A study of different‑scale relationship between changes of the surface air temperature and the СО2 concentration in the atmosphere

A concept of the anthropogenic origin of the current global climate warming assumes that growth of concentration of the atmospheric carbon dioxide and other greenhouse gases is of great concern in this process. However, all earlier performed analyses of the Antarctic ice cores, covering the time int...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: N. Vakulenko V., V. Kotlyakov M., F. Parrenin, D. Sonechkin M., Н. Вакуленко В., В. Котляков М., Ф. Парренин, Д. Сонечкин М.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2016
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/341
https://doi.org/10.15356/2076-6734-2016-4-533-544
id ftjias:oai:oai.ice.elpub.ru:article/341
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic atmospheric СО2 concentration
crosswavelet analysis
global air temperature
the transition from the last glacial maximum to the Holocene
глобальная температура воздуха;концентрация СО2 в атмосфере;кроссвейвлетный анализ;переход от последнего гляциального максимума к голоцену
spellingShingle atmospheric СО2 concentration
crosswavelet analysis
global air temperature
the transition from the last glacial maximum to the Holocene
глобальная температура воздуха;концентрация СО2 в атмосфере;кроссвейвлетный анализ;переход от последнего гляциального максимума к голоцену
N. Vakulenko V.
V. Kotlyakov M.
F. Parrenin
D. Sonechkin M.
Н. Вакуленко В.
В. Котляков М.
Ф. Парренин
Д. Сонечкин М.
A study of different‑scale relationship between changes of the surface air temperature and the СО2 concentration in the atmosphere
topic_facet atmospheric СО2 concentration
crosswavelet analysis
global air temperature
the transition from the last glacial maximum to the Holocene
глобальная температура воздуха;концентрация СО2 в атмосфере;кроссвейвлетный анализ;переход от последнего гляциального максимума к голоцену
description A concept of the anthropogenic origin of the current global climate warming assumes that growth of concentration of the atmospheric carbon dioxide and other greenhouse gases is of great concern in this process. However, all earlier performed analyses of the Antarctic ice cores, covering the time interval of several glacial cycles for about 1 000 000 years, have demonstrated that the carbon dioxide concentration changes had a certain lag relative to the air temperature changes by several hundred years during every beginning of the glacial terminations as well as at endings of interglacials. In contrast to these findings, a recently published careful analysis of Antarctic ice cores (Parrenin et al., 2013) had shown that both, the carbon dioxide concentration and global temperature, varied almost synchronously during the transition from the last glacial maximum to the Holocene. To resolve this dilemma, a special technique for analysis of the paleoclimatic time series, based on the wavelets, had been developed and applied to the same carbon dioxide concentration and temperature time series which were used in the above paper of Parrenin et al., 2013. Specifically, a stack of the Antarctic δ18O time series (designated as ATS) and the deuterium Dome C – EPICA ones (dD) were compared to one another in order to: firstly, to quantitatively estimate differences between time scales of these series; and, secondly, to clear up the lead–lag relationships between different scales variations within these time series. It was found that accuracy of the mutual ATS and dD time series dating lay within the range of 80–160 years. Perhaps, the mutual dating of the temperature and carbon dioxide concentration series was even worse due to the assumed displacement of air bubbles within the ice. It made us to limit our analysis by the time scales of approximately from 800 to 6000 years. But it should be taken into account that any air bubble movement changes the time scale of the carbon dioxide series as a whole. Therefore, if a difference ...
format Article in Journal/Newspaper
author N. Vakulenko V.
V. Kotlyakov M.
F. Parrenin
D. Sonechkin M.
Н. Вакуленко В.
В. Котляков М.
Ф. Парренин
Д. Сонечкин М.
author_facet N. Vakulenko V.
V. Kotlyakov M.
F. Parrenin
D. Sonechkin M.
Н. Вакуленко В.
В. Котляков М.
Ф. Парренин
Д. Сонечкин М.
author_sort N. Vakulenko V.
title A study of different‑scale relationship between changes of the surface air temperature and the СО2 concentration in the atmosphere
title_short A study of different‑scale relationship between changes of the surface air temperature and the СО2 concentration in the atmosphere
title_full A study of different‑scale relationship between changes of the surface air temperature and the СО2 concentration in the atmosphere
title_fullStr A study of different‑scale relationship between changes of the surface air temperature and the СО2 concentration in the atmosphere
title_full_unstemmed A study of different‑scale relationship between changes of the surface air temperature and the СО2 concentration in the atmosphere
title_sort study of different‑scale relationship between changes of the surface air temperature and the со2 concentration in the atmosphere
publisher IGRAS
publishDate 2016
url https://ice-snow.igras.ru/jour/article/view/341
https://doi.org/10.15356/2076-6734-2016-4-533-544
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
EPICA
genre_facet Antarc*
Antarctic
EPICA
op_source Ice and Snow; Том 56, № 4 (2016); 533-544
Лёд и Снег; Том 56, № 4 (2016); 533-544
2412-3765
2076-6734
10.15356/2076-6734-2016-4
op_relation https://ice-snow.igras.ru/jour/article/view/341/193
Tan I., Storelvmo T., Zelinka M.D. Observational constraints on mixed‑phase clouds imply higher climate sensitivity // Science. 2016. V. 352. P. 224–227.
Martinez‑Boti M.A., Foster G.L., Chalk T.B., Rohling E.J., Sexton P.F., Lunt D.J., Pancost D.J. Plio‑Pleistocene climate sensitivity evaluated using high‑resolution CO2 records // Nature. 2015. V. 518. P. 49–54.
Rohde R., Muller R.A., Jacobsen R., Nuller E., Perlmutter S., Rosenfeld A., Wurtele J., Groom D., Wickham C. A new estimate of the average Earth surface land temperature spanning 1753 to 2011 // Geoinformatics & Geostatistics: An Overview. 2013. 1:1. doi:10.4172/2327-4581.1000101.
Caillon N., Severinghaus J.P., Jouzel J., Barnola J.‑M., Kang J., Lipenkov V.Y. Timing of Atmospheric CO2 and Antarctic Temperature Changes Across Termination III // Science. 2003. V. 299. P. 1728–1731.
Luethi D., Le Floch M., Bereiter B., Bluner T., Barnola J.‑M., Siegenthaler U., Raynaud D., Jouzel J., Fischer H., Kawamura K., Stocker T. High‑resolution carbon dioxide concentration record 650,000–800,000 years before present // Nature. 2008. V. 453. P. 379–382.
Petit R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.‑M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E. , Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica // Nature. 1999. V. 399. P. 429–436.
Вакуленко Н.В., Котляков В.М., Монин А.С., Сонечкин Д.М. Доказательства ведущей роли вариаций температуры по отношению к вариациям концентрации парниковых газов по данным ледяного керна со станции «Восток» // ДАН. 2004. Т. 397. № 5. С. 663– 667.
Humlum O., Stordahl K., Solheim J.‑E. The phase relation between atmospheric carbon dioxide and global temperature // Global Planetary Change. 2013. V. 100. P. 51–69.
Masters T., Benestad R. Comment on Phase relation between atmospheric carbon dioxide and global temperature // Global Planetary Change. 2013. V. 106. P. 141–142.
Richardson M. Comment on the phase relation between atmospheric carbon dioxide and global temperature by Humlum, Stordahl and Solheim // Global and Planetary Change. 2013. V. 107. P. 226–228.
Parrenin F., Masson Delmotte V., Koeler P., Raynaud D., Paillard D., Schwander J., Barbante C., Landais A., Wegner A., Jouzel J. Synchronous change of atmospheric СО2 and Antarctic temperature during the last deglacial warming // Science. 2013. V. 339. P. 1060– 1063.
Torrence C., Compo G.P. A practical guide to wavelet analysis // Bull. Amer. Meteorol. Soc. 1998. V. 79. № 1. P. 61–78.
Grinsted A., Moore J.C., Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series // Nonlinear Processes in Geophysics. 2004. № 11. Р. 561–566.
Сонечкин Д.М., Броевский Р., Иващенко Н.Н., Якубяк Б. Пространственно‑временной скейлинг полей приземной температуры воздуха // Метеорология и гидрология. 2005. № 7. С. 18–25.
Вакуленко Н.В., Котляков В.М., Сонечкин Д.М. О соотношениях лидирования – запаздывания между атмосферными трендами температуры и концентрации углекислого газа в период плиоцена // ДАН. 2016. Т. 467. № 6. С. 709–712.
https://ice-snow.igras.ru/jour/article/view/341
doi:10.15356/2076-6734-2016-4-533-544
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2016-4-533-544
https://doi.org/10.15356/2076-6734-2016-4
container_title Ice and Snow
container_volume 56
container_issue 4
container_start_page 533
op_container_end_page 544
_version_ 1766199386655686656
spelling ftjias:oai:oai.ice.elpub.ru:article/341 2023-05-15T13:44:15+02:00 A study of different‑scale relationship between changes of the surface air temperature and the СО2 concentration in the atmosphere Исследование разномасштабных взаимосвязей между изменениями приземной температуры воздуха и концентрации СО2 в атмосфере N. Vakulenko V. V. Kotlyakov M. F. Parrenin D. Sonechkin M. Н. Вакуленко В. В. Котляков М. Ф. Парренин Д. Сонечкин М. 2016-12-21 application/pdf https://ice-snow.igras.ru/jour/article/view/341 https://doi.org/10.15356/2076-6734-2016-4-533-544 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/341/193 Tan I., Storelvmo T., Zelinka M.D. Observational constraints on mixed‑phase clouds imply higher climate sensitivity // Science. 2016. V. 352. P. 224–227. Martinez‑Boti M.A., Foster G.L., Chalk T.B., Rohling E.J., Sexton P.F., Lunt D.J., Pancost D.J. Plio‑Pleistocene climate sensitivity evaluated using high‑resolution CO2 records // Nature. 2015. V. 518. P. 49–54. Rohde R., Muller R.A., Jacobsen R., Nuller E., Perlmutter S., Rosenfeld A., Wurtele J., Groom D., Wickham C. A new estimate of the average Earth surface land temperature spanning 1753 to 2011 // Geoinformatics & Geostatistics: An Overview. 2013. 1:1. doi:10.4172/2327-4581.1000101. Caillon N., Severinghaus J.P., Jouzel J., Barnola J.‑M., Kang J., Lipenkov V.Y. Timing of Atmospheric CO2 and Antarctic Temperature Changes Across Termination III // Science. 2003. V. 299. P. 1728–1731. Luethi D., Le Floch M., Bereiter B., Bluner T., Barnola J.‑M., Siegenthaler U., Raynaud D., Jouzel J., Fischer H., Kawamura K., Stocker T. High‑resolution carbon dioxide concentration record 650,000–800,000 years before present // Nature. 2008. V. 453. P. 379–382. Petit R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.‑M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E. , Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica // Nature. 1999. V. 399. P. 429–436. Вакуленко Н.В., Котляков В.М., Монин А.С., Сонечкин Д.М. Доказательства ведущей роли вариаций температуры по отношению к вариациям концентрации парниковых газов по данным ледяного керна со станции «Восток» // ДАН. 2004. Т. 397. № 5. С. 663– 667. Humlum O., Stordahl K., Solheim J.‑E. The phase relation between atmospheric carbon dioxide and global temperature // Global Planetary Change. 2013. V. 100. P. 51–69. Masters T., Benestad R. Comment on Phase relation between atmospheric carbon dioxide and global temperature // Global Planetary Change. 2013. V. 106. P. 141–142. Richardson M. Comment on the phase relation between atmospheric carbon dioxide and global temperature by Humlum, Stordahl and Solheim // Global and Planetary Change. 2013. V. 107. P. 226–228. Parrenin F., Masson Delmotte V., Koeler P., Raynaud D., Paillard D., Schwander J., Barbante C., Landais A., Wegner A., Jouzel J. Synchronous change of atmospheric СО2 and Antarctic temperature during the last deglacial warming // Science. 2013. V. 339. P. 1060– 1063. Torrence C., Compo G.P. A practical guide to wavelet analysis // Bull. Amer. Meteorol. Soc. 1998. V. 79. № 1. P. 61–78. Grinsted A., Moore J.C., Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series // Nonlinear Processes in Geophysics. 2004. № 11. Р. 561–566. Сонечкин Д.М., Броевский Р., Иващенко Н.Н., Якубяк Б. Пространственно‑временной скейлинг полей приземной температуры воздуха // Метеорология и гидрология. 2005. № 7. С. 18–25. Вакуленко Н.В., Котляков В.М., Сонечкин Д.М. О соотношениях лидирования – запаздывания между атмосферными трендами температуры и концентрации углекислого газа в период плиоцена // ДАН. 2016. Т. 467. № 6. С. 709–712. https://ice-snow.igras.ru/jour/article/view/341 doi:10.15356/2076-6734-2016-4-533-544 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 56, № 4 (2016); 533-544 Лёд и Снег; Том 56, № 4 (2016); 533-544 2412-3765 2076-6734 10.15356/2076-6734-2016-4 atmospheric СО2 concentration crosswavelet analysis global air temperature the transition from the last glacial maximum to the Holocene глобальная температура воздуха;концентрация СО2 в атмосфере;кроссвейвлетный анализ;переход от последнего гляциального максимума к голоцену info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2016 ftjias https://doi.org/10.15356/2076-6734-2016-4-533-544 https://doi.org/10.15356/2076-6734-2016-4 2022-12-20T13:30:18Z A concept of the anthropogenic origin of the current global climate warming assumes that growth of concentration of the atmospheric carbon dioxide and other greenhouse gases is of great concern in this process. However, all earlier performed analyses of the Antarctic ice cores, covering the time interval of several glacial cycles for about 1 000 000 years, have demonstrated that the carbon dioxide concentration changes had a certain lag relative to the air temperature changes by several hundred years during every beginning of the glacial terminations as well as at endings of interglacials. In contrast to these findings, a recently published careful analysis of Antarctic ice cores (Parrenin et al., 2013) had shown that both, the carbon dioxide concentration and global temperature, varied almost synchronously during the transition from the last glacial maximum to the Holocene. To resolve this dilemma, a special technique for analysis of the paleoclimatic time series, based on the wavelets, had been developed and applied to the same carbon dioxide concentration and temperature time series which were used in the above paper of Parrenin et al., 2013. Specifically, a stack of the Antarctic δ18O time series (designated as ATS) and the deuterium Dome C – EPICA ones (dD) were compared to one another in order to: firstly, to quantitatively estimate differences between time scales of these series; and, secondly, to clear up the lead–lag relationships between different scales variations within these time series. It was found that accuracy of the mutual ATS and dD time series dating lay within the range of 80–160 years. Perhaps, the mutual dating of the temperature and carbon dioxide concentration series was even worse due to the assumed displacement of air bubbles within the ice. It made us to limit our analysis by the time scales of approximately from 800 to 6000 years. But it should be taken into account that any air bubble movement changes the time scale of the carbon dioxide series as a whole. Therefore, if a difference ... Article in Journal/Newspaper Antarc* Antarctic EPICA Ice and Snow (E-Journal) Antarctic The Antarctic Ice and Snow 56 4 533 544