Speed of radio wave propagation in dry and wet snow

In recent years, ground-penetrating radars are widely used for measuring thickness and liquid water content in snow cover on land and glaciers. The measurement accuracy depends on radio wave velocity (RWV) adopted for calculations. The RWV depends mainly on density, water content and structure of th...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: V. Kotlyakov M., Yu. Macheret Ya., A. Sosnovsky V., A. Glazovsky F., В. Котляков М., Ю. Мачерет Я., А. Сосновский В., А. Глазовский Ф.
Other Authors: РФФИ, РАН
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2017
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/358
https://doi.org/10.15356/2076-6734-2017-1-45-56
id ftjias:oai:oai.ice.elpub.ru:article/358
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic dry snow;radio echo sounding;radio wave velocity;snow cover;snow density;snow structure;wet snow
влажный снег;плотность снега;радиоэхозондирование;скорость распространения радиоволн;снежный покров;структура снега;сухой снег
spellingShingle dry snow;radio echo sounding;radio wave velocity;snow cover;snow density;snow structure;wet snow
влажный снег;плотность снега;радиоэхозондирование;скорость распространения радиоволн;снежный покров;структура снега;сухой снег
V. Kotlyakov M.
Yu. Macheret Ya.
A. Sosnovsky V.
A. Glazovsky F.
В. Котляков М.
Ю. Мачерет Я.
А. Сосновский В.
А. Глазовский Ф.
Speed of radio wave propagation in dry and wet snow
topic_facet dry snow;radio echo sounding;radio wave velocity;snow cover;snow density;snow structure;wet snow
влажный снег;плотность снега;радиоэхозондирование;скорость распространения радиоволн;снежный покров;структура снега;сухой снег
description In recent years, ground-penetrating radars are widely used for measuring thickness and liquid water content in snow cover on land and glaciers. The measurement accuracy depends on radio wave velocity (RWV) adopted for calculations. The RWV depends mainly on density, water content and structure of the snow cover and ice layers in it. The density and wetness of snow, and its structure can be estimated from data on RWV, using the available experimental and theoretical relations. Satisfactory results can be obtained using the Looyenga’s (1965) equations to estimate the density and wetness of snow cover, and equations of van Beek’s (1967) showing the distinction between RWV speeds velocities in snow cover and ice layers with different prevailing orientation and sizes of air or water inclusions.RWV in dry snow with density 300 kg/m3 may vary by 32 m/µs, depending on whether the vertical or horizontal orientation of the air inclusions prevails therein. In ice with density 700 kg/m3 effect of air inclusions orientation on differences in RWV is reduced to 5 m/µs. If the inclusions are not filled with air but with water, the difference in RWV in snow is 21 m/µs, and in ice is 24 m/µs. The RWV is affected not only by orientation of the inclusions, but their elongation. Twofold elongation of ellipsoidal air and water inclusions increases the difference in RWV in snow (with a density 300 kg/m3 ) to 23 m/µs and 22 m/µs.These estimates show a noticeable influence of snow structure on RWV in snow cover. The reliability of the above RWV estimates depends significantly on a thermal state of the snow cover, and decreases during snowmelt and increases in the cold period. It strongly depends on accuracy of measurements of the RWV in snow cover and its separate layers. With sufficiently high accuracy of the measurements this makes possible to detect and identify loose layers of deep hoar and compact layers of infiltration and superimposed ice, which is important for studying the liquid water storage of snow cover and a glacier mass ...
author2 РФФИ, РАН
format Article in Journal/Newspaper
author V. Kotlyakov M.
Yu. Macheret Ya.
A. Sosnovsky V.
A. Glazovsky F.
В. Котляков М.
Ю. Мачерет Я.
А. Сосновский В.
А. Глазовский Ф.
author_facet V. Kotlyakov M.
Yu. Macheret Ya.
A. Sosnovsky V.
A. Glazovsky F.
В. Котляков М.
Ю. Мачерет Я.
А. Сосновский В.
А. Глазовский Ф.
author_sort V. Kotlyakov M.
title Speed of radio wave propagation in dry and wet snow
title_short Speed of radio wave propagation in dry and wet snow
title_full Speed of radio wave propagation in dry and wet snow
title_fullStr Speed of radio wave propagation in dry and wet snow
title_full_unstemmed Speed of radio wave propagation in dry and wet snow
title_sort speed of radio wave propagation in dry and wet snow
publisher IGRAS
publishDate 2017
url https://ice-snow.igras.ru/jour/article/view/358
https://doi.org/10.15356/2076-6734-2017-1-45-56
genre Annals of Glaciology
Polar Research
genre_facet Annals of Glaciology
Polar Research
op_source Ice and Snow; Том 57, № 1 (2017); 45-56
Лёд и Снег; Том 57, № 1 (2017); 45-56
2412-3765
2076-6734
10.15356/2076-6734-2017-1
op_relation https://ice-snow.igras.ru/jour/article/view/358/202
Lundberg A., Granlund N., Gustafsson D. «Ground Truth» snow measurements – Review of operational and new measurement methods for Sweden and Finland // 65th Eastern Snow conference. Fairlee (Lake Morey), USA, Vermont, 2008. P. 215–237.
Arcone S.A. Airborne radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska. U.S.A. // Journ. of Glaciology. 2002. V. 48. №161. P. 317–334.
Arcone S.A., Spikes V.B., Hamilton G.S. Phase structure of radar stratigraphic horizons within Antarctic firn // Annals of Glaciology. 2005. V. 41. P. 10–16.
Arcone S.A., Kreutz K. GPR reflection profiles of Clark and Commonwealth glaciers, Dry Valley, Antarctica // Annals of Glaciology. 2009. V. 50 (51). P. 112–120.
Dunse T., Schuler T.V., Hagen J.O., Eiken T. Recent fluctuation in extent of the firn area of Austfonna, Svalbard, inferred from GPR // Annals of Glaciology. 2009. V. 50 (51). P. 155–162.
Forte E., Dossi M., Colucci R.R., Pipan M. A new fast methodology to estimate the density of frozen materials by means of common offset GPR data // Journ. of Applied Geophysics. 2013. V. 99. P. 135–145.
Forte E., Dossi M., Pipan M., Colucci R.R. Velocity analysis from common offset GPR data inversion: theory and application to synthetic and real data // Geophys. Journ. International. 2014. V. 197. P. 1471–1483.
Попов С.В., Эберляйн Л. Опыт применения георадиолокации для изучения строения снежно-фирновой толщи и грунта Восточной Антарктиды в сезон 2012/13 г. // Лёд и Снег. 2014. № 4 (128). С. 95–106.
Holbrook W.S., Miller S.N., Pwovart M.A. Estimating snow equivalent over long mountain transects using snowmobile–mounted ground penetrating radar // Geophysics. 2016. V. 81. № 1. P. WA183–WA193.
Мачерет Ю.Я. Радиозондирование ледников. М.: Научный мир, 2006. 392 с.
Глазовский А.Ф., Мачерет Ю.Я. Вода в ледниках. Методы и результаты геофизических и дистанционных исследований. М.: ГЕОС, 2014. 528 с.
Dowdeswell J.A., Evans S. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding // Reports on Progress in Physics. 2004. V. 67. P. 1821–1861.
Endres A.L., Murray T., Booth A.D., West L.J. A new framework for estimating englacial water content and pore geometry using combined radar and seismic wave velocities // Geophys. Research Lеtters. 2009. V. 36. L0450. doi:10.1029/2008GL036876.
Mätzler C., Wegmüller U. Dielectric properties of fresh–water ice at microwave frequencies // Journ. of Physics. D: Applied Physics. 1987. V. 20. № 12. P. 623–630.
Фролов А.Д., Мачерет Ю.Я. Оценка содержания воды в субполярных и теплых ледниках по данным измерений скорости распространения радиоволн // МГИ. 1998. Вып. 84. С. 148–154.
Frolov A.D., Macheret Yu.Ya. On dielectric properties of dry and wet snow // Hydrological processes. 1999. V. 13. P. 1755–1760.
Denoth А. On the calculation of the dielectric constant of snow // Rencontre internationale sur la neige et les avalanches. Association nationale pour 1′etude de la neige et des avalanches. 1978. P. 61–70.
Denoth A. Effect of grain geometry on electrical properties of snow at frequencies up to 100 MHz // Journ. of Applied Physics. 1982. V. 53. Pt. 1. № 11. P. 7496–7501.
Denoth A. Snow dielectric measurements // Advance Space Research. 1989. V. 9. № 1. P. 233–243.
Denoth А., Schittelkopf Н. Mixing formulas for determining the free water content of wet snow from measurements of the dielectric constant // Zeitschrift für Gletscherkunde und Glazialgeologie. 1978. Bd. 14. Нt. 1. S. 73–80.
Mätzler C. Microwave permittivity of dry snow // IEEE Transactions on Geoscience and Remote Sensing. 1996. V. 34. № 2. P. 573–581.
Stiles W.H., Ulaby F.T. Dielectric properties of snow // Proc. of the Workshop on the Properties of Snow, Snowbird, Utah, April 8–10, 1981. U.S. Army Cold Regions Research and Engineering Laboratory. Special report. № 82–18. United States. P. 91–103.
.Tiuri M., Sihvola A., Nyfors E., Hillikainen M. The complex dielectric constant of snow using microwave techniques // IEEE Journ. of Oceanic Engineering. 1984. V. OE–9. № 5. P. 377–382.
Узлов В.А., Шишков Г.И., Щербаков В.В. Основные физические параметры снежного покрова // Тр. Нижегородского гос. техн. ун-та им. Р.Е. Алексеева. 2014. Т. 103. № 1. С. 119–129.
Богородицкий В.В., Пасынков В.П. Материалы в радиоэлектронике. М.-Л.: Мосэнергоиздат, 1961. 352 с.
Looyenga H. Dielectric constants of heterogeneous mixture // Physica. 1965. V. 31. № 3. P. 401–406.
Robin G. de Q. Velocity of radio waves in ice by means of interferometric technique // Journ. of Glaciology. 1975. V. 15. № 73. P. 151–159.
Kovacs A., Gow A., Morey R.M. A reassessment of the in-situ dielectric constant of polar firn. CREEL Report 93–26. 1993. P. 1–29.
Cumming W.A. The dielectric properties of ice and snow at 3.2 centimeters // Journ. of Applied Physics. 1952. V. 23. № 7. P. 768–773.
Nyfors E. On dielectric properties of dry snow in the 800 MHz to 13 GHz region. Helsinki University of Technology. Radio Laboratory. Report S13. 1982. 29 p.
Hempel L., Thyssen F., Gundestrup N., Clausen H.B., Miller H. A comparison of radio–echo sounding data and electrical conductivity of the GRIP ice core // Journ. of Glaciology. 2000. V. 46. № 154. P. 369–374.
Achammer T., Denoth A. Snow dielectric properties: from DC to microwave X–band // Annals of Glaciology. 1994. V. 19. P. 92–96.
Denoth A. An electronic device for long-term snow wetness recording // Annals of Glaciology. 1994. V. 19. P. 104–106.
Schneebeli M., Coléuo C., Touvier F., Lesaffre B. Measurement of density and wetness in snow using time–domain reflectometry // Annals of Glaciology. 1998. V. 26. P. 69–72.
Macheret Yu.Ya., Glazovsky A.F. Estimation of absolute water content in Spitsbergen glaciers // Polar Research. 2000. V. 19. № 2. P. 205–216.
Sihvola A., Nyfors E., Tiuri M. Mixing formulae and experimental results for the dielectric constant of snow // Journ. of Glaciology. 1985. V. 31. № 108. P. 163–170.
Bradford J.H., Nichols J., Mikesell D., Harper J. Continuous profiles of electromagnetic velocity and water content in glaciers: an example from Bench glacier, Alaska, USA // Annals of Glaciology. 2009. V. 50 (51). P. 1–9.
Kuroiwa D. The dielectric properties of snow // IASH Publ. № 4. 1956. P. 52–63.
Sweeny B.D., Colbeck S.C. Measurements of the dielectric properties of wet snow using a microwave technique // CREEL Res. Report 325, 1974.
Ambach W., Denoth A. Studies on the dielectric properties of snow // Zeitschrift für Gletscherkunde und Glazialgeologie. 1972. Bd. 8. Нt. 1–2. S. 113–123.
Giordano S. Order and disorder of heterogeneous material microstructure: electric and elastic characterization of dispersions of pseudo–oriented spheroids // Intern. Journ. of Engineering Science. 2005. V. 43. P. 1033–1058.
Bradford J.H., Nichols J., Harper J.T., Meirbachtol T. Compressional and EM velocity anisotropy in a temperate glacier due to basal crevasses, and implications for water content estimation // Annals of Glaciology. 2013. V. 54 (64). P. 168–178.
van Beek L.K.H. Dielectric behavior in heterogeneous systems // Progress in dielectrics. 1967. V. 7. P. 69–114.
Ackley S.F., Keliher T.E. Ice sheet internal radio–echo reflections and associated physical property changes with depth // Journ. of Geophys. Research. 1979. V. 84-B10. P. 5675–5680.
Stratton J.A. Electromagnetic theory. New York, McGraw–Hill, 1941. 615 p.
https://ice-snow.igras.ru/jour/article/view/358
doi:10.15356/2076-6734-2017-1-45-56
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2017-1-45-56
https://doi.org/10.15356/2076-6734-2017-1
https://doi.org/10.1029/2008GL036876
container_title Ice and Snow
container_volume 57
container_issue 1
container_start_page 45
op_container_end_page 56
_version_ 1766003352627314688
spelling ftjias:oai:oai.ice.elpub.ru:article/358 2023-05-15T13:29:49+02:00 Speed of radio wave propagation in dry and wet snow Скорость распространения радиоволн в сухом и влажном снежном покрове V. Kotlyakov M. Yu. Macheret Ya. A. Sosnovsky V. A. Glazovsky F. В. Котляков М. Ю. Мачерет Я. А. Сосновский В. А. Глазовский Ф. РФФИ, РАН 2017-04-11 application/pdf https://ice-snow.igras.ru/jour/article/view/358 https://doi.org/10.15356/2076-6734-2017-1-45-56 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/358/202 Lundberg A., Granlund N., Gustafsson D. «Ground Truth» snow measurements – Review of operational and new measurement methods for Sweden and Finland // 65th Eastern Snow conference. Fairlee (Lake Morey), USA, Vermont, 2008. P. 215–237. Arcone S.A. Airborne radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska. U.S.A. // Journ. of Glaciology. 2002. V. 48. №161. P. 317–334. Arcone S.A., Spikes V.B., Hamilton G.S. Phase structure of radar stratigraphic horizons within Antarctic firn // Annals of Glaciology. 2005. V. 41. P. 10–16. Arcone S.A., Kreutz K. GPR reflection profiles of Clark and Commonwealth glaciers, Dry Valley, Antarctica // Annals of Glaciology. 2009. V. 50 (51). P. 112–120. Dunse T., Schuler T.V., Hagen J.O., Eiken T. Recent fluctuation in extent of the firn area of Austfonna, Svalbard, inferred from GPR // Annals of Glaciology. 2009. V. 50 (51). P. 155–162. Forte E., Dossi M., Colucci R.R., Pipan M. A new fast methodology to estimate the density of frozen materials by means of common offset GPR data // Journ. of Applied Geophysics. 2013. V. 99. P. 135–145. Forte E., Dossi M., Pipan M., Colucci R.R. Velocity analysis from common offset GPR data inversion: theory and application to synthetic and real data // Geophys. Journ. International. 2014. V. 197. P. 1471–1483. Попов С.В., Эберляйн Л. Опыт применения георадиолокации для изучения строения снежно-фирновой толщи и грунта Восточной Антарктиды в сезон 2012/13 г. // Лёд и Снег. 2014. № 4 (128). С. 95–106. Holbrook W.S., Miller S.N., Pwovart M.A. Estimating snow equivalent over long mountain transects using snowmobile–mounted ground penetrating radar // Geophysics. 2016. V. 81. № 1. P. WA183–WA193. Мачерет Ю.Я. Радиозондирование ледников. М.: Научный мир, 2006. 392 с. Глазовский А.Ф., Мачерет Ю.Я. Вода в ледниках. Методы и результаты геофизических и дистанционных исследований. М.: ГЕОС, 2014. 528 с. Dowdeswell J.A., Evans S. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding // Reports on Progress in Physics. 2004. V. 67. P. 1821–1861. Endres A.L., Murray T., Booth A.D., West L.J. A new framework for estimating englacial water content and pore geometry using combined radar and seismic wave velocities // Geophys. Research Lеtters. 2009. V. 36. L0450. doi:10.1029/2008GL036876. Mätzler C., Wegmüller U. Dielectric properties of fresh–water ice at microwave frequencies // Journ. of Physics. D: Applied Physics. 1987. V. 20. № 12. P. 623–630. Фролов А.Д., Мачерет Ю.Я. Оценка содержания воды в субполярных и теплых ледниках по данным измерений скорости распространения радиоволн // МГИ. 1998. Вып. 84. С. 148–154. Frolov A.D., Macheret Yu.Ya. On dielectric properties of dry and wet snow // Hydrological processes. 1999. V. 13. P. 1755–1760. Denoth А. On the calculation of the dielectric constant of snow // Rencontre internationale sur la neige et les avalanches. Association nationale pour 1′etude de la neige et des avalanches. 1978. P. 61–70. Denoth A. Effect of grain geometry on electrical properties of snow at frequencies up to 100 MHz // Journ. of Applied Physics. 1982. V. 53. Pt. 1. № 11. P. 7496–7501. Denoth A. Snow dielectric measurements // Advance Space Research. 1989. V. 9. № 1. P. 233–243. Denoth А., Schittelkopf Н. Mixing formulas for determining the free water content of wet snow from measurements of the dielectric constant // Zeitschrift für Gletscherkunde und Glazialgeologie. 1978. Bd. 14. Нt. 1. S. 73–80. Mätzler C. Microwave permittivity of dry snow // IEEE Transactions on Geoscience and Remote Sensing. 1996. V. 34. № 2. P. 573–581. Stiles W.H., Ulaby F.T. Dielectric properties of snow // Proc. of the Workshop on the Properties of Snow, Snowbird, Utah, April 8–10, 1981. U.S. Army Cold Regions Research and Engineering Laboratory. Special report. № 82–18. United States. P. 91–103. .Tiuri M., Sihvola A., Nyfors E., Hillikainen M. The complex dielectric constant of snow using microwave techniques // IEEE Journ. of Oceanic Engineering. 1984. V. OE–9. № 5. P. 377–382. Узлов В.А., Шишков Г.И., Щербаков В.В. Основные физические параметры снежного покрова // Тр. Нижегородского гос. техн. ун-та им. Р.Е. Алексеева. 2014. Т. 103. № 1. С. 119–129. Богородицкий В.В., Пасынков В.П. Материалы в радиоэлектронике. М.-Л.: Мосэнергоиздат, 1961. 352 с. Looyenga H. Dielectric constants of heterogeneous mixture // Physica. 1965. V. 31. № 3. P. 401–406. Robin G. de Q. Velocity of radio waves in ice by means of interferometric technique // Journ. of Glaciology. 1975. V. 15. № 73. P. 151–159. Kovacs A., Gow A., Morey R.M. A reassessment of the in-situ dielectric constant of polar firn. CREEL Report 93–26. 1993. P. 1–29. Cumming W.A. The dielectric properties of ice and snow at 3.2 centimeters // Journ. of Applied Physics. 1952. V. 23. № 7. P. 768–773. Nyfors E. On dielectric properties of dry snow in the 800 MHz to 13 GHz region. Helsinki University of Technology. Radio Laboratory. Report S13. 1982. 29 p. Hempel L., Thyssen F., Gundestrup N., Clausen H.B., Miller H. A comparison of radio–echo sounding data and electrical conductivity of the GRIP ice core // Journ. of Glaciology. 2000. V. 46. № 154. P. 369–374. Achammer T., Denoth A. Snow dielectric properties: from DC to microwave X–band // Annals of Glaciology. 1994. V. 19. P. 92–96. Denoth A. An electronic device for long-term snow wetness recording // Annals of Glaciology. 1994. V. 19. P. 104–106. Schneebeli M., Coléuo C., Touvier F., Lesaffre B. Measurement of density and wetness in snow using time–domain reflectometry // Annals of Glaciology. 1998. V. 26. P. 69–72. Macheret Yu.Ya., Glazovsky A.F. Estimation of absolute water content in Spitsbergen glaciers // Polar Research. 2000. V. 19. № 2. P. 205–216. Sihvola A., Nyfors E., Tiuri M. Mixing formulae and experimental results for the dielectric constant of snow // Journ. of Glaciology. 1985. V. 31. № 108. P. 163–170. Bradford J.H., Nichols J., Mikesell D., Harper J. Continuous profiles of electromagnetic velocity and water content in glaciers: an example from Bench glacier, Alaska, USA // Annals of Glaciology. 2009. V. 50 (51). P. 1–9. Kuroiwa D. The dielectric properties of snow // IASH Publ. № 4. 1956. P. 52–63. Sweeny B.D., Colbeck S.C. Measurements of the dielectric properties of wet snow using a microwave technique // CREEL Res. Report 325, 1974. Ambach W., Denoth A. Studies on the dielectric properties of snow // Zeitschrift für Gletscherkunde und Glazialgeologie. 1972. Bd. 8. Нt. 1–2. S. 113–123. Giordano S. Order and disorder of heterogeneous material microstructure: electric and elastic characterization of dispersions of pseudo–oriented spheroids // Intern. Journ. of Engineering Science. 2005. V. 43. P. 1033–1058. Bradford J.H., Nichols J., Harper J.T., Meirbachtol T. Compressional and EM velocity anisotropy in a temperate glacier due to basal crevasses, and implications for water content estimation // Annals of Glaciology. 2013. V. 54 (64). P. 168–178. van Beek L.K.H. Dielectric behavior in heterogeneous systems // Progress in dielectrics. 1967. V. 7. P. 69–114. Ackley S.F., Keliher T.E. Ice sheet internal radio–echo reflections and associated physical property changes with depth // Journ. of Geophys. Research. 1979. V. 84-B10. P. 5675–5680. Stratton J.A. Electromagnetic theory. New York, McGraw–Hill, 1941. 615 p. https://ice-snow.igras.ru/jour/article/view/358 doi:10.15356/2076-6734-2017-1-45-56 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 57, № 1 (2017); 45-56 Лёд и Снег; Том 57, № 1 (2017); 45-56 2412-3765 2076-6734 10.15356/2076-6734-2017-1 dry snow;radio echo sounding;radio wave velocity;snow cover;snow density;snow structure;wet snow влажный снег;плотность снега;радиоэхозондирование;скорость распространения радиоволн;снежный покров;структура снега;сухой снег info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2017 ftjias https://doi.org/10.15356/2076-6734-2017-1-45-56 https://doi.org/10.15356/2076-6734-2017-1 https://doi.org/10.1029/2008GL036876 2022-12-20T13:30:09Z In recent years, ground-penetrating radars are widely used for measuring thickness and liquid water content in snow cover on land and glaciers. The measurement accuracy depends on radio wave velocity (RWV) adopted for calculations. The RWV depends mainly on density, water content and structure of the snow cover and ice layers in it. The density and wetness of snow, and its structure can be estimated from data on RWV, using the available experimental and theoretical relations. Satisfactory results can be obtained using the Looyenga’s (1965) equations to estimate the density and wetness of snow cover, and equations of van Beek’s (1967) showing the distinction between RWV speeds velocities in snow cover and ice layers with different prevailing orientation and sizes of air or water inclusions.RWV in dry snow with density 300 kg/m3 may vary by 32 m/µs, depending on whether the vertical or horizontal orientation of the air inclusions prevails therein. In ice with density 700 kg/m3 effect of air inclusions orientation on differences in RWV is reduced to 5 m/µs. If the inclusions are not filled with air but with water, the difference in RWV in snow is 21 m/µs, and in ice is 24 m/µs. The RWV is affected not only by orientation of the inclusions, but their elongation. Twofold elongation of ellipsoidal air and water inclusions increases the difference in RWV in snow (with a density 300 kg/m3 ) to 23 m/µs and 22 m/µs.These estimates show a noticeable influence of snow structure on RWV in snow cover. The reliability of the above RWV estimates depends significantly on a thermal state of the snow cover, and decreases during snowmelt and increases in the cold period. It strongly depends on accuracy of measurements of the RWV in snow cover and its separate layers. With sufficiently high accuracy of the measurements this makes possible to detect and identify loose layers of deep hoar and compact layers of infiltration and superimposed ice, which is important for studying the liquid water storage of snow cover and a glacier mass ... Article in Journal/Newspaper Annals of Glaciology Polar Research Ice and Snow (E-Journal) Ice and Snow 57 1 45 56