History of sea ice in the Arctic basin: Lessons from the past for future

The process of the sea ice formation in the Arctic Ocean is analyzed for the period of the last 65 million years, i.e. from the Paleocene to the present time. Appearance of sea ice in the high latitudes is demonstrated to be caused by the negative trend in global temperatures due to decreasing of th...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: I. Borzenkova I., И. Борзенкова И.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2016
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/301
https://doi.org/10.15356/2076-6734-2016-2-221-234
id ftjias:oai:oai.ice.elpub.ru:article/301
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Arctic
current global warming
history of sea icing
last 65 million years
sea ice
the Cenozoic time
история образования морских льдов;кайнозой;морские льды;последние 65 млн лет;современное глобальное потепление
spellingShingle Arctic
current global warming
history of sea icing
last 65 million years
sea ice
the Cenozoic time
история образования морских льдов;кайнозой;морские льды;последние 65 млн лет;современное глобальное потепление
I. Borzenkova I.
И. Борзенкова И.
History of sea ice in the Arctic basin: Lessons from the past for future
topic_facet Arctic
current global warming
history of sea icing
last 65 million years
sea ice
the Cenozoic time
история образования морских льдов;кайнозой;морские льды;последние 65 млн лет;современное глобальное потепление
description The process of the sea ice formation in the Arctic Ocean is analyzed for the period of the last 65 million years, i.e. from the Paleocene to the present time. Appearance of sea ice in the high latitudes is demonstrated to be caused by the negative trend in global temperatures due to decreasing of the CO2 concentration in the ancient atmosphere. Formation of seasonal and perennial ice cover in the limited area near the Pole could take place during the mid-Neogene period, about 12–13 Ma ago. However, areas of the sea icing could be obviously changed for this time during periods of the climate warming and cooling. Permanent sea ice had been formed in the early Pleistocene, i.e. about 2.0–1.8 Ma ago only. Paleoclimatic reconstructions, based on the indirect data and modeling simulation for the Holocene optimum (10–6 ka ago) and for the Last Interglacial period (the isotopic substage in the marine cross-section 5e, about 125–127 ka ago) had shown that rising of global temperatures by 1.0–1.5 °C resulted in strong decreasing of the sea ice area, and the perennial ice cover became the seasonal one. Relatively small changes in the incoming solar radiation originating during the spring-summer time due to the orbital factors played the role of a trigger for onset of the melting process. Further on, the process could be enhanced owing to difference in the albedo between the ice cover and open water. Recently, the rapid shortening of the sea ice area is noted, and in some parts of the Arctic Ocean the area is twice cut down as compared with the normal. In 2015, the record low area of the winter sea ice was observed, and therewith the maximum of the ice area shifted to the earlier period (by 15 days) as compared with the period of 1981–2010. The winter fluctuations of the sea ice areas are as much important as the summer ones, since they are the best indicators of the present-day global warming. Thus, it can be supposed that some mechanism of replacing the perennial sea ice by the seasonal ones has been started up, that is ...
format Article in Journal/Newspaper
author I. Borzenkova I.
И. Борзенкова И.
author_facet I. Borzenkova I.
И. Борзенкова И.
author_sort I. Borzenkova I.
title History of sea ice in the Arctic basin: Lessons from the past for future
title_short History of sea ice in the Arctic basin: Lessons from the past for future
title_full History of sea ice in the Arctic basin: Lessons from the past for future
title_fullStr History of sea ice in the Arctic basin: Lessons from the past for future
title_full_unstemmed History of sea ice in the Arctic basin: Lessons from the past for future
title_sort history of sea ice in the arctic basin: lessons from the past for future
publisher IGRAS
publishDate 2016
url https://ice-snow.igras.ru/jour/article/view/301
https://doi.org/10.15356/2076-6734-2016-2-221-234
geographic Arctic
Arctic Ocean
geographic_facet Arctic
Arctic Ocean
genre albedo
Arctic
Arctic Basin
Arctic
Arctic Ocean
Global warming
Sea ice
genre_facet albedo
Arctic
Arctic Basin
Arctic
Arctic Ocean
Global warming
Sea ice
op_source Ice and Snow; Том 56, № 2 (2016); 221-234
Лёд и Снег; Том 56, № 2 (2016); 221-234
2412-3765
2076-6734
10.15356/2076-6734-2016-2
op_relation https://ice-snow.igras.ru/jour/article/view/301/168
Алексеев Г.В. Арктическое измерение глобального потепления // Лёд и Снег. 2014. № 2 (126). С. 53–68.
Алексеев Г.В., Булатов Л.В., Захаров В.Ф., Иванов В.Ц. Поступление необычайно теплых атлантических вод в Арктический бассейн // ДАН. 1997. Т. 356. № 3. С. 401–403.
Анисимов О.А., Жирков А.Ф., Шерстюков А.Б. Современные изменения криосферы и природной среды в Арктике // Арктика. XXI век. Естественные науки. 2015. Т. 2. № 3. С. 24–47.
Борзенкова И.И. О глобальном тренде температуры в кайнозое // Метеорология и гидрология. 1981. № 12. C. 25–36.
Борзенкова И.И. Изменение климата в кайнозое. СПб.: Гидрометеоиздат, 1992. 246 с.
Будыко М.И. Полярные льды и климат // Изв. АН СССР. Сер. геогр. 1962. № 6. С. 3–10.
Будыко М.И. Эволюция биосферы. Л.: Гидрометеоиздат, 1984. 487 с.
Голубева Е.Н., Платов Г.А., Якшина Д.Ф. Численное моделирование состояния вод и морской лёд в Северном Ледовитом океане // Лёд и Снег. 2015. № 2 (130). С. 81–92. doi:10.15356/2076-6734-2015-2-81-92.
Золотокрылин А.Н., Михайлов А.Ю., Титкова Т.Б. Влияние притока тёплых атлантических вод на аномалии климата в атлантическом секторе Арктики // Лёд и Снег. 2015. Т. 55. № 3. С. 73–82. doi:10.15356/2076-6734-2015-3-73-82.
Зубенок Л.И. Влияние аномалий температуры на ледяной покров Арктики // Метеорология и гидрология. 1963. № 6. С. 25–30.
Иванов В.В., Алексеев В.А., Алексеева Т.А., Колдунов Н.В., Репина И.А., Смирнов А.В. Арктический ледяной покров становится сезонным? // Исследования Земли из космоса. 2013. № 4. C. 50–65.
Мохов И.И., Семенов В.А., Хон В.Ч., Погарский Ф.А. Изменения распространения морских льдов в Арктике и связанные с ними климатические эффекты: диагностика и моделирование // Лёд и Снег. 2013. № 2 (122). С. 53–62.
Палеоклиматы и палеоландшафты внетропического пространства Северного полушария. Поздний плейстоцен и голоцен: Атлас-монография / Ред. А.А. Величко. М.: ГЕОС, 2009. 119 с.
Стурлусон С. Младшая Эдда. Л.: Наука, 1970. 254 с.
Arntsen A.E., Song A.J., Perovich D.K., Richter-Menge J.A. Observations of the summer breakup of an Arctic sea ice cover // Geophys. Research Letters. 2015. V. 42. P. 8057–8063.
Belt S.T., Müller J. The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions // Quaternary Science Reviews. 2013. V. 79. 1 November. P. 9–25.
Berger M., Brandefelt J., Nilsson J. The sensitivity of the Arctic sea ice to orbitally induced insolation changes: a study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations // Clim. Past. 2013. V. 9. P. 969–982.
Borzenkova I.I. Determination of global climate sensitivity to the gas composition of the atmosphere from paleoclimatic data // Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of the RAS. Physics of Atmosphere and Ocean. 2003. V. 39. № 2. P. 197–202.
Borzenkova I.I. Environmental indicators of recent global warming // Environmental indices: Systems analysis approach / Eds: Y. Pykh, D.E. Hyatt, R.J.M. Lenz. Oxford: EOLSS Publ. Co. Ltd. Baldwin House, 1999. P. 455–465.
Brigham-Grette J., Hopkins D.M. Emergent marine record and paleoclimate of the last interglacial along the Northwest Alaskan coast // Quaternary Research. 1995. V. 43. P. 159–173.
Brinkhuis H., Schouten S., Collinson M.E., Sluijs A., Sinninghe Damsté J.S., Dickens G.R., Huber M., Cronin T.M., Onodera J., Takahashi K., Bujak J.P., Stein R., van der Burgh J., Eldrett J.S., Harding I.C., Lotter A.F., Sangiorgi F., van Konijnenburg-van Cittert H., de Leeuw J.W., Matthiessen J., Backman J., Moran K. & the 302 Scientists. Episodic fresh surface waters in the Eocene Arctic Ocean // Nature. 2006. V. 441. 1 June. P. 606–609.
CAPE-Last Interglacial Project Members. Last Interglacial Arctic warmth confirms polar amplification of climate change // Quaternary Science Reviews. 2006. V. 25. P. 1383–1400.
Darby D. A. Arctic perennial ice cover over the last 14 million years // Paleoceanography. 2008. V. 23. PA1S07. doi:10.1029/2007PA001479.
de Vernal A., Gersonde R., Goosse H., Seidenkrantz M.S., Wolff E.W. Sea ice in the paleoclimate system: the challenge of reconstructing sea ice from proxies – an introduction // Quaternary Science Reviews. 2013. V. 79. P. 1–8.
Funder S. Forested Arctic. Evidence from North Greenland // Geology. 1985. V. 13. № 8. P. 542–546.
Funder S., Goosse H., Jepsen H., Kaas E., Kjær K., Korsgaard N., Larsen N., Linderson H., Lyså A., Möller P., Olsen J., Willerslev E. A 10,000‑year record of Arctic Ocean sea-ice variability – View from the beach // Science. 2011. V. 333. № 6043. P. 747–750.
Gersonde R. Quaternary sea ice reconstruction: Proxy data and modeling // Eos. 2014. V. 95. № 46. P. 422.
Giles K.A., Laxon S.W., Ridout A.L. Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum // Geophys. Research Letters. 2008. V. 35. № 22. L22502.
Herman Y., Hopkins D.M. Arctic oceanic climate in Late Cenozoic time // Science. 1980. V. 209. № 4456. P. 557–562.
Herold N., Yin Q.Z., Karami M.P., Berger A. Modelling the climatic diversity of the warm interglacials // Quaternary Science Reviews. 2012. V. 56. P. 126–141.
IPCC Climate Change 2013: The Physical Science Basis /Eds.: T.F Stocker, D. Qin, G.‑K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley. Cambridge, United Kingdom and New York, NY, USA. Cambridge Univ. Press, 2014. 1535 p.
Jakobsson M., Ingólfsson Ó., Long A.J., Spielhagen R.F. The dynamic Arctic // Quaternary Science Reviews. 2014. V. 92. P. 1–8.
Kapsch M.-L., Graversen R.G., Economou T., Tjernström M. The importance of spring atmospheric conditions for predictions of the Arctic summer sea ice extent // Geophys. Research Letters. 2014. V. 41. P. 5288–5296.
Kinnard C., Zdanowicz C.M., Fisher D.A., Isaksson E., de Vernal A., Thompson L.G. Reconstructed changes in Arctic sea ice over the past 1,450 years // Nature. 2011. V. 479. № 7374. P. 509–512.
Kwok R., Cunningham G.F., Wensnahan M., Rigor I., Zwally H.J., Yi D. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008 // Journ. of Geophys. Research. 2009. V. 114. C07005.
Kwok R., Untersteiner N. The thinning of Arctic sea ice // Phys. Today. 2011. V. 64. P. 36–41. doi:10.1063/1.3580491.
Laxon S., Peacock N., Smith D. High interannual variability of sea ice thickness in the Arctic region // Nature. 2003. V. 425. № 6961. P. 947–950.
Laxon S.W., Giles K.A., Ridout A.L., Wingham D.J., Willatt R., Cullen R., Kwok R., Schweiger A., Zhang J., Haas C., Hendricks S., Krishfield R., Kurtz N., Farrell S., Davidson M. CryoSat‑2 estimates of Arctic sea ice thickness and volume // Geophys. Research Letters. 2013. V. 40. № 4. P. 732–737.
Lozhkin A.V., Anderson P.M. The last interglaciation of northeast Siberia // Quaternary Research. 1995. V. 43. P. 147–158.
Meier W.N., Stroeve J., Barrett A., Fetterer F. A simple approach to providing a more consistent Arctic sea ice extent time series from the 1950s to present // Cryosphere. 2012. V. 6. № 6. P. 1359–1368.
Mercer J.H. West Antarctic ice sheet and CO2 greenhouse effect – a threat disaster // Nature. 1978. V. 271. P. 321–325.
Miller G.H., Alley R.B., Brigham-Grette J., Fitzpatrick J.J., Polyak L., Serreze M.C., White J.W.C. Arctic amplification: can the past constrain the future? // Quaternary Science Reviews. 2010. V. 29. P. 1779–1790.
Miller G.H., Brigham-Grette J., Alley R.B., Anderson L., Bauch H.A., Douglas M.S.V., Edwards M.E., liash S.A., Finney B.P., Fitzpatrick J.J., Funder S.V., Herbert T.D., Hinzman L.D., Kaufmanm D.S., Mac-Donald G.M., Polyak L., Robock A., Serreze M.C., Smol J.P., Spielhagen R., White J.W.C., Wolfe A.P., Wolff E.W. Temperature and precipitation history of the Arctic // Quaternary Science Reviews. 2010. V. 29. P. 1679–1715.
Moran K., Backman J., Backman H., Clemens S.C., Cronin T., Dickens GR, Eynaud F., Gattacceca J., Jakobsson M., Jordan R.W., Kaminski M., King J., Koc N., Krylov A., Martinez N., Matthiessen J., McInroy D., Moore T.C., Onodera J., O'Regan M., Pälike H., Rea B., Rio D., Sakamoto T., Smith D.C., Stein R., St John K., Suto I., Suzuki N., Takahashi K., Watanabe M., Yamamoto M., Farrell J., Frank M., Kubik P., Jokat W., Kristoffersen Y. The Cenozoic palaeoenvironment of the Arctic Ocean // Nature. 2006. V. 441. № 7093. P. 601–605.
Notz D., Haumann F.A., Haak H., Jungclaus J.H., Marotzke J. Arctic sea-ice evolution as modeled by Max Planck Institute for meteorology’s Earth system model // Journ. Adv. Model. Earth Syst. 2013. V. 5. P. 173–194. doi:10.1002/jame.20016.
Overland J.E., Wang M. When will the summer Arctic be nearly sea ice free? // Geophys. Research Letters. 2013. V. 40. P. 2097–2101.
Polyak L., Alley R.B., Andrews J.T., Brigham-Grette J., Cronin T.M., Darby D.A., Dyke A.S., Fitzpatrick J.J., Funder S., Holland M., Jennings A.E., Miller G.H., O’Regan M., Savelle J., Serreze M., St. John K., White J.W.C., Wolff E. History of sea ice in the Arctic // Quaternary Science Reviews. 2010. V. 29. P. 1757–1778.
Richter-Menge J.A., Farrel S.L. Arctic sea ice conditions in spring 2009–2013 prior to melt // Geophys. Research Letters. 2013. V. 40. № 22. P. 5888–5893.
Sangiorgi F., Brumsack H.-J., Willard D.A., Schouten S., Stickley C.E., O’Regan M. Reichart G.‑J., Sinninghe Damste´ J.S., Brinkhuis H. A 26 million year gap in the central Arctic record at the greenhouse-icehouse transition: Looking for clues // Paleoceanography. 2008. V. 23. PA1S04. doi:10.1029/2007PA001477.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2016-2-221-234
https://doi.org/10.15356/2076-6734-2016-2
https://doi.org/10.15356/2076-6734-2015-2-81-92
https://doi.org/10.15356/2076-6734-2015-3-73-82
https://doi.org/10.1029/2007PA001479
https://doi.org/10.1
container_title Ice and Snow
container_volume 56
container_issue 2
container_start_page 221
op_container_end_page 234
_version_ 1766248770046001152
spelling ftjias:oai:oai.ice.elpub.ru:article/301 2023-05-15T13:11:45+02:00 History of sea ice in the Arctic basin: Lessons from the past for future История оледенения Арктического бассейна: взгляд из прошлого для оценки возможных изменений в будущем I. Borzenkova I. И. Борзенкова И. 2016-05-10 application/pdf https://ice-snow.igras.ru/jour/article/view/301 https://doi.org/10.15356/2076-6734-2016-2-221-234 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/301/168 Алексеев Г.В. Арктическое измерение глобального потепления // Лёд и Снег. 2014. № 2 (126). С. 53–68. Алексеев Г.В., Булатов Л.В., Захаров В.Ф., Иванов В.Ц. Поступление необычайно теплых атлантических вод в Арктический бассейн // ДАН. 1997. Т. 356. № 3. С. 401–403. Анисимов О.А., Жирков А.Ф., Шерстюков А.Б. Современные изменения криосферы и природной среды в Арктике // Арктика. XXI век. Естественные науки. 2015. Т. 2. № 3. С. 24–47. Борзенкова И.И. О глобальном тренде температуры в кайнозое // Метеорология и гидрология. 1981. № 12. C. 25–36. Борзенкова И.И. Изменение климата в кайнозое. СПб.: Гидрометеоиздат, 1992. 246 с. Будыко М.И. Полярные льды и климат // Изв. АН СССР. Сер. геогр. 1962. № 6. С. 3–10. Будыко М.И. Эволюция биосферы. Л.: Гидрометеоиздат, 1984. 487 с. Голубева Е.Н., Платов Г.А., Якшина Д.Ф. Численное моделирование состояния вод и морской лёд в Северном Ледовитом океане // Лёд и Снег. 2015. № 2 (130). С. 81–92. doi:10.15356/2076-6734-2015-2-81-92. Золотокрылин А.Н., Михайлов А.Ю., Титкова Т.Б. Влияние притока тёплых атлантических вод на аномалии климата в атлантическом секторе Арктики // Лёд и Снег. 2015. Т. 55. № 3. С. 73–82. doi:10.15356/2076-6734-2015-3-73-82. Зубенок Л.И. Влияние аномалий температуры на ледяной покров Арктики // Метеорология и гидрология. 1963. № 6. С. 25–30. Иванов В.В., Алексеев В.А., Алексеева Т.А., Колдунов Н.В., Репина И.А., Смирнов А.В. Арктический ледяной покров становится сезонным? // Исследования Земли из космоса. 2013. № 4. C. 50–65. Мохов И.И., Семенов В.А., Хон В.Ч., Погарский Ф.А. Изменения распространения морских льдов в Арктике и связанные с ними климатические эффекты: диагностика и моделирование // Лёд и Снег. 2013. № 2 (122). С. 53–62. Палеоклиматы и палеоландшафты внетропического пространства Северного полушария. Поздний плейстоцен и голоцен: Атлас-монография / Ред. А.А. Величко. М.: ГЕОС, 2009. 119 с. Стурлусон С. Младшая Эдда. Л.: Наука, 1970. 254 с. Arntsen A.E., Song A.J., Perovich D.K., Richter-Menge J.A. Observations of the summer breakup of an Arctic sea ice cover // Geophys. Research Letters. 2015. V. 42. P. 8057–8063. Belt S.T., Müller J. The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions // Quaternary Science Reviews. 2013. V. 79. 1 November. P. 9–25. Berger M., Brandefelt J., Nilsson J. The sensitivity of the Arctic sea ice to orbitally induced insolation changes: a study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations // Clim. Past. 2013. V. 9. P. 969–982. Borzenkova I.I. Determination of global climate sensitivity to the gas composition of the atmosphere from paleoclimatic data // Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of the RAS. Physics of Atmosphere and Ocean. 2003. V. 39. № 2. P. 197–202. Borzenkova I.I. Environmental indicators of recent global warming // Environmental indices: Systems analysis approach / Eds: Y. Pykh, D.E. Hyatt, R.J.M. Lenz. Oxford: EOLSS Publ. Co. Ltd. Baldwin House, 1999. P. 455–465. Brigham-Grette J., Hopkins D.M. Emergent marine record and paleoclimate of the last interglacial along the Northwest Alaskan coast // Quaternary Research. 1995. V. 43. P. 159–173. Brinkhuis H., Schouten S., Collinson M.E., Sluijs A., Sinninghe Damsté J.S., Dickens G.R., Huber M., Cronin T.M., Onodera J., Takahashi K., Bujak J.P., Stein R., van der Burgh J., Eldrett J.S., Harding I.C., Lotter A.F., Sangiorgi F., van Konijnenburg-van Cittert H., de Leeuw J.W., Matthiessen J., Backman J., Moran K. & the 302 Scientists. Episodic fresh surface waters in the Eocene Arctic Ocean // Nature. 2006. V. 441. 1 June. P. 606–609. CAPE-Last Interglacial Project Members. Last Interglacial Arctic warmth confirms polar amplification of climate change // Quaternary Science Reviews. 2006. V. 25. P. 1383–1400. Darby D. A. Arctic perennial ice cover over the last 14 million years // Paleoceanography. 2008. V. 23. PA1S07. doi:10.1029/2007PA001479. de Vernal A., Gersonde R., Goosse H., Seidenkrantz M.S., Wolff E.W. Sea ice in the paleoclimate system: the challenge of reconstructing sea ice from proxies – an introduction // Quaternary Science Reviews. 2013. V. 79. P. 1–8. Funder S. Forested Arctic. Evidence from North Greenland // Geology. 1985. V. 13. № 8. P. 542–546. Funder S., Goosse H., Jepsen H., Kaas E., Kjær K., Korsgaard N., Larsen N., Linderson H., Lyså A., Möller P., Olsen J., Willerslev E. A 10,000‑year record of Arctic Ocean sea-ice variability – View from the beach // Science. 2011. V. 333. № 6043. P. 747–750. Gersonde R. Quaternary sea ice reconstruction: Proxy data and modeling // Eos. 2014. V. 95. № 46. P. 422. Giles K.A., Laxon S.W., Ridout A.L. Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum // Geophys. Research Letters. 2008. V. 35. № 22. L22502. Herman Y., Hopkins D.M. Arctic oceanic climate in Late Cenozoic time // Science. 1980. V. 209. № 4456. P. 557–562. Herold N., Yin Q.Z., Karami M.P., Berger A. Modelling the climatic diversity of the warm interglacials // Quaternary Science Reviews. 2012. V. 56. P. 126–141. IPCC Climate Change 2013: The Physical Science Basis /Eds.: T.F Stocker, D. Qin, G.‑K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley. Cambridge, United Kingdom and New York, NY, USA. Cambridge Univ. Press, 2014. 1535 p. Jakobsson M., Ingólfsson Ó., Long A.J., Spielhagen R.F. The dynamic Arctic // Quaternary Science Reviews. 2014. V. 92. P. 1–8. Kapsch M.-L., Graversen R.G., Economou T., Tjernström M. The importance of spring atmospheric conditions for predictions of the Arctic summer sea ice extent // Geophys. Research Letters. 2014. V. 41. P. 5288–5296. Kinnard C., Zdanowicz C.M., Fisher D.A., Isaksson E., de Vernal A., Thompson L.G. Reconstructed changes in Arctic sea ice over the past 1,450 years // Nature. 2011. V. 479. № 7374. P. 509–512. Kwok R., Cunningham G.F., Wensnahan M., Rigor I., Zwally H.J., Yi D. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008 // Journ. of Geophys. Research. 2009. V. 114. C07005. Kwok R., Untersteiner N. The thinning of Arctic sea ice // Phys. Today. 2011. V. 64. P. 36–41. doi:10.1063/1.3580491. Laxon S., Peacock N., Smith D. High interannual variability of sea ice thickness in the Arctic region // Nature. 2003. V. 425. № 6961. P. 947–950. Laxon S.W., Giles K.A., Ridout A.L., Wingham D.J., Willatt R., Cullen R., Kwok R., Schweiger A., Zhang J., Haas C., Hendricks S., Krishfield R., Kurtz N., Farrell S., Davidson M. CryoSat‑2 estimates of Arctic sea ice thickness and volume // Geophys. Research Letters. 2013. V. 40. № 4. P. 732–737. Lozhkin A.V., Anderson P.M. The last interglaciation of northeast Siberia // Quaternary Research. 1995. V. 43. P. 147–158. Meier W.N., Stroeve J., Barrett A., Fetterer F. A simple approach to providing a more consistent Arctic sea ice extent time series from the 1950s to present // Cryosphere. 2012. V. 6. № 6. P. 1359–1368. Mercer J.H. West Antarctic ice sheet and CO2 greenhouse effect – a threat disaster // Nature. 1978. V. 271. P. 321–325. Miller G.H., Alley R.B., Brigham-Grette J., Fitzpatrick J.J., Polyak L., Serreze M.C., White J.W.C. Arctic amplification: can the past constrain the future? // Quaternary Science Reviews. 2010. V. 29. P. 1779–1790. Miller G.H., Brigham-Grette J., Alley R.B., Anderson L., Bauch H.A., Douglas M.S.V., Edwards M.E., liash S.A., Finney B.P., Fitzpatrick J.J., Funder S.V., Herbert T.D., Hinzman L.D., Kaufmanm D.S., Mac-Donald G.M., Polyak L., Robock A., Serreze M.C., Smol J.P., Spielhagen R., White J.W.C., Wolfe A.P., Wolff E.W. Temperature and precipitation history of the Arctic // Quaternary Science Reviews. 2010. V. 29. P. 1679–1715. Moran K., Backman J., Backman H., Clemens S.C., Cronin T., Dickens GR, Eynaud F., Gattacceca J., Jakobsson M., Jordan R.W., Kaminski M., King J., Koc N., Krylov A., Martinez N., Matthiessen J., McInroy D., Moore T.C., Onodera J., O'Regan M., Pälike H., Rea B., Rio D., Sakamoto T., Smith D.C., Stein R., St John K., Suto I., Suzuki N., Takahashi K., Watanabe M., Yamamoto M., Farrell J., Frank M., Kubik P., Jokat W., Kristoffersen Y. The Cenozoic palaeoenvironment of the Arctic Ocean // Nature. 2006. V. 441. № 7093. P. 601–605. Notz D., Haumann F.A., Haak H., Jungclaus J.H., Marotzke J. Arctic sea-ice evolution as modeled by Max Planck Institute for meteorology’s Earth system model // Journ. Adv. Model. Earth Syst. 2013. V. 5. P. 173–194. doi:10.1002/jame.20016. Overland J.E., Wang M. When will the summer Arctic be nearly sea ice free? // Geophys. Research Letters. 2013. V. 40. P. 2097–2101. Polyak L., Alley R.B., Andrews J.T., Brigham-Grette J., Cronin T.M., Darby D.A., Dyke A.S., Fitzpatrick J.J., Funder S., Holland M., Jennings A.E., Miller G.H., O’Regan M., Savelle J., Serreze M., St. John K., White J.W.C., Wolff E. History of sea ice in the Arctic // Quaternary Science Reviews. 2010. V. 29. P. 1757–1778. Richter-Menge J.A., Farrel S.L. Arctic sea ice conditions in spring 2009–2013 prior to melt // Geophys. Research Letters. 2013. V. 40. № 22. P. 5888–5893. Sangiorgi F., Brumsack H.-J., Willard D.A., Schouten S., Stickley C.E., O’Regan M. Reichart G.‑J., Sinninghe Damste´ J.S., Brinkhuis H. A 26 million year gap in the central Arctic record at the greenhouse-icehouse transition: Looking for clues // Paleoceanography. 2008. V. 23. PA1S04. doi:10.1029/2007PA001477. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 56, № 2 (2016); 221-234 Лёд и Снег; Том 56, № 2 (2016); 221-234 2412-3765 2076-6734 10.15356/2076-6734-2016-2 Arctic current global warming history of sea icing last 65 million years sea ice the Cenozoic time история образования морских льдов;кайнозой;морские льды;последние 65 млн лет;современное глобальное потепление info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2016 ftjias https://doi.org/10.15356/2076-6734-2016-2-221-234 https://doi.org/10.15356/2076-6734-2016-2 https://doi.org/10.15356/2076-6734-2015-2-81-92 https://doi.org/10.15356/2076-6734-2015-3-73-82 https://doi.org/10.1029/2007PA001479 https://doi.org/10.1 2022-12-20T13:29:44Z The process of the sea ice formation in the Arctic Ocean is analyzed for the period of the last 65 million years, i.e. from the Paleocene to the present time. Appearance of sea ice in the high latitudes is demonstrated to be caused by the negative trend in global temperatures due to decreasing of the CO2 concentration in the ancient atmosphere. Formation of seasonal and perennial ice cover in the limited area near the Pole could take place during the mid-Neogene period, about 12–13 Ma ago. However, areas of the sea icing could be obviously changed for this time during periods of the climate warming and cooling. Permanent sea ice had been formed in the early Pleistocene, i.e. about 2.0–1.8 Ma ago only. Paleoclimatic reconstructions, based on the indirect data and modeling simulation for the Holocene optimum (10–6 ka ago) and for the Last Interglacial period (the isotopic substage in the marine cross-section 5e, about 125–127 ka ago) had shown that rising of global temperatures by 1.0–1.5 °C resulted in strong decreasing of the sea ice area, and the perennial ice cover became the seasonal one. Relatively small changes in the incoming solar radiation originating during the spring-summer time due to the orbital factors played the role of a trigger for onset of the melting process. Further on, the process could be enhanced owing to difference in the albedo between the ice cover and open water. Recently, the rapid shortening of the sea ice area is noted, and in some parts of the Arctic Ocean the area is twice cut down as compared with the normal. In 2015, the record low area of the winter sea ice was observed, and therewith the maximum of the ice area shifted to the earlier period (by 15 days) as compared with the period of 1981–2010. The winter fluctuations of the sea ice areas are as much important as the summer ones, since they are the best indicators of the present-day global warming. Thus, it can be supposed that some mechanism of replacing the perennial sea ice by the seasonal ones has been started up, that is ... Article in Journal/Newspaper albedo Arctic Arctic Basin Arctic Arctic Ocean Global warming Sea ice Ice and Snow (E-Journal) Arctic Arctic Ocean Ice and Snow 56 2 221 234