Surge development in the western sector of the Vavilov Ice Cap, Severnaya Zemlya, 1963–2017

The glaciers and ice caps in the Arctic are experiencing noticeable changes which are manifested, in particular, in the intensification of their dynamic instability. In this paper we present data on a largescale surge in the Western basin of the Vavilov ice dome on the archipelago Severnaya Zemlya,...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: I. Bushueva S., A. Glazovsky F., G. Nosenko A., И. Бушуева С., А. Глазовский Ф., Г. Носенко А.
Other Authors: Russian Foundation for Basic Research (grants № 16-35-00333 and 17-55-80107), and the Government Contract № 01201352474, РФФИ (гранты 16-35-00333 и 17-55- 80107), госзадание № 01201352474
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2018
Subjects:
Ice
Online Access:https://ice-snow.igras.ru/jour/article/view/481
https://doi.org/10.15356/2076-6734-2018-3-293-306
id ftjias:oai:oai.ice.elpub.ru:article/481
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Arctic
glacier surge
ice cap
ice velocity
Severnaya Zemlya
Арктика
ледниковый купол
подвижка ледника
Северная Земля
скорости льда
spellingShingle Arctic
glacier surge
ice cap
ice velocity
Severnaya Zemlya
Арктика
ледниковый купол
подвижка ледника
Северная Земля
скорости льда
I. Bushueva S.
A. Glazovsky F.
G. Nosenko A.
И. Бушуева С.
А. Глазовский Ф.
Г. Носенко А.
Surge development in the western sector of the Vavilov Ice Cap, Severnaya Zemlya, 1963–2017
topic_facet Arctic
glacier surge
ice cap
ice velocity
Severnaya Zemlya
Арктика
ледниковый купол
подвижка ледника
Северная Земля
скорости льда
description The glaciers and ice caps in the Arctic are experiencing noticeable changes which are manifested, in particular, in the intensification of their dynamic instability. In this paper we present data on a largescale surge in the Western basin of the Vavilov ice dome on the archipelago Severnaya Zemlya, derived from satellite images and supplemented by airborne RES-2014 and available publications. Analysis of 28 space images of 1963–2017 demonstrated that the surge developed over the whole period. In the fi st decade (1963–1973), the advance was very slow – from 2–5 to 12 m/year. Since the 1980-ies, the ice movement began to accelerate from tens to a hundred of meters per a year in the 2000-ies. The sudden change happened in the year 2012 when the surge front began to move already at speeds of about 0.5 km/year. In 2015, the volume of advanced part reached almost 4 km3. Maximal speed 9.2 km/year was recorded in 2016. From 1963 to 2017, the edge of the glacier advanced by 11.7 km, and its area increased by 134.1 km2 (by 47% relative to the basin area of 1963), that caused spreading of crevasse zone up the glacier. Surface speeds reached a maximum of 25.4 m/day in 2016 and decreased to 7.6 m/day in 2017. The authors suggest that the initial activation of the southern and western edges of the ice dome could be a reaction to the climate signal, possibly occurred several centuries ago. The ice crevassing and cryo-hydrological warming of ice, enhanced by positive feedback, resulted in instability of the glacier and the displacement of the edge of the ice belt containing moraine and frozen to the bed, which transformed into a catastrophic movement. The surge was facilitated by change of bedrock conditions as the ice lobe progressed offshore from permafrost coastal zone to the area of loose marine bottom sediments with low shear strength. The surge seems to be also stimulated by anomalously warm summer of 2012. Исследованы скорости продвижения фронта и роста площади западного сектора ледникового купола Вавилова на Северной ...
author2 Russian Foundation for Basic Research (grants № 16-35-00333 and 17-55-80107), and the Government Contract № 01201352474
РФФИ (гранты 16-35-00333 и 17-55- 80107), госзадание № 01201352474
format Article in Journal/Newspaper
author I. Bushueva S.
A. Glazovsky F.
G. Nosenko A.
И. Бушуева С.
А. Глазовский Ф.
Г. Носенко А.
author_facet I. Bushueva S.
A. Glazovsky F.
G. Nosenko A.
И. Бушуева С.
А. Глазовский Ф.
Г. Носенко А.
author_sort I. Bushueva S.
title Surge development in the western sector of the Vavilov Ice Cap, Severnaya Zemlya, 1963–2017
title_short Surge development in the western sector of the Vavilov Ice Cap, Severnaya Zemlya, 1963–2017
title_full Surge development in the western sector of the Vavilov Ice Cap, Severnaya Zemlya, 1963–2017
title_fullStr Surge development in the western sector of the Vavilov Ice Cap, Severnaya Zemlya, 1963–2017
title_full_unstemmed Surge development in the western sector of the Vavilov Ice Cap, Severnaya Zemlya, 1963–2017
title_sort surge development in the western sector of the vavilov ice cap, severnaya zemlya, 1963–2017
publisher IGRAS
publishDate 2018
url https://ice-snow.igras.ru/jour/article/view/481
https://doi.org/10.15356/2076-6734-2018-3-293-306
long_lat ENVELOPE(98.000,98.000,79.500,79.500)
geographic Arctic
Western Basin
Severnaya Zemlya
geographic_facet Arctic
Western Basin
Severnaya Zemlya
genre Arctic
Arctic
Ice
Ice cap
permafrost
Severnaya Zemlya
The Cryosphere
Арктика
genre_facet Arctic
Arctic
Ice
Ice cap
permafrost
Severnaya Zemlya
The Cryosphere
Арктика
op_source Ice and Snow; Том 58, № 3 (2018); 293-306
Лёд и Снег; Том 58, № 3 (2018); 293-306
2412-3765
2076-6734
10.15356/2076-6734-2018-3
op_relation https://ice-snow.igras.ru/jour/article/view/481/273
Box J.E., Sharp M. Changes to Arctic land ice // Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway, 2017. P. 137–168.
Strozzi T. Paul F., Wiesmann A., Schellenberger T., Kääb A. Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017 // Remote Sensing. 2017. № 9 (9). 947 р. doi:10.3390/rs9090947.
Glazovsky A., Bushueva I., Nosenko G. «Slow» surge of the Vavilov Ice Cap, Severnaya Zemlya // Proc. of the IASC Workshop on the Dynamics and Mass Balance of Arctic Glaciers. Obergurgl, Austria. 23–25 March 2015.
Каталог ледников СССР. Т. 16. Вып. 1. Ч. 1. М. Л.: Гидрометеоиздат, 1980. 81 c.
Большиянов Д.Ю., Макеев В.М. Архипелаг Северная Земля. Оледенение, история развития природной среды. Л.: Гидрометеоиздат, 1995. 216 с.
Электронный ресурс: RGI Consortium. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0 // Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media. 2017. P. 71. doi: https://doi.org/10.7265/N5-RGI-60.
Электронный ресурс: Scambos T., Fahnestock M., Moon T., Gardner A., Klinger M. Global Land Ice Velocity Extraction from Landsat 8 (GoLIVE), Version 1 // [79.2–79.4°N, 93.7–95.5°E]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. 2016. doi: http://dx.doi.org/10.7265/N5ZP442B. Accessed on June 14, 2017.
Fahnestock M., Scambos T., Moon T., Gardner A., Haran T., Klinger M. Rapid large-area mapping of ice flow using Landsat 8 // Remote Sensing of Environment. 2015. V. 185. P. 84–94. http://dx.doi.org/10.1016/j.rse.2015.11.023.
Электронный ресурс: Copernicus Open Access Hub. https://scihub.copernicus.eu/dhus/
Bassford R.P. Geophysical and numerical modelling investigations of the ice caps on Severnaya Zemlya // A dissertation submitted to the University of Bristol in accordance with the requirements of the degree of PhD in the Faculty of Science Bristol Glaciology Centre, School of Geographical Sciences, January 2002. 220 p.
Голубев В.Н. Современные колебания ледникового купола Вавилова на Северной Земле // МГИ. 1988. Вып. 85. С. 196–204.
Tyukavina A.I., Sharov A.I. Severnaya Zemlya: Glacier changes in 1980–2000s. Map 1:100 000 scale. Inv. № 817106_02 // Joanneum Research. 2009.
Serreze M.C., Barry R.G. Processes and impacts of Arctic amplification: A research synthesis // Global and Planetary Change. 2011. V. 77 (1–2). P. 85–96. doi:10.1016/j.gloplacha.2011.03.004.
Электронный ресурс: Climate Reanalyzer http://ccireanalyzer.org/Reanalysis_monthly/tseries.php.
Dunse T., Schellenberger T., Hagen J.O., Kääb A., Schuler T.V., Reijmer C.H. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt // The Cryosphere. 2015. V. 9. P. 197– 215. https://doi.org/10.5194/tc-9-197-2015.
Schellenberger T., Dunse T., Kääb A., Schuler T.V., Hagen J.O., Reijmer C.H. Multi-year surface velocities and sea-level rise contribution of the Basin-3 and Basin-2 surges, Austfonna, Svalbard // The Cryosphere Discussion. 2017. https://doi.org/10.5194/tc-2017-5, in review.
https://ice-snow.igras.ru/jour/article/view/481
doi:10.15356/2076-6734-2018-3-293-306
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2018-3-293-306
https://doi.org/10.15356/2076-6734-2018-3
https://doi.org/10.3390/rs9090947
https://doi.org/10.7265/N5-RGI-60
https://doi.org/10.7265/N5ZP442B
https://doi.org/10.1016/j.rse.2015.11.023
https://
container_title Ice and Snow
container_volume 58
container_issue 3
container_start_page 293
op_container_end_page 306
_version_ 1766301264397729792
spelling ftjias:oai:oai.ice.elpub.ru:article/481 2023-05-15T14:27:30+02:00 Surge development in the western sector of the Vavilov Ice Cap, Severnaya Zemlya, 1963–2017 Развитие подвижки в западной части ледникового купола Вавилова на Северной Земле в 1963–2017 гг. I. Bushueva S. A. Glazovsky F. G. Nosenko A. И. Бушуева С. А. Глазовский Ф. Г. Носенко А. Russian Foundation for Basic Research (grants № 16-35-00333 and 17-55-80107), and the Government Contract № 01201352474 РФФИ (гранты 16-35-00333 и 17-55- 80107), госзадание № 01201352474 2018-09-26 application/pdf https://ice-snow.igras.ru/jour/article/view/481 https://doi.org/10.15356/2076-6734-2018-3-293-306 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/481/273 Box J.E., Sharp M. Changes to Arctic land ice // Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway, 2017. P. 137–168. Strozzi T. Paul F., Wiesmann A., Schellenberger T., Kääb A. Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017 // Remote Sensing. 2017. № 9 (9). 947 р. doi:10.3390/rs9090947. Glazovsky A., Bushueva I., Nosenko G. «Slow» surge of the Vavilov Ice Cap, Severnaya Zemlya // Proc. of the IASC Workshop on the Dynamics and Mass Balance of Arctic Glaciers. Obergurgl, Austria. 23–25 March 2015. Каталог ледников СССР. Т. 16. Вып. 1. Ч. 1. М. Л.: Гидрометеоиздат, 1980. 81 c. Большиянов Д.Ю., Макеев В.М. Архипелаг Северная Земля. Оледенение, история развития природной среды. Л.: Гидрометеоиздат, 1995. 216 с. Электронный ресурс: RGI Consortium. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0 // Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media. 2017. P. 71. doi: https://doi.org/10.7265/N5-RGI-60. Электронный ресурс: Scambos T., Fahnestock M., Moon T., Gardner A., Klinger M. Global Land Ice Velocity Extraction from Landsat 8 (GoLIVE), Version 1 // [79.2–79.4°N, 93.7–95.5°E]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. 2016. doi: http://dx.doi.org/10.7265/N5ZP442B. Accessed on June 14, 2017. Fahnestock M., Scambos T., Moon T., Gardner A., Haran T., Klinger M. Rapid large-area mapping of ice flow using Landsat 8 // Remote Sensing of Environment. 2015. V. 185. P. 84–94. http://dx.doi.org/10.1016/j.rse.2015.11.023. Электронный ресурс: Copernicus Open Access Hub. https://scihub.copernicus.eu/dhus/ Bassford R.P. Geophysical and numerical modelling investigations of the ice caps on Severnaya Zemlya // A dissertation submitted to the University of Bristol in accordance with the requirements of the degree of PhD in the Faculty of Science Bristol Glaciology Centre, School of Geographical Sciences, January 2002. 220 p. Голубев В.Н. Современные колебания ледникового купола Вавилова на Северной Земле // МГИ. 1988. Вып. 85. С. 196–204. Tyukavina A.I., Sharov A.I. Severnaya Zemlya: Glacier changes in 1980–2000s. Map 1:100 000 scale. Inv. № 817106_02 // Joanneum Research. 2009. Serreze M.C., Barry R.G. Processes and impacts of Arctic amplification: A research synthesis // Global and Planetary Change. 2011. V. 77 (1–2). P. 85–96. doi:10.1016/j.gloplacha.2011.03.004. Электронный ресурс: Climate Reanalyzer http://ccireanalyzer.org/Reanalysis_monthly/tseries.php. Dunse T., Schellenberger T., Hagen J.O., Kääb A., Schuler T.V., Reijmer C.H. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt // The Cryosphere. 2015. V. 9. P. 197– 215. https://doi.org/10.5194/tc-9-197-2015. Schellenberger T., Dunse T., Kääb A., Schuler T.V., Hagen J.O., Reijmer C.H. Multi-year surface velocities and sea-level rise contribution of the Basin-3 and Basin-2 surges, Austfonna, Svalbard // The Cryosphere Discussion. 2017. https://doi.org/10.5194/tc-2017-5, in review. https://ice-snow.igras.ru/jour/article/view/481 doi:10.15356/2076-6734-2018-3-293-306 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 58, № 3 (2018); 293-306 Лёд и Снег; Том 58, № 3 (2018); 293-306 2412-3765 2076-6734 10.15356/2076-6734-2018-3 Arctic glacier surge ice cap ice velocity Severnaya Zemlya Арктика ледниковый купол подвижка ледника Северная Земля скорости льда info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2018 ftjias https://doi.org/10.15356/2076-6734-2018-3-293-306 https://doi.org/10.15356/2076-6734-2018-3 https://doi.org/10.3390/rs9090947 https://doi.org/10.7265/N5-RGI-60 https://doi.org/10.7265/N5ZP442B https://doi.org/10.1016/j.rse.2015.11.023 https:// 2022-12-20T13:30:01Z The glaciers and ice caps in the Arctic are experiencing noticeable changes which are manifested, in particular, in the intensification of their dynamic instability. In this paper we present data on a largescale surge in the Western basin of the Vavilov ice dome on the archipelago Severnaya Zemlya, derived from satellite images and supplemented by airborne RES-2014 and available publications. Analysis of 28 space images of 1963–2017 demonstrated that the surge developed over the whole period. In the fi st decade (1963–1973), the advance was very slow – from 2–5 to 12 m/year. Since the 1980-ies, the ice movement began to accelerate from tens to a hundred of meters per a year in the 2000-ies. The sudden change happened in the year 2012 when the surge front began to move already at speeds of about 0.5 km/year. In 2015, the volume of advanced part reached almost 4 km3. Maximal speed 9.2 km/year was recorded in 2016. From 1963 to 2017, the edge of the glacier advanced by 11.7 km, and its area increased by 134.1 km2 (by 47% relative to the basin area of 1963), that caused spreading of crevasse zone up the glacier. Surface speeds reached a maximum of 25.4 m/day in 2016 and decreased to 7.6 m/day in 2017. The authors suggest that the initial activation of the southern and western edges of the ice dome could be a reaction to the climate signal, possibly occurred several centuries ago. The ice crevassing and cryo-hydrological warming of ice, enhanced by positive feedback, resulted in instability of the glacier and the displacement of the edge of the ice belt containing moraine and frozen to the bed, which transformed into a catastrophic movement. The surge was facilitated by change of bedrock conditions as the ice lobe progressed offshore from permafrost coastal zone to the area of loose marine bottom sediments with low shear strength. The surge seems to be also stimulated by anomalously warm summer of 2012. Исследованы скорости продвижения фронта и роста площади западного сектора ледникового купола Вавилова на Северной ... Article in Journal/Newspaper Arctic Arctic Ice Ice cap permafrost Severnaya Zemlya The Cryosphere Арктика Ice and Snow (E-Journal) Arctic Western Basin Severnaya Zemlya ENVELOPE(98.000,98.000,79.500,79.500) Ice and Snow 58 3 293 306