Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus

We present and discuss the chronology of dust deposition events documented by the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus (5150 m a.s.l.) in 2009, 2012 and 2013. Snow and ice samples were analysed for major ions and minor element concentrations including heavy metals....

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: S. Kutuzov S., V. Mikhalenko N., M. Shahgedanova V., P. Ginot, A. Kozachek V., T. Kuderina M., I. Lavrentiev I., G. Popov V., С. Кутузов C., В. Михаленко Н., M. Шахгеданова, П. Жино, А. Козачек В., И. Лаврентьев И., Т. Кудерина М., Г. Попов В.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/51
https://doi.org/10.15356/2076-6734-2014-3-5-15
id ftjias:oai:oai.ice.elpub.ru:article/51
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Aerosols;atmospheric transport;Caucasus high mountains;ice cores
Атмосферный перенос;аэрозоли;высокогорье Кавказа;ледниковые керны
spellingShingle Aerosols;atmospheric transport;Caucasus high mountains;ice cores
Атмосферный перенос;аэрозоли;высокогорье Кавказа;ледниковые керны
S. Kutuzov S.
V. Mikhalenko N.
M. Shahgedanova V.
P. Ginot
A. Kozachek V.
T. Kuderina M.
I. Lavrentiev I.
G. Popov V.
С. Кутузов C.
В. Михаленко Н.
M. Шахгеданова
П. Жино
А. Козачек В.
И. Лаврентьев И.
Т. Кудерина М.
Г. Попов В.
Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus
topic_facet Aerosols;atmospheric transport;Caucasus high mountains;ice cores
Атмосферный перенос;аэрозоли;высокогорье Кавказа;ледниковые керны
description We present and discuss the chronology of dust deposition events documented by the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus (5150 m a.s.l.) in 2009, 2012 and 2013. Snow and ice samples were analysed for major ions and minor element concentrations including heavy metals. Dust layers are formed on the surface of the glaciers as a result of atmospheric transport of mineral dust and aerosol particles to the Caucasus region. Satellite imagery (SEVIRI), trajectory models, and meteorological data were used for accurate dating of each the dust layers revealed in the ice cores. Then we tried to determine origins of the dust clouds and to investigate their transport pathways with high resolution (50–100 km). It was found that the desert dust is deposited on Caucasus glaciers 3–7 times in a year and it comes mainly from deserts of the Middle East and more rarely from the Northern Sahara desert. For the first time average annual dust flux (264 µg/cm2 per a year) and average mass concentration (1.7 mg/kg) over the period 2007–2013 were calculated for this region. The deposition of dust resulted in elevated concentrations consists of mostly ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from various sources in the Middle East, including Mesopotamia, or similar dust clouds passing over the Middle East are characterised by high concentrations of nitrates and ammonia that may be related to atmospheric transport of ammonium from agricultural lands that may explain high concentrations of ammonium in the dust originating from this region. Mean values of crustal enrichment factors (EF) for the measured minor elements including heavy metals were calculated. We believe that high content of Cu, Zn and Cd can be a result of possible contribution from anthropogenic sources. Studies of the Caucasus ice cores may allow obtaining new independent data on the atmosphere circulation and high-altitude environment of this region. Исследованы образцы из снежных шурфов и керна из неглубоких скважин, ...
format Article in Journal/Newspaper
author S. Kutuzov S.
V. Mikhalenko N.
M. Shahgedanova V.
P. Ginot
A. Kozachek V.
T. Kuderina M.
I. Lavrentiev I.
G. Popov V.
С. Кутузов C.
В. Михаленко Н.
M. Шахгеданова
П. Жино
А. Козачек В.
И. Лаврентьев И.
Т. Кудерина М.
Г. Попов В.
author_facet S. Kutuzov S.
V. Mikhalenko N.
M. Shahgedanova V.
P. Ginot
A. Kozachek V.
T. Kuderina M.
I. Lavrentiev I.
G. Popov V.
С. Кутузов C.
В. Михаленко Н.
M. Шахгеданова
П. Жино
А. Козачек В.
И. Лаврентьев И.
Т. Кудерина М.
Г. Попов В.
author_sort S. Kutuzov S.
title Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus
title_short Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus
title_full Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus
title_fullStr Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus
title_full_unstemmed Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus
title_sort ways of far-distance dust transport onto caucasian glaciers and chemical composition of snow on the western plateau of elbrus
publisher IGRAS
publishDate 2015
url https://ice-snow.igras.ru/jour/article/view/51
https://doi.org/10.15356/2076-6734-2014-3-5-15
genre The Cryosphere
genre_facet The Cryosphere
op_source Ice and Snow; Том 54, № 3 (2014); 5-15
Лёд и Снег; Том 54, № 3 (2014); 5-15
2412-3765
2076-6734
10.15356/2076-6734-2014-3
op_relation https://ice-snow.igras.ru/jour/article/view/51/29
Zalikhanov M.Ch., Kerimov A.M., Stepanov G.V., Chernyak M.M. Contamination of glaciers in the Central Caucasus. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1992, Issue 75: 15–22. [In Russian].
Kerimov A.M., Rototaeva O.V., Khmelevskoy I.F. Forming of chemical composition in glaciers of Kabardino-Balkaria. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1998, Issue 84: 66–71. [In Russian].
Kerimov A.M.,Chernyak M.M. Micro-admixture of heavy metals in snow-firn thickness on the southern slope of Elbrus. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2003, Issue 95: 178–182. [In Russian].
Kerimov A.M., Rototaeva O.V., Khmelevskoy I.F. Distribution of heavy metals in the surface layers of snow-firn thickness on the southern slope of Elbrus. Led i Sneg. Ice and Snow. 2011, № 2 (114): 24–34. [In Russian].
Lavrentiev I.I., Mikhalenko V.N., Kutuzov S.S. Ice thickness and subice relief on the West glacier plateau of Elbrus. Led i Sneg. Ice and Snow. 2010, № 2 (110): 12–18. [In Russian].
Mikhalenko V.N., Kutuzov S.S., Lavrentiev I.I., Kunakhovich M.G., Tompson L.G. Study of the West glacier plateau of Elbrus: results and perspectives. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2006, Issue 99: 185–190. [In Russian].
Rototaeva O.V., Khmelevskoy I.F., Bazhev A.B., Heintsenberg I., Stenderg M., Pinglou J. Structure and chemical composition of upper layer in the accumulation area of Bolshoy Azau Glacier (Elbrus). Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1998, Issue 84: 25–33. [In Russian].
Rototaeva O.V., Kerimov A.M., Khmelevskoy I.F. Composition of macro-elements in glaciers on the southern slope of Elbrus. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1999, Issue 87: 98–105. [In Russian].
Aizen V.B., Aizen E.M., Melack J.M., Kreutz K.J., Cecil L.D. Association between atmospheric circulation patterns and firn–ice core records from the Inilchek glacierized area, central Tien Shan, Asia. Journ. of Geophys. Research. 2004, 109. № D08304: 1–18.
Davitaya F.F. Dust content as a factor affecting glaciation and climatic change. Ann. Assoc. Amer. Geogr. 1969, 59 (3): 552–560.
De Angelis M., Gaudichet A. Saharan dust deposition over Mont Blanc (French Alps) during the last 30 years. Tellus. B. 1991, 43 (1): 61–75.
Delmonte B., Petit J.R., Maggi V. Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core. Climate Dynamics. 2002, 18: 647–660.
Draxler R.R., Rolph G.D. HYSPLIT (HYbrid Single–Particle Lagrangian Integrated Trajectory), Model access via (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory. Silver Spring. MD. 2014.
Ginoux P., Prospero J.M., Gill T.E., Hsu N.C., Zhao M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophysics. 2012, 50. № RG3005: 1–36.
IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 996 p.
Kang S., Zhang Y., Zhang Y., Grigholm B., Kaspari S., Qin D., Ren J., Mayewski P. Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry // Atm. Environment. 2010, 44. I. 25: 2980–2989.
Kaniewski D., Van Campo E., Weiss H. Drought is a recurring challenge in the Middle East // Proc. National Academy of Sciences. U.S.A. 2012, 109. I. 10: 3862–3867.
Kaspari S., Mayewski P.A., Handley M., Kang S., Hou S., Sneed S., Maasch K., Qin D. A High-Resolution Record of Atmospheric Dust Composition and Variability since a.d. 1650 from a Mount Everest Ice Core. Journ. of Climate. 2009, 22: 3910–3925.
Kutiel H., Furman H. Dust storms in the Middle East: Sources of origin and their temporal characteristics. Indoor and Built Environment. 2003, 12 (6): 419–426.
Kutuzov S., Shahgedanova M., Mikhalenko V., Ginot P., Lavrentiev I., Kemp S. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records. The Cryosphere. 2013, 7: 1481–1498.
Lee K., Hur S.D., Hou S., Hong S., Qin X., Ren J., Liu Y., Rosman K.J., Barbante C., Boutron C.F. Atmospheric pollution for trace elements in the remote high–altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Sci. Total Environment. 2008, 404 (1): 171–181.
Liu Y., Hou S., Hong S., Do Hur S., Lee K., Wang Y. High–resolution trace element records of an ice core from the eastern Tien Shan, central Asia, since 1953 AD. Journ. of Geophys. Research. 2011, 116. № D12307: 1–14.
Nastos P.T., Kampanis N.A., Giaouzaki K.N., Matzarakis A. Environmental impacts on human health during a Saharan episode at Crete island – Greece. Meteorologische Zeitschrift. 2011, 20 (15): 517–529.
Olivier S., Blaser C., Brütsch S., Frolova N., Gäggeler H.W., Henderson K.A., Palmer A.S., Papina T., Schwikowski M. Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai. Journ. of Geophys. Research. 2006, 111. № D05309: 1–13.
Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., PÉpin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420000 years from the Vostok ice core. Antarctica. Nature. 1999, 399: 429–436.
Prospero J., Ginoux M.P., Torres O., Nicholson S.E., Gill T.E. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophysics. 2002, 40 (1). 1002: 1–31.
Ruth U., Wagenbach D., Steffensen J.P., Bigler M. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. Journ. of Geophys. Research. 2003, 108 (D3). № 4098: 1–12.
Schepanski K., Tegen I., Laurent B., Heinold B., Macke A. A new Saharan dust source activation frequency map derived from MSG‐SEVIRI IR channels // Geophys. Research Letters. 2007, 34. № L18803: 1–5.
Schwikowski M. Reconstruction of European air pollution from alpine ice cores. Earth Paleoenvironments: Records Preserved in Mid- and Low-Latitude Glaciers. The Netherlands: Kluwer Academic, 2004: 95–119.
Schwikowski M., Brütsch S., Gäggeler H.W., Schotterer U. A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps. Journ. of Geophys. Research. 1999, 104 (D11): 13709–13719.
Shahgedanova M., Kutuzov S., White K.H., Nosenko G. Using the significant dust deposition event on the glaciers of Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and «provenancing» of desert dust events recorded in snow pack. Atmos. Chem. Phys. 2013, 13: 1797–1808.
Sodemann H., Palmer A.S., Schwierz C., Schwikowski M., Wernli H. The transport history of two Saharan dust events archived in an Alpine ice core. Atmos. Chem. Phys. 2006, 6: 667–668.
Thompson L.G. Understanding global climate change: Paleoclimate perspective from the World's highest mountains. Proc. Amer. Philos. Society. 2010, 54 (2): 133–157.
Wagenbach D., Geis K. The mineral dust record in a high altitude Alpine glacier (Colle Gnifetti, Swiss Alps). Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Kluwer Academic Publishers, 1989: 543–564.
Wake C.P., Mayewski P.A., Li Z., Han J., Qin Q. Modern eolian dust deposition in central Asia. Tellus. B. 1994, 46: 220–233.
Washington R., Todd M., Middleton N. J., Goudie A.S. Dust-Storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Annals Amer. Geogr. 2003, 93: 297–313.
Wedepohl K.H. The composition of the continental crust. Geochemical et Cosmochemical Acta. 1995, 59: 1217–1232.
Wu G., Yao T., Xu B., Tian L., Zhang C., Zhang X. Volume–size distribution of microparticles in ice cores from the Tibetan Plateau. Journ. of Glaciology. 2009, 55 (193): 859–868.
Xu J., Hou S., Qin D., Kaspari S., Mayewski P.A., Petit J.R., Delmonte B., Kang S., Ren J., Chappellaz J. A 108.83-m ice-core record of atmospheric dust deposition at Mt. Qomolangma (Everest), Central Himalaya. Quaternary Research. 2010, 73 (1): 33–38.
Zdanowicz C.M., Hall G., Vaive J., Amelin Y., Percival J., Girard I., Biscaye P., Bory A. Asian dustfall in the St. Elias Mountains, Yukon, Canada. Geochemical et Cosmochemical Acta. 2006, 70: 3493–3507.
https://ice-snow.igras.ru/jour/article/view/51
doi:10.15356/2076-6734-2014-3-5-15
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2014-3-5-15
https://doi.org/10.15356/2076-6734-2014-3
container_title Ice and Snow
container_volume 127
container_issue 3
container_start_page 5
_version_ 1766216809696985088
spelling ftjias:oai:oai.ice.elpub.ru:article/51 2023-05-15T18:32:36+02:00 Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus Пути дальнего переноса пыли на ледники Кавказа и химический состав снега на Западном плато Эльбруса S. Kutuzov S. V. Mikhalenko N. M. Shahgedanova V. P. Ginot A. Kozachek V. T. Kuderina M. I. Lavrentiev I. G. Popov V. С. Кутузов C. В. Михаленко Н. M. Шахгеданова П. Жино А. Козачек В. И. Лаврентьев И. Т. Кудерина М. Г. Попов В. 2015-03-26 application/pdf https://ice-snow.igras.ru/jour/article/view/51 https://doi.org/10.15356/2076-6734-2014-3-5-15 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/51/29 Zalikhanov M.Ch., Kerimov A.M., Stepanov G.V., Chernyak M.M. Contamination of glaciers in the Central Caucasus. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1992, Issue 75: 15–22. [In Russian]. Kerimov A.M., Rototaeva O.V., Khmelevskoy I.F. Forming of chemical composition in glaciers of Kabardino-Balkaria. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1998, Issue 84: 66–71. [In Russian]. Kerimov A.M.,Chernyak M.M. Micro-admixture of heavy metals in snow-firn thickness on the southern slope of Elbrus. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2003, Issue 95: 178–182. [In Russian]. Kerimov A.M., Rototaeva O.V., Khmelevskoy I.F. Distribution of heavy metals in the surface layers of snow-firn thickness on the southern slope of Elbrus. Led i Sneg. Ice and Snow. 2011, № 2 (114): 24–34. [In Russian]. Lavrentiev I.I., Mikhalenko V.N., Kutuzov S.S. Ice thickness and subice relief on the West glacier plateau of Elbrus. Led i Sneg. Ice and Snow. 2010, № 2 (110): 12–18. [In Russian]. Mikhalenko V.N., Kutuzov S.S., Lavrentiev I.I., Kunakhovich M.G., Tompson L.G. Study of the West glacier plateau of Elbrus: results and perspectives. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2006, Issue 99: 185–190. [In Russian]. Rototaeva O.V., Khmelevskoy I.F., Bazhev A.B., Heintsenberg I., Stenderg M., Pinglou J. Structure and chemical composition of upper layer in the accumulation area of Bolshoy Azau Glacier (Elbrus). Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1998, Issue 84: 25–33. [In Russian]. Rototaeva O.V., Kerimov A.M., Khmelevskoy I.F. Composition of macro-elements in glaciers on the southern slope of Elbrus. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1999, Issue 87: 98–105. [In Russian]. Aizen V.B., Aizen E.M., Melack J.M., Kreutz K.J., Cecil L.D. Association between atmospheric circulation patterns and firn–ice core records from the Inilchek glacierized area, central Tien Shan, Asia. Journ. of Geophys. Research. 2004, 109. № D08304: 1–18. Davitaya F.F. Dust content as a factor affecting glaciation and climatic change. Ann. Assoc. Amer. Geogr. 1969, 59 (3): 552–560. De Angelis M., Gaudichet A. Saharan dust deposition over Mont Blanc (French Alps) during the last 30 years. Tellus. B. 1991, 43 (1): 61–75. Delmonte B., Petit J.R., Maggi V. Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core. Climate Dynamics. 2002, 18: 647–660. Draxler R.R., Rolph G.D. HYSPLIT (HYbrid Single–Particle Lagrangian Integrated Trajectory), Model access via (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory. Silver Spring. MD. 2014. Ginoux P., Prospero J.M., Gill T.E., Hsu N.C., Zhao M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophysics. 2012, 50. № RG3005: 1–36. IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 996 p. Kang S., Zhang Y., Zhang Y., Grigholm B., Kaspari S., Qin D., Ren J., Mayewski P. Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry // Atm. Environment. 2010, 44. I. 25: 2980–2989. Kaniewski D., Van Campo E., Weiss H. Drought is a recurring challenge in the Middle East // Proc. National Academy of Sciences. U.S.A. 2012, 109. I. 10: 3862–3867. Kaspari S., Mayewski P.A., Handley M., Kang S., Hou S., Sneed S., Maasch K., Qin D. A High-Resolution Record of Atmospheric Dust Composition and Variability since a.d. 1650 from a Mount Everest Ice Core. Journ. of Climate. 2009, 22: 3910–3925. Kutiel H., Furman H. Dust storms in the Middle East: Sources of origin and their temporal characteristics. Indoor and Built Environment. 2003, 12 (6): 419–426. Kutuzov S., Shahgedanova M., Mikhalenko V., Ginot P., Lavrentiev I., Kemp S. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records. The Cryosphere. 2013, 7: 1481–1498. Lee K., Hur S.D., Hou S., Hong S., Qin X., Ren J., Liu Y., Rosman K.J., Barbante C., Boutron C.F. Atmospheric pollution for trace elements in the remote high–altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Sci. Total Environment. 2008, 404 (1): 171–181. Liu Y., Hou S., Hong S., Do Hur S., Lee K., Wang Y. High–resolution trace element records of an ice core from the eastern Tien Shan, central Asia, since 1953 AD. Journ. of Geophys. Research. 2011, 116. № D12307: 1–14. Nastos P.T., Kampanis N.A., Giaouzaki K.N., Matzarakis A. Environmental impacts on human health during a Saharan episode at Crete island – Greece. Meteorologische Zeitschrift. 2011, 20 (15): 517–529. Olivier S., Blaser C., Brütsch S., Frolova N., Gäggeler H.W., Henderson K.A., Palmer A.S., Papina T., Schwikowski M. Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai. Journ. of Geophys. Research. 2006, 111. № D05309: 1–13. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., PÉpin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420000 years from the Vostok ice core. Antarctica. Nature. 1999, 399: 429–436. Prospero J., Ginoux M.P., Torres O., Nicholson S.E., Gill T.E. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophysics. 2002, 40 (1). 1002: 1–31. Ruth U., Wagenbach D., Steffensen J.P., Bigler M. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. Journ. of Geophys. Research. 2003, 108 (D3). № 4098: 1–12. Schepanski K., Tegen I., Laurent B., Heinold B., Macke A. A new Saharan dust source activation frequency map derived from MSG‐SEVIRI IR channels // Geophys. Research Letters. 2007, 34. № L18803: 1–5. Schwikowski M. Reconstruction of European air pollution from alpine ice cores. Earth Paleoenvironments: Records Preserved in Mid- and Low-Latitude Glaciers. The Netherlands: Kluwer Academic, 2004: 95–119. Schwikowski M., Brütsch S., Gäggeler H.W., Schotterer U. A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps. Journ. of Geophys. Research. 1999, 104 (D11): 13709–13719. Shahgedanova M., Kutuzov S., White K.H., Nosenko G. Using the significant dust deposition event on the glaciers of Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and «provenancing» of desert dust events recorded in snow pack. Atmos. Chem. Phys. 2013, 13: 1797–1808. Sodemann H., Palmer A.S., Schwierz C., Schwikowski M., Wernli H. The transport history of two Saharan dust events archived in an Alpine ice core. Atmos. Chem. Phys. 2006, 6: 667–668. Thompson L.G. Understanding global climate change: Paleoclimate perspective from the World's highest mountains. Proc. Amer. Philos. Society. 2010, 54 (2): 133–157. Wagenbach D., Geis K. The mineral dust record in a high altitude Alpine glacier (Colle Gnifetti, Swiss Alps). Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Kluwer Academic Publishers, 1989: 543–564. Wake C.P., Mayewski P.A., Li Z., Han J., Qin Q. Modern eolian dust deposition in central Asia. Tellus. B. 1994, 46: 220–233. Washington R., Todd M., Middleton N. J., Goudie A.S. Dust-Storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Annals Amer. Geogr. 2003, 93: 297–313. Wedepohl K.H. The composition of the continental crust. Geochemical et Cosmochemical Acta. 1995, 59: 1217–1232. Wu G., Yao T., Xu B., Tian L., Zhang C., Zhang X. Volume–size distribution of microparticles in ice cores from the Tibetan Plateau. Journ. of Glaciology. 2009, 55 (193): 859–868. Xu J., Hou S., Qin D., Kaspari S., Mayewski P.A., Petit J.R., Delmonte B., Kang S., Ren J., Chappellaz J. A 108.83-m ice-core record of atmospheric dust deposition at Mt. Qomolangma (Everest), Central Himalaya. Quaternary Research. 2010, 73 (1): 33–38. Zdanowicz C.M., Hall G., Vaive J., Amelin Y., Percival J., Girard I., Biscaye P., Bory A. Asian dustfall in the St. Elias Mountains, Yukon, Canada. Geochemical et Cosmochemical Acta. 2006, 70: 3493–3507. https://ice-snow.igras.ru/jour/article/view/51 doi:10.15356/2076-6734-2014-3-5-15 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 54, № 3 (2014); 5-15 Лёд и Снег; Том 54, № 3 (2014); 5-15 2412-3765 2076-6734 10.15356/2076-6734-2014-3 Aerosols;atmospheric transport;Caucasus high mountains;ice cores Атмосферный перенос;аэрозоли;высокогорье Кавказа;ледниковые керны info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2014-3-5-15 https://doi.org/10.15356/2076-6734-2014-3 2022-12-20T13:30:09Z We present and discuss the chronology of dust deposition events documented by the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus (5150 m a.s.l.) in 2009, 2012 and 2013. Snow and ice samples were analysed for major ions and minor element concentrations including heavy metals. Dust layers are formed on the surface of the glaciers as a result of atmospheric transport of mineral dust and aerosol particles to the Caucasus region. Satellite imagery (SEVIRI), trajectory models, and meteorological data were used for accurate dating of each the dust layers revealed in the ice cores. Then we tried to determine origins of the dust clouds and to investigate their transport pathways with high resolution (50–100 km). It was found that the desert dust is deposited on Caucasus glaciers 3–7 times in a year and it comes mainly from deserts of the Middle East and more rarely from the Northern Sahara desert. For the first time average annual dust flux (264 µg/cm2 per a year) and average mass concentration (1.7 mg/kg) over the period 2007–2013 were calculated for this region. The deposition of dust resulted in elevated concentrations consists of mostly ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from various sources in the Middle East, including Mesopotamia, or similar dust clouds passing over the Middle East are characterised by high concentrations of nitrates and ammonia that may be related to atmospheric transport of ammonium from agricultural lands that may explain high concentrations of ammonium in the dust originating from this region. Mean values of crustal enrichment factors (EF) for the measured minor elements including heavy metals were calculated. We believe that high content of Cu, Zn and Cd can be a result of possible contribution from anthropogenic sources. Studies of the Caucasus ice cores may allow obtaining new independent data on the atmosphere circulation and high-altitude environment of this region. Исследованы образцы из снежных шурфов и керна из неглубоких скважин, ... Article in Journal/Newspaper The Cryosphere Ice and Snow (E-Journal) Ice and Snow 127 3 5