id ftjias:oai:oai.ice.elpub.ru:article/319
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic climate;climate model;Greenland ice sheet (GrIS);ice discharge;mass balance;mathematical model;numerical experiment
баланс массы;вычислительный эксперимент;Гренландия;климат;климатическая модель;ледниковый щит;математическая модель;сток
spellingShingle climate;climate model;Greenland ice sheet (GrIS);ice discharge;mass balance;mathematical model;numerical experiment
баланс массы;вычислительный эксперимент;Гренландия;климат;климатическая модель;ледниковый щит;математическая модель;сток
O. Rybak O.
E. Volodin M.
A. Nevecherya P.
P. Morozova A.
M. Кaminskaya M.
О. Рыбак О.
Е. Володин М.
А. Невечеря П.
П. Морозова А.
М. Каминская М.
Calculation of mass discharge of the Greenland ice sheet in the Earth System Model
topic_facet climate;climate model;Greenland ice sheet (GrIS);ice discharge;mass balance;mathematical model;numerical experiment
баланс массы;вычислительный эксперимент;Гренландия;климат;климатическая модель;ледниковый щит;математическая модель;сток
description Mass discharge calculation is a challenging task for the ice sheet modeling aimed at evaluation of their contribution to the global sea level rise during past interglacials, as well as one of the consequences of future climate change. In Greenland, ablation is the major source of fresh water runoff. It is approximately equal to the dynamical discharge (iceberg calving). Its share might have still larger during the past interglacials when the margins of the GrIS retreated inland. Refreezing of the melted water and its retention are two poorly known processes playing as a counterpart of melting and, thus, exerting influence on the run off. Interaction of ice sheets and climate is driven by energy and mass exchange processes and is complicated by numerous feed-backs. To study the complex of these processes, coupling of an ice sheet model and a climate model (i.e. models of the atmosphere and the ocean) in one model is required, which is often called the Earth System Model (ESM). Formalization of processes of interaction between the ice sheets and climate within the ESM requires elaboration of special techniques to deal with dramatic differences in spatial and temporal variability scales within each of three ESM’s blocks. In this paper, we focus on the method of coupling of a Greenland ice sheet model (GrISM) with the climate model INMCM having been developed in the Institute of Numerical Mathematics of Russian Academy of Sciences. Our coupling approach consists in applying of a special buffer model, which serves as an interface between GrISM and INMCM. A simple energy and water exchange model (EWBM-G) allows realistic description of surface air temperature and precipitation fields adjusted to a relief of elevation of the GrIS surface. In a series of diagnostic numerical experiments with the present-day GrIS geometry and the modeled climate we studied sensitivity of the modeled surface mass balance and run off to the key EWBM-G parameters and compared our results with similar model studies. In addition to the ...
author2 Ф. Хёбрехтс (Свободный Университет Брюсселя), ИВМ РАН, Российский научный фонд
format Article in Journal/Newspaper
author O. Rybak O.
E. Volodin M.
A. Nevecherya P.
P. Morozova A.
M. Кaminskaya M.
О. Рыбак О.
Е. Володин М.
А. Невечеря П.
П. Морозова А.
М. Каминская М.
author_facet O. Rybak O.
E. Volodin M.
A. Nevecherya P.
P. Morozova A.
M. Кaminskaya M.
О. Рыбак О.
Е. Володин М.
А. Невечеря П.
П. Морозова А.
М. Каминская М.
author_sort O. Rybak O.
title Calculation of mass discharge of the Greenland ice sheet in the Earth System Model
title_short Calculation of mass discharge of the Greenland ice sheet in the Earth System Model
title_full Calculation of mass discharge of the Greenland ice sheet in the Earth System Model
title_fullStr Calculation of mass discharge of the Greenland ice sheet in the Earth System Model
title_full_unstemmed Calculation of mass discharge of the Greenland ice sheet in the Earth System Model
title_sort calculation of mass discharge of the greenland ice sheet in the earth system model
publisher IGRAS
publishDate 2016
url https://ice-snow.igras.ru/jour/article/view/319
https://doi.org/10.15356/2076-6734-2016-3-293-308
geographic Greenland
geographic_facet Greenland
genre Annals of Glaciology
Greenland
Ice Sheet
The Cryosphere
Гренландия
genre_facet Annals of Glaciology
Greenland
Ice Sheet
The Cryosphere
Гренландия
op_source Ice and Snow; Том 56, № 3 (2016); 293-308
Лёд и Снег; Том 56, № 3 (2016); 293-308
2412-3765
2076-6734
10.15356/2076-6734-2016-3
op_relation https://ice-snow.igras.ru/jour/article/view/319/174
Gates W.L. The numerical simulation of ice-age climate with a global general circulation model // Journ. of Atmospheric Science. 1976. V. 33. P. 1844–1873.
Adem J. Numerical experiments on ice age climates // Climate Dynamics. 1981. V. 3. P. 155–171.
Gallée H., Van Ypersele J.P., Fichefet T., Tricot Ch., Berger A. Simulation of the Last Glacial Cycle by a coupled, sectorial averaged climate-ice sheet model: 2. Response to insolation and CO2 variations // Journ. of Geophys. Research. 1992. V. 97. P. 15713–15740.
Calov R., Ganapolski A., Petoukhov V., Claussen M. Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model // Geophys. Research Letters. 2002. V. 29. doi:10.1029/2002GL016078.
Adem J. Low resolution thermodynamic grid models // Dynamics of Atmospheres and Oceans. 1979. V. 3. P. 433–451.
Robinson A., Calov R., Ganopolski A. An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change // The Cryosphere. 2010. V. 4. P. 129–144.
Roche D.M., Dumas C., Bügelmayer M., Chabrit S., Ritz C. Adding a dynamical cryosphere to iLOVECLIM (version 1.0): coupling with the GRISLI ice-sheet model // Geoscientific Model Development. 2014. V. 7. P. 1377–1394.
Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles // Quaternary Science Reviews. 2002. V. 21. P. 203–231.
Huybrechts. P., de Wolde J. The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming // Journ. of Climate. 1999. V.12. P. 2169–2188.
Рыбак О.О., Володин Е.М. Использование энерговлагобалагсовой модели для включения криосферной компоненты в климатическую модель. Ч. I. Описание модели и расчетные климатические поля приземной температуры воздуха и осадков // метеорология и гидрология. 2015. № 11. С. 33–45.
Рыбак О.О., Володин Е.М., Невечеря А.П., Морозова П.А. Использование энерговлагобалансовой модели для включения криосферной компоненты в климатическую модель. Ч. II. Модельный баланс массы на поверхности Гренландского ледникового щита // Метеорология и гидрология. 2016. № 6. С. 5–16.
Ettema J., van den Broeke M.R., van Meijgaard E., van de Berg W.J., Box J.E., Steffen K. Climate of the Greenland ice sheet using a high-resolution climate model – Part 1: Evaluation // The Cryosphere. 2010. V. 4. P. 511–527.
Fausto R.S., Ahlstrøm A.P., Van As D. Bøggild C.E., Johnsen S.J. A new present-day temperature parameterization for Greenland // Journ. of Glaciology. 2009. V. 55. P. 95–105.
Petoukhov V., Ganopolski A., Brovkin V., Claussen M., Eliseev A., Kubatzki C. Rahmstorf S. CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate // Climate Dynamics. 2000. V. 16. P. 1–17.
Rignot E., Kanagaratnam P. Changes in the Velocity Structure of the Greenland Ice Sheet // Science. 2006. V. 311. P. 986–990.
Ettema J., van den Broeke M.R., van Meijgaard E., van de Berg W.J. Climate of the Greenland ice sheet using a high-resolution climate model – Part 2: Near surface climate and energy balance // The Cryosphere. 2010. V. 4. P. 529–544.
Steffen K., Box J. Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995-1999 // Journ. of Geophys. Research. 2001. V. 106. P. 33951–33964.
Braithwaite R.J., Olesen O.B. A simple energy-balance model to calculate ice ablation at the margin of the Greenland ice sheet // Journ. of Glaciology. 1990. V. 36. P. 222–228.
Janssens I., Huybrechts P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet // Annals of Glaciology. 2000. V. 31. P. 133–140.
Oerlemans J. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modeling // The Holocene. 1991. V. 1. P. 40–49.
Reijmer C.H., van den Broeke M.R., Fettweis X., Ettema J., Stap L.B. Refreezing on the Greenland ice sheet: a comparison of parameterizations // The Cryosphere. 2012. V. 6. P. 743–762.
Holland D.M., Thomas R.H., De Young B., Ribergaard M.H., Lyberth B. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters // Nature Geoscience. 2008. V. 1. doi:10.1038/ngeo316.
Paterson W.S.B. The physics of glaciers. 3rd edition. Oxford et al.: Elsevier, 1994. 480 p.
Ohmura A., Reeh N. New precipitation and accumulation map for Greenland // Journ. of Glaciology. 1991. V. 37. P. 140–148.
Bamber J.L., Ekholm S., Krabill W.B. A new, high resolution digital elevation model of Greenland fully validated with airborne laser altimeter data // Journ. of Geophys. Research. 2001. V. 106. P. 6733–6745.
Рыбак О.О., Володин Е.М., Невечеря А.П. Поток геотермического тепла в Гренландии и его влияние на модельную топографию ледникового щита // Лёд и Снег. 2015. № 4 (55). С. 19–34.
https://ice-snow.igras.ru/jour/article/view/319
doi:10.15356/2076-6734-2016-3-293-308
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2016-3-293-308
https://doi.org/10.15356/2076-6734-2016-3
https://doi.org/10.1029/2002GL016078
https://doi.org/10.1038/ngeo316
container_title Ice and Snow
container_volume 56
container_issue 3
container_start_page 293
op_container_end_page 308
_version_ 1766003771656110080
spelling ftjias:oai:oai.ice.elpub.ru:article/319 2023-05-15T13:29:51+02:00 Calculation of mass discharge of the Greenland ice sheet in the Earth System Model Расчёт расхода массы Гренландского ледникового щита в модели земной системы O. Rybak O. E. Volodin M. A. Nevecherya P. P. Morozova A. M. Кaminskaya M. О. Рыбак О. Е. Володин М. А. Невечеря П. П. Морозова А. М. Каминская М. Ф. Хёбрехтс (Свободный Университет Брюсселя), ИВМ РАН, Российский научный фонд 2016-10-31 application/pdf https://ice-snow.igras.ru/jour/article/view/319 https://doi.org/10.15356/2076-6734-2016-3-293-308 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/319/174 Gates W.L. The numerical simulation of ice-age climate with a global general circulation model // Journ. of Atmospheric Science. 1976. V. 33. P. 1844–1873. Adem J. Numerical experiments on ice age climates // Climate Dynamics. 1981. V. 3. P. 155–171. Gallée H., Van Ypersele J.P., Fichefet T., Tricot Ch., Berger A. Simulation of the Last Glacial Cycle by a coupled, sectorial averaged climate-ice sheet model: 2. Response to insolation and CO2 variations // Journ. of Geophys. Research. 1992. V. 97. P. 15713–15740. Calov R., Ganapolski A., Petoukhov V., Claussen M. Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model // Geophys. Research Letters. 2002. V. 29. doi:10.1029/2002GL016078. Adem J. Low resolution thermodynamic grid models // Dynamics of Atmospheres and Oceans. 1979. V. 3. P. 433–451. Robinson A., Calov R., Ganopolski A. An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change // The Cryosphere. 2010. V. 4. P. 129–144. Roche D.M., Dumas C., Bügelmayer M., Chabrit S., Ritz C. Adding a dynamical cryosphere to iLOVECLIM (version 1.0): coupling with the GRISLI ice-sheet model // Geoscientific Model Development. 2014. V. 7. P. 1377–1394. Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles // Quaternary Science Reviews. 2002. V. 21. P. 203–231. Huybrechts. P., de Wolde J. The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming // Journ. of Climate. 1999. V.12. P. 2169–2188. Рыбак О.О., Володин Е.М. Использование энерговлагобалагсовой модели для включения криосферной компоненты в климатическую модель. Ч. I. Описание модели и расчетные климатические поля приземной температуры воздуха и осадков // метеорология и гидрология. 2015. № 11. С. 33–45. Рыбак О.О., Володин Е.М., Невечеря А.П., Морозова П.А. Использование энерговлагобалансовой модели для включения криосферной компоненты в климатическую модель. Ч. II. Модельный баланс массы на поверхности Гренландского ледникового щита // Метеорология и гидрология. 2016. № 6. С. 5–16. Ettema J., van den Broeke M.R., van Meijgaard E., van de Berg W.J., Box J.E., Steffen K. Climate of the Greenland ice sheet using a high-resolution climate model – Part 1: Evaluation // The Cryosphere. 2010. V. 4. P. 511–527. Fausto R.S., Ahlstrøm A.P., Van As D. Bøggild C.E., Johnsen S.J. A new present-day temperature parameterization for Greenland // Journ. of Glaciology. 2009. V. 55. P. 95–105. Petoukhov V., Ganopolski A., Brovkin V., Claussen M., Eliseev A., Kubatzki C. Rahmstorf S. CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate // Climate Dynamics. 2000. V. 16. P. 1–17. Rignot E., Kanagaratnam P. Changes in the Velocity Structure of the Greenland Ice Sheet // Science. 2006. V. 311. P. 986–990. Ettema J., van den Broeke M.R., van Meijgaard E., van de Berg W.J. Climate of the Greenland ice sheet using a high-resolution climate model – Part 2: Near surface climate and energy balance // The Cryosphere. 2010. V. 4. P. 529–544. Steffen K., Box J. Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995-1999 // Journ. of Geophys. Research. 2001. V. 106. P. 33951–33964. Braithwaite R.J., Olesen O.B. A simple energy-balance model to calculate ice ablation at the margin of the Greenland ice sheet // Journ. of Glaciology. 1990. V. 36. P. 222–228. Janssens I., Huybrechts P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet // Annals of Glaciology. 2000. V. 31. P. 133–140. Oerlemans J. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modeling // The Holocene. 1991. V. 1. P. 40–49. Reijmer C.H., van den Broeke M.R., Fettweis X., Ettema J., Stap L.B. Refreezing on the Greenland ice sheet: a comparison of parameterizations // The Cryosphere. 2012. V. 6. P. 743–762. Holland D.M., Thomas R.H., De Young B., Ribergaard M.H., Lyberth B. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters // Nature Geoscience. 2008. V. 1. doi:10.1038/ngeo316. Paterson W.S.B. The physics of glaciers. 3rd edition. Oxford et al.: Elsevier, 1994. 480 p. Ohmura A., Reeh N. New precipitation and accumulation map for Greenland // Journ. of Glaciology. 1991. V. 37. P. 140–148. Bamber J.L., Ekholm S., Krabill W.B. A new, high resolution digital elevation model of Greenland fully validated with airborne laser altimeter data // Journ. of Geophys. Research. 2001. V. 106. P. 6733–6745. Рыбак О.О., Володин Е.М., Невечеря А.П. Поток геотермического тепла в Гренландии и его влияние на модельную топографию ледникового щита // Лёд и Снег. 2015. № 4 (55). С. 19–34. https://ice-snow.igras.ru/jour/article/view/319 doi:10.15356/2076-6734-2016-3-293-308 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 56, № 3 (2016); 293-308 Лёд и Снег; Том 56, № 3 (2016); 293-308 2412-3765 2076-6734 10.15356/2076-6734-2016-3 climate;climate model;Greenland ice sheet (GrIS);ice discharge;mass balance;mathematical model;numerical experiment баланс массы;вычислительный эксперимент;Гренландия;климат;климатическая модель;ледниковый щит;математическая модель;сток info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2016 ftjias https://doi.org/10.15356/2076-6734-2016-3-293-308 https://doi.org/10.15356/2076-6734-2016-3 https://doi.org/10.1029/2002GL016078 https://doi.org/10.1038/ngeo316 2022-12-20T13:29:52Z Mass discharge calculation is a challenging task for the ice sheet modeling aimed at evaluation of their contribution to the global sea level rise during past interglacials, as well as one of the consequences of future climate change. In Greenland, ablation is the major source of fresh water runoff. It is approximately equal to the dynamical discharge (iceberg calving). Its share might have still larger during the past interglacials when the margins of the GrIS retreated inland. Refreezing of the melted water and its retention are two poorly known processes playing as a counterpart of melting and, thus, exerting influence on the run off. Interaction of ice sheets and climate is driven by energy and mass exchange processes and is complicated by numerous feed-backs. To study the complex of these processes, coupling of an ice sheet model and a climate model (i.e. models of the atmosphere and the ocean) in one model is required, which is often called the Earth System Model (ESM). Formalization of processes of interaction between the ice sheets and climate within the ESM requires elaboration of special techniques to deal with dramatic differences in spatial and temporal variability scales within each of three ESM’s blocks. In this paper, we focus on the method of coupling of a Greenland ice sheet model (GrISM) with the climate model INMCM having been developed in the Institute of Numerical Mathematics of Russian Academy of Sciences. Our coupling approach consists in applying of a special buffer model, which serves as an interface between GrISM and INMCM. A simple energy and water exchange model (EWBM-G) allows realistic description of surface air temperature and precipitation fields adjusted to a relief of elevation of the GrIS surface. In a series of diagnostic numerical experiments with the present-day GrIS geometry and the modeled climate we studied sensitivity of the modeled surface mass balance and run off to the key EWBM-G parameters and compared our results with similar model studies. In addition to the ... Article in Journal/Newspaper Annals of Glaciology Greenland Ice Sheet The Cryosphere Гренландия Ice and Snow (E-Journal) Greenland Ice and Snow 56 3 293 308