiöld land, spitsbergen, and their changes over the last decades
publisher IGRAS
publishDate 2019
url https://ice-snow.igras.ru/jour/article/view/538
https://doi.org/10.15356/2076-6734-2019-1-23-38
long_lat ENVELOPE(-56.717,-56.717,-63.567,-63.567)
ENVELOPE(15.000,15.000,77.833,77.833)
geographic Svalbard
Fridtjof
Nordenskiöld Land
geographic_facet Svalbard
Fridtjof
Nordenskiöld Land
genre Annals of Glaciology
Antarctic and Alpine Research
Arctic
Nordenskiöld Land
Svalbard
The Cryosphere
Spitsbergen
genre_facet Annals of Glaciology
Antarctic and Alpine Research
Arctic
Nordenskiöld Land
Svalbard
The Cryosphere
Spitsbergen
op_source Ice and Snow; Том 59, № 1 (2019); 23-38
Лёд и Снег; Том 59, № 1 (2019); 23-38
2412-3765
2076-6734
10.15356/2076-6734-2019-1
op_relation https://ice-snow.igras.ru/jour/article/view/538/299
Cogley G. The future of the world’s glaciers / Еds. A. Henderson-Sellers and K. McGuffie // The future of the world’s climate. Elsevier, Waltham, MA, 2012. P. 97–222.
Stocker T.F., Qin G.-K. D., Plattner M., Tignor S.K., Allen J., Boschung A., Nauels Y., Xia V. Bex, Midgley P.M. (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY, USA, 2013. 1535 p.
Radić V., Bliss A., Beedlow A.C., Hock R., Miles E., Cogley J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models // Climate Dynamics. 2014. V. 42. № 1–2. P. 37–58. doi: 0.1007/s00382-013-1719-7.
Shannon S., Robin S., Wiltshire A., Payne T., Huss M., Betts R., Caesar J., Koutroulis A., Jones D., Harrison S. Global glacier volume projections under high-end climate change scenarios // The Cryosphere. Discussion. 2018. doi:10.5194/tc-2018-35.
Bahr D.B. Global distributions of glacier properties: A stochastic scaling paradigm // Water Resources Research. 1997. V. 33. Is. 7. P. 1669–1679. doi:10.1029/97WR00824.
Bahr D.B., Meier M.F., Peckham S. The physical basis of glacier volume-area scaling // Journ. of Geophys. Research. 1997. V. 102. Is. B9. P. 20355–20362. doi:10.1029/97JB01696.
Bahr D., Pfeffer W., Kaser G. A review of volume-area scaling of glaciers // Reviews of Geophysics. 2015 V. 53. P. 95–140. doi: 615 10.1002/2014RG000470.
Farinotti D., Brinkerhoff D.J., Clarke G.K C., Fürst J.J., Frey H., Gantayat P., Gillet-Chaulet F., Girard C., Huss M., Leclercq P.W., Linsbauer A., Machguth H., Martin C., Maussion F., Morlighem M., Mosbeux C., Pandit A., Portmann A., Rabatel A., Ramsankaran R., Reerink T.J., Sanchez O., Stentoft P.A., Singh Kumari S., van Pelt W.J.J., Anderson B., Benham T., Binder D., Dowdeswell J.A., Fischer A., Helfricht K., Kutuzov S., Lavrentiev I., McNabb R., Gudmundsson G.H., Li H., Andreassen L.M. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison experiment // The Cryosphere. 2017. V. 11. Is. 2. P. 949–970. doi:10.5194/tc-11-949-2017.
Fürst J.J., Gillet-Chaulet F., Benham T.J., Dowdeswell J.A., Grabiec M., Navarro F., Pettersson R., Moholdt G., Nuth C., Sass B., Aas K., Fettweis X., Lang C., Seehaus T., Braun M. Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard // The Cryosphere. 2017. V. 11. Is. 5. P. 2003–2032. doi:10.5194/tc-11-2003-2017.
Pfeffer W.T., Arendt A.A, Bliss A., Bolch T., Cogley J.G., Gardner A. Alex S., Hagen J.‑O., Hock R., Kaser G., Kienholz C., Miles E.S., Moholdt G., Mölg N., Paul F., Radiĉ Rastner P. Raup B.H., Rich J., Sharp Martin J. and The Randolph Consortium. The Randolph Glacier Inventory: A globally complete inventory of glaciers // Journ. of Glaciology. 2014. V. 60. № 221. P. 537–552. doi:10.3189/2014JoG13J176.
Martin-Español A., Navarro F.J., Otero J., Lapazaran J.J., Błaszczyk M. Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based scaling relationships // Journ. of Glaciology. 2015. V. 61. № 225. P. 29–41. doi:10.3189/2015JoG14J159.
Grinsted A. An estimate of global glacier volume // The Cryosphere. 2013. № 7. P. 141–151. doi:10.5194/tc-7-141-2013.
Мачерет Ю.Я., Кутузов С.С., Мацковский В.В., Лаврентьев И.И. Об оценке объёма льда горных ледников // Лёд и Снег. 2013. № 1 (121). С. 5–15. doi:10.15356/2076-6734-2013-1-5-15.
Martín-Español A., Vasilenko E.V., Navarro F.J., Otero J., Lapazaran J.J., Lavrentiev I.I., Macheret Y.Y., Machío F. Radio-echo sounding and ice volume estimates of western Nordenskiöld Land glaciers, Svalbard // Annals of Glaciology. 2013. V. 54. Is. 64. P. 211–217. doi:10.3189/2013AoG64A109.
Navarro F.J., Lapazaran J., Martín-Español A., Otero J. Ground-penetrating radar studies in Svalbard aimed to the calculation of the ice volume of its glaciers // Cuadernos de Investigación Geográfica. 2016. V. 42. № 2. P. 399–414. doi:10.18172/cig.2929.
RGI Consortium. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space. Colorado, USA, 2017. Digital Media. doi:10.7265/N5-RGI-60.
Nuth C., Kohler J., König M., von Deschwanden A., Hagen J.O., Kääb A., Moholdt G., Pettersson R. Decadal changes from a multi-temporal glacier inventory of Svalbard // The Cryosphere. 2013. V. 7. Is. 5. P. 1603–1621. doi:10.5194/tc-7-1603-2013.
König M., Kohler J., Nuth C. Glacier Area Outlines – Svalbard [Data set]. Norwegian Polar Institute, 2013. doi:10.21334/npolar.2013.89f430f8.
Ерасов Н.В. Метод определения объема горных ледников // МГИ. 1968. № 14. С. 307–308.
Chen J., Ohmura A. Estimation of Alpine glacier water resources and their change since the 1870s // IAHS Publ. 1990. № 193. P. 127–135.
Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Исследование зависимостей. М.: Финансы и статистика, 1985. 488 с.
Murray T., James T.D., Macheret Yu.Ya., Lavrentiev I.I., Glazovsky A.F., Sykes H. Geometric Changes in a tidewater glacier in Svalbard // Arctic, Antarctic and Alpine Research. 2012. V. 44. № 3. P. 359–367. doi:10.1657/1938-4246-44.3.359.
Василенко Е.В., Глазовский А.Ф., Лаврентьев И.И., Мачерет Ю.Я. Изменение гидротермической структуры ледников Восточный Грёнфьорд и Фритьоф на Шпицбергене // Лёд и Снег. 2014. № 1 (125). С. 5–19. doi:10.15356/2076-6734-2014-1-5-19.
Кульницкий Л.М., Гофман П.А., Токарев М.Ю. Математическая обработка данных георадиолокации и система RADEXPRO // Разведка и охрана недр. 2001. № 3. С. 6–11.
Lapazaran J.J. Otero J., Martín-Español A., Navarro F.J. On the errors involved in ice-thickness estimates I: Ground-penetrating radar measurement errors // Journ. of Glaciology. 2016. V. 62. Is. 236. P. 1008–1020. doi:10.1017/jog.2016.93.
Lapazaran J.J., Otero J., Martín-Español A., Navarro F.J. On the errors involved in ice-thickness estimates II: Errors in digital elevation models of ice thickness // Journ. of Glaciology. 2016. V. 62. Is. 236. P. 1021–1029. doi:10.1017/jog.2016.94.
Martín-Español A., Lapazaran J.J., Otero J., Navarro F.J. On the errors involved in ice-thickness estimates III: Error in volume // Journ. of Glaciology. 2016. V. 62. Is. 236. P. 1030–1036. doi:10.1017/jog.2016.95.
Guidelines for the compilation of glacier inventory data from digital sources / Еd. by F. Paul [Electronic resource]. http://glims.org.
Farinotti D., Huss M. An upper-bound estimate for the accuracy of glacier volume–area scaling // The Cryosphere. 2013. V. 7. Is. 6. P. 1707–1720. doi:10.5194/tc-7-1707-2013.
Macheret Yu.Ya., Zhuravlev A.B. Radio Echo-Sounding of Svalbard Glaciers // Journ. of Glaciology. 1982. V. 28. Is. 99. P. 295–314. doi:10.3189/S0022143000011643.
Мачерет Ю.Я., Журавлев А.Б., Боброва Л.И. Толщина льда, подлёдный рельеф и объём ледников Свальбарда по данным радиозондирования // МГИ. 1984. № 51. С. 49–63.
Wu N.F.L. Jackknife, bootstrap and other resampling methods in regression analysis (with discussions) // Annals of Statistics. 1986. V. 14. P. 1261–1350.
https://ice-snow.igras.ru/jour/article/view/538
doi:10.15356/2076-6734-2019-1-23-38
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2019-1-23-38
https://doi.org/10.15356/2076-6734-2019-1
https://doi.org/10.5194/tc-2018-35
https://doi.org/10.1029/97WR00824
https://doi.org/10.1029/97JB01696
https://doi.org/10.5194/tc-11-2003-2017
https://do
container_title Ice and Snow
container_volume 59
container_issue 1
container_start_page 23
op_container_end_page 38
_version_ 1766003873418313728
spelling ftjias:oai:oai.ice.elpub.ru:article/538 2023-05-15T13:29:51+02:00 Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades Запасы льда в ледниках на Земле Норденшельда (Шпицберген) и их изменения за последние десятилетия I. Lavrentiev I. A. Glazovsky F. Yu. Macheret Ya. V. Matskovsky V. A. Muravyev Ya. И. Лаврентьев И. А. Глазовский Ф. Ю. Мачерет Я. В. Мацковский В. А. Муравьев Я. 2019-03-20 application/pdf https://ice-snow.igras.ru/jour/article/view/538 https://doi.org/10.15356/2076-6734-2019-1-23-38 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/538/299 Cogley G. The future of the world’s glaciers / Еds. A. Henderson-Sellers and K. McGuffie // The future of the world’s climate. Elsevier, Waltham, MA, 2012. P. 97–222. Stocker T.F., Qin G.-K. D., Plattner M., Tignor S.K., Allen J., Boschung A., Nauels Y., Xia V. Bex, Midgley P.M. (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY, USA, 2013. 1535 p. Radić V., Bliss A., Beedlow A.C., Hock R., Miles E., Cogley J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models // Climate Dynamics. 2014. V. 42. № 1–2. P. 37–58. doi: 0.1007/s00382-013-1719-7. Shannon S., Robin S., Wiltshire A., Payne T., Huss M., Betts R., Caesar J., Koutroulis A., Jones D., Harrison S. Global glacier volume projections under high-end climate change scenarios // The Cryosphere. Discussion. 2018. doi:10.5194/tc-2018-35. Bahr D.B. Global distributions of glacier properties: A stochastic scaling paradigm // Water Resources Research. 1997. V. 33. Is. 7. P. 1669–1679. doi:10.1029/97WR00824. Bahr D.B., Meier M.F., Peckham S. The physical basis of glacier volume-area scaling // Journ. of Geophys. Research. 1997. V. 102. Is. B9. P. 20355–20362. doi:10.1029/97JB01696. Bahr D., Pfeffer W., Kaser G. A review of volume-area scaling of glaciers // Reviews of Geophysics. 2015 V. 53. P. 95–140. doi: 615 10.1002/2014RG000470. Farinotti D., Brinkerhoff D.J., Clarke G.K C., Fürst J.J., Frey H., Gantayat P., Gillet-Chaulet F., Girard C., Huss M., Leclercq P.W., Linsbauer A., Machguth H., Martin C., Maussion F., Morlighem M., Mosbeux C., Pandit A., Portmann A., Rabatel A., Ramsankaran R., Reerink T.J., Sanchez O., Stentoft P.A., Singh Kumari S., van Pelt W.J.J., Anderson B., Benham T., Binder D., Dowdeswell J.A., Fischer A., Helfricht K., Kutuzov S., Lavrentiev I., McNabb R., Gudmundsson G.H., Li H., Andreassen L.M. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison experiment // The Cryosphere. 2017. V. 11. Is. 2. P. 949–970. doi:10.5194/tc-11-949-2017. Fürst J.J., Gillet-Chaulet F., Benham T.J., Dowdeswell J.A., Grabiec M., Navarro F., Pettersson R., Moholdt G., Nuth C., Sass B., Aas K., Fettweis X., Lang C., Seehaus T., Braun M. Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard // The Cryosphere. 2017. V. 11. Is. 5. P. 2003–2032. doi:10.5194/tc-11-2003-2017. Pfeffer W.T., Arendt A.A, Bliss A., Bolch T., Cogley J.G., Gardner A. Alex S., Hagen J.‑O., Hock R., Kaser G., Kienholz C., Miles E.S., Moholdt G., Mölg N., Paul F., Radiĉ Rastner P. Raup B.H., Rich J., Sharp Martin J. and The Randolph Consortium. The Randolph Glacier Inventory: A globally complete inventory of glaciers // Journ. of Glaciology. 2014. V. 60. № 221. P. 537–552. doi:10.3189/2014JoG13J176. Martin-Español A., Navarro F.J., Otero J., Lapazaran J.J., Błaszczyk M. Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based scaling relationships // Journ. of Glaciology. 2015. V. 61. № 225. P. 29–41. doi:10.3189/2015JoG14J159. Grinsted A. An estimate of global glacier volume // The Cryosphere. 2013. № 7. P. 141–151. doi:10.5194/tc-7-141-2013. Мачерет Ю.Я., Кутузов С.С., Мацковский В.В., Лаврентьев И.И. Об оценке объёма льда горных ледников // Лёд и Снег. 2013. № 1 (121). С. 5–15. doi:10.15356/2076-6734-2013-1-5-15. Martín-Español A., Vasilenko E.V., Navarro F.J., Otero J., Lapazaran J.J., Lavrentiev I.I., Macheret Y.Y., Machío F. Radio-echo sounding and ice volume estimates of western Nordenskiöld Land glaciers, Svalbard // Annals of Glaciology. 2013. V. 54. Is. 64. P. 211–217. doi:10.3189/2013AoG64A109. Navarro F.J., Lapazaran J., Martín-Español A., Otero J. Ground-penetrating radar studies in Svalbard aimed to the calculation of the ice volume of its glaciers // Cuadernos de Investigación Geográfica. 2016. V. 42. № 2. P. 399–414. doi:10.18172/cig.2929. RGI Consortium. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space. Colorado, USA, 2017. Digital Media. doi:10.7265/N5-RGI-60. Nuth C., Kohler J., König M., von Deschwanden A., Hagen J.O., Kääb A., Moholdt G., Pettersson R. Decadal changes from a multi-temporal glacier inventory of Svalbard // The Cryosphere. 2013. V. 7. Is. 5. P. 1603–1621. doi:10.5194/tc-7-1603-2013. König M., Kohler J., Nuth C. Glacier Area Outlines – Svalbard [Data set]. Norwegian Polar Institute, 2013. doi:10.21334/npolar.2013.89f430f8. Ерасов Н.В. Метод определения объема горных ледников // МГИ. 1968. № 14. С. 307–308. Chen J., Ohmura A. Estimation of Alpine glacier water resources and their change since the 1870s // IAHS Publ. 1990. № 193. P. 127–135. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Исследование зависимостей. М.: Финансы и статистика, 1985. 488 с. Murray T., James T.D., Macheret Yu.Ya., Lavrentiev I.I., Glazovsky A.F., Sykes H. Geometric Changes in a tidewater glacier in Svalbard // Arctic, Antarctic and Alpine Research. 2012. V. 44. № 3. P. 359–367. doi:10.1657/1938-4246-44.3.359. Василенко Е.В., Глазовский А.Ф., Лаврентьев И.И., Мачерет Ю.Я. Изменение гидротермической структуры ледников Восточный Грёнфьорд и Фритьоф на Шпицбергене // Лёд и Снег. 2014. № 1 (125). С. 5–19. doi:10.15356/2076-6734-2014-1-5-19. Кульницкий Л.М., Гофман П.А., Токарев М.Ю. Математическая обработка данных георадиолокации и система RADEXPRO // Разведка и охрана недр. 2001. № 3. С. 6–11. Lapazaran J.J. Otero J., Martín-Español A., Navarro F.J. On the errors involved in ice-thickness estimates I: Ground-penetrating radar measurement errors // Journ. of Glaciology. 2016. V. 62. Is. 236. P. 1008–1020. doi:10.1017/jog.2016.93. Lapazaran J.J., Otero J., Martín-Español A., Navarro F.J. On the errors involved in ice-thickness estimates II: Errors in digital elevation models of ice thickness // Journ. of Glaciology. 2016. V. 62. Is. 236. P. 1021–1029. doi:10.1017/jog.2016.94. Martín-Español A., Lapazaran J.J., Otero J., Navarro F.J. On the errors involved in ice-thickness estimates III: Error in volume // Journ. of Glaciology. 2016. V. 62. Is. 236. P. 1030–1036. doi:10.1017/jog.2016.95. Guidelines for the compilation of glacier inventory data from digital sources / Еd. by F. Paul [Electronic resource]. http://glims.org. Farinotti D., Huss M. An upper-bound estimate for the accuracy of glacier volume–area scaling // The Cryosphere. 2013. V. 7. Is. 6. P. 1707–1720. doi:10.5194/tc-7-1707-2013. Macheret Yu.Ya., Zhuravlev A.B. Radio Echo-Sounding of Svalbard Glaciers // Journ. of Glaciology. 1982. V. 28. Is. 99. P. 295–314. doi:10.3189/S0022143000011643. Мачерет Ю.Я., Журавлев А.Б., Боброва Л.И. Толщина льда, подлёдный рельеф и объём ледников Свальбарда по данным радиозондирования // МГИ. 1984. № 51. С. 49–63. Wu N.F.L. Jackknife, bootstrap and other resampling methods in regression analysis (with discussions) // Annals of Statistics. 1986. V. 14. P. 1261–1350. https://ice-snow.igras.ru/jour/article/view/538 doi:10.15356/2076-6734-2019-1-23-38 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 59, № 1 (2019); 23-38 Лёд и Снег; Том 59, № 1 (2019); 23-38 2412-3765 2076-6734 10.15356/2076-6734-2019-1 glaciers;ground-based radio-echo sounding;ice thickness and volume;Svalbard ледники;наземное радиозондирование;толщина и объём льда;Шпицберген info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjias https://doi.org/10.15356/2076-6734-2019-1-23-38 https://doi.org/10.15356/2076-6734-2019-1 https://doi.org/10.5194/tc-2018-35 https://doi.org/10.1029/97WR00824 https://doi.org/10.1029/97JB01696 https://doi.org/10.5194/tc-11-2003-2017 https://do 2022-12-20T13:29:52Z Data on thickness and area of 16 glaciers on the Nordenskiöld Land (Svalbard) were obtained in 1999 and 2010–2013. These data were used to determine volume of the glaciers and to establish statistical local relationship between the volume V and the area A (V–A scaling) in the form of the power function V = cAγ, and then to calculate the total ice volume of all 202 glaciers in this area and its changes during the period since 1936 to 2002–2008. The total area of 16 glaciers was 129.9±0.35 km2, 14 of which had areas from 0.2 to 8.1 km2. The two largest ones, the Fridtjof and the West Grenfjord, had the areas 17.5 and 47.3 km2, respectively, and thus occupied about 50% (64.8 km2) of the total area of 16 glaciers. These two glaciers account for 67% of the total measured volume (10,034 km3) of the 16 glaciers. A nonlinear least-squares method was used to estimate ice reserves in all 202 glaciers from data on the volume and area of 16 glaciers. The relation between volume V and area A of the glaciers (V–A scaling) was obtained as the ratio V = 0.03637A1,283 with 95%‑th confidence intervals of the coefficients с and γ, (0.02303–0,4971) and (1.184–1.381), respectively. This made possible to calculate total volume of 202 glaciers as of 2002-2008 state using data from RGI v.6.0, and that prove to be equal to 32.89 (16.75–56.63) km3. To verify this estimation, we applied the bootstrapping method for chosen 43 glaciers and calculated the volume by means of sequential use of data for large and smaller glaciers. According to this estimate, the total volume of 202 glaciers amounted to 30.34 km3 with a 95% confidence interval of 15.42–44.27 km3, that turned out to be slightly smaller than the volume calculated by nonlinear least squares method basing on measurements on 16 glaciers. Despite the large error (on the average, from −49% to +84%) in estimating the total volume of 202 glaciers in the Nordenskiöld Land, the data obtained were used for assessment of relative changes in the total volume of glaciers in this area over ... Article in Journal/Newspaper Annals of Glaciology Antarctic and Alpine Research Arctic Nordenskiöld Land Svalbard The Cryosphere Spitsbergen Ice and Snow (E-Journal) Svalbard Fridtjof ENVELOPE(-56.717,-56.717,-63.567,-63.567) Nordenskiöld Land ENVELOPE(15.000,15.000,77.833,77.833) Ice and Snow 59 1 23 38