Water equivalent of snow retrieved from data of passive microwave scanning with the use of artificial neural networks over the Russian Federation territory
Using of the Chang model for calculation of the snow water equivalent on the basis of measurements of the Earth thermo-microwave radiation by means of scanning polarimeters (SMMR, SSM/I, AMSR-E) from board of orbital satellites does not allow obtaining the accuracy needed hydrological purposes. Low...
Published in: | Ice and Snow |
---|---|
Main Authors: | , , , , , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | Russian |
Published: |
IGRAS
2016
|
Subjects: | |
Online Access: | https://ice-snow.igras.ru/jour/article/view/268 https://doi.org/10.15356/2076-6734-2016-1-43-51 |
id |
ftjias:oai:oai.ice.elpub.ru:article/268 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Ice and Snow (E-Journal) |
op_collection_id |
ftjias |
language |
Russian |
topic |
artificial neural network;microwave remote sensing;snow storage;snow water equivalent водный эквивалент снежного покрова;искусственная нейронная сеть;микроволновое дистанционное зондирование;снегозапасы |
spellingShingle |
artificial neural network;microwave remote sensing;snow storage;snow water equivalent водный эквивалент снежного покрова;искусственная нейронная сеть;микроволновое дистанционное зондирование;снегозапасы A. Volchek A. D. Kostyuk A. D. Petrov O. А. Волчек А. Д. Костюк А. Д. Петров О. Water equivalent of snow retrieved from data of passive microwave scanning with the use of artificial neural networks over the Russian Federation territory |
topic_facet |
artificial neural network;microwave remote sensing;snow storage;snow water equivalent водный эквивалент снежного покрова;искусственная нейронная сеть;микроволновое дистанционное зондирование;снегозапасы |
description |
Using of the Chang model for calculation of the snow water equivalent on the basis of measurements of the Earth thermo-microwave radiation by means of scanning polarimeters (SMMR, SSM/I, AMSR-E) from board of orbital satellites does not allow obtaining the accuracy needed hydrological purposes. Low accuracy of the calculations is caused by both simplified character of the mathematical model, and due to significant influence of the surface characteristics (relief, vegetation and complex structure of snow thickness) upon the microwave radiation propagation. This work was aimed at finding a way to increase accuracy of calculations of the snow water equivalent on the Russian Federation territory with its different climate conditions by means of application the neural network approach for processing of results of the passive microwave scanning of the Earth surface. Feed-forward multi-layer artificial neural network was trained by back-propagation algorithm using SSM/I data and results of snow water equivalent in situ measurements obtained at 117 meteorological stations during the period from January 1st, 1988 till December 31st, 1988. Validation was performed using data from the same sources collected during 7 years (1992–1998). Results of performed numerical experiments and obtained values of rootmean-square error (σ = 24.9 мм; r = 0.39±0,01) allow coming to conclusion that the best estimation of water equivalent of a snow cover is provided by artificial neural network using as the input data a set of the SSM/I channels 19.35, 37.0, 85.5 GHz of horizontal and vertical polarizations with meteorological data differentiated by types of the snow survey route.It is shown that low correlation coefficients (< 0.5) as compared with similar studies on small areas is not caused by the chosen mathematical model and its realization but it is due to a strong diversity of climatic conditions and low density of meteorological stations on the land areas covered by our study. For the purpose of further improvement of quality of ... |
author2 |
Государственная программа научных исследований Республики Беларусь «Информатика и космос, научное обеспечение безопасности и защиты от чрезвычайных ситуаций» |
format |
Article in Journal/Newspaper |
author |
A. Volchek A. D. Kostyuk A. D. Petrov O. А. Волчек А. Д. Костюк А. Д. Петров О. |
author_facet |
A. Volchek A. D. Kostyuk A. D. Petrov O. А. Волчек А. Д. Костюк А. Д. Петров О. |
author_sort |
A. Volchek A. |
title |
Water equivalent of snow retrieved from data of passive microwave scanning with the use of artificial neural networks over the Russian Federation territory |
title_short |
Water equivalent of snow retrieved from data of passive microwave scanning with the use of artificial neural networks over the Russian Federation territory |
title_full |
Water equivalent of snow retrieved from data of passive microwave scanning with the use of artificial neural networks over the Russian Federation territory |
title_fullStr |
Water equivalent of snow retrieved from data of passive microwave scanning with the use of artificial neural networks over the Russian Federation territory |
title_full_unstemmed |
Water equivalent of snow retrieved from data of passive microwave scanning with the use of artificial neural networks over the Russian Federation territory |
title_sort |
water equivalent of snow retrieved from data of passive microwave scanning with the use of artificial neural networks over the russian federation territory |
publisher |
IGRAS |
publishDate |
2016 |
url |
https://ice-snow.igras.ru/jour/article/view/268 https://doi.org/10.15356/2076-6734-2016-1-43-51 |
genre |
Annals of Glaciology Arctic |
genre_facet |
Annals of Glaciology Arctic |
op_source |
Ice and Snow; Том 56, № 1 (2016); 43-51 Лёд и Снег; Том 56, № 1 (2016); 43-51 2412-3765 2076-6734 10.15356/2076-6734-2016-1 |
op_relation |
https://ice-snow.igras.ru/jour/article/view/268/160 Барцев С.И., Охонин В.А. Адаптивные сети обработки информации. Красноярск: изд. Ин-та физики СО АН СССР: Препринт № 59Б, 1986. 20 с. Галушкин А.И. Синтез многослойных систем распознавания образов. М.: Энергия, 1974. 368 с. Горкин А.П. География: Современная иллюстрированная энциклопедия. М.: РОСМЭН, 2006. 624 с. Китаев Л.М., Титкова Т.Б. Оценка снегозапасов по данным спутниковой информации // Криосфера Земли. 2010. Т. 14. № 1. С. 76–80. Котляков В.М. Избранные сочинения в шести книгах: Книга 2. Снежный покров и ледники Земли. М.: Наука, 2004. 488 с. Митник М.Л., Митник Л.М. Калибровка и валидация данных микроволнового радиометра AMSR-E спутника AQUA // Современные проблемы дистанционного зондирования Земли из космоса. 2005. Вып. 2. Т. 1. С. 244–249. Носенко Г.А., Долгих Н.А., Носенко О.А. О возможности практической реализации существующих алгоритмов восстановления характеристик снежного покрова по данным микроволновых съемок из космоса для мониторинга водных ресурсов // Физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений и объектов: Сборник. Т. II. М.: изд. GRANP polygraph, 2005. С. 150–156. Носенко О.А., Носенко Г.А. Снежный покров Европейской части России в микроволновом диапазоне (AMSR-E и SSM/I) // Современные проблемы дистанционного зондирования Земли из космоса. 2007. Вып. 4. Т. 2. С. 97–103. Chang A.T.C., Foster J.L., Hall D.K., Rango A., Hartline B.K. Snow water equivalent determination by microwave radiometry // Cold Regions Science and Technology. 1982. № 5. P. 259–267. Chang A.T.C., Foster J.L., Hall D.K. Nimbus-7 SMMR derived global snow cover parameters // Annals of Glaciology. 1987. № 9. P. 39–44. Foster J.L., Chang A.T.C., Chang K.H.D. Comparison of snow mass estimates from a зrototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology // Remote Sensing of Environment. 1997. № 62. P. 132–142. Gan T.Y., Kalinga O., Purushottam S. Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions // Remote Sensing of Environment. 2009. V. 113. № 5. P. 919–927. Global snow monitoring for climate research – design justification file. European Space Agency Study Contract Report 21703/08/I-EC Deliverable 1.7, 2010. 246 p. Hollinger J.P., Pierce J.L., Poes G.A. SSM/I Instrument evaluation // IEEE Trans. Geos. Remote Sensing. 1990. № 28. P. 781–790. Rumelhart D.E. Hinton G.E., Williams R.J. Learning Internal Representations by Error Propagation // Parallel Distributed Processing: V. 1. Cambridge: MIT Press, 1986. P. 318–362. Semmens K.A., Ramage J., Bartsch A., Liston G.E. Early snowmelt events: Detection, distribution, and significance in a major sub-arctic watershed // Environmental Research Letters. 2013. V. 8. № 1, art. no. 014020. Stiles W.H., Ulaby F.T. The active and passive microwave response to snow parameters // Journ. of Geophys. Research. 1980. № 85. P. 1037–1044. Tedesco M., Pulliainen J., Takala M., Hallikainen M., Pampaloni P. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data // Remote Sensing of Environment. 2004. V. 90. № 1. P. 76–85. Tong J., Déry S.J., Jackson P.L., Derksen C. Testing snow water equivalent retrieval algorithms for passive microwave remote sensing in an alpine watershed of western Canada // Canadian Journ. of Remote Sensing. 2010. V. 36. Suppl. 1. P. S74–S86. https://ice-snow.igras.ru/jour/article/view/268 doi:10.15356/2076-6734-2016-1-43-51 |
op_rights |
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.15356/2076-6734-2016-1-43-51 https://doi.org/10.15356/2076-6734-2016-1 |
container_title |
Ice and Snow |
container_volume |
56 |
container_issue |
1 |
container_start_page |
43 |
op_container_end_page |
51 |
_version_ |
1766003678226939904 |
spelling |
ftjias:oai:oai.ice.elpub.ru:article/268 2023-05-15T13:29:50+02:00 Water equivalent of snow retrieved from data of passive microwave scanning with the use of artificial neural networks over the Russian Federation territory Оценка водного эквивалента снега по данным пассивного микроволнового сканирования земной поверхности с использованием искусственных нейронных сетей для территории Российской Федерации A. Volchek A. D. Kostyuk A. D. Petrov O. А. Волчек А. Д. Костюк А. Д. Петров О. Государственная программа научных исследований Республики Беларусь «Информатика и космос, научное обеспечение безопасности и защиты от чрезвычайных ситуаций» 2016-02-17 application/pdf https://ice-snow.igras.ru/jour/article/view/268 https://doi.org/10.15356/2076-6734-2016-1-43-51 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/268/160 Барцев С.И., Охонин В.А. Адаптивные сети обработки информации. Красноярск: изд. Ин-та физики СО АН СССР: Препринт № 59Б, 1986. 20 с. Галушкин А.И. Синтез многослойных систем распознавания образов. М.: Энергия, 1974. 368 с. Горкин А.П. География: Современная иллюстрированная энциклопедия. М.: РОСМЭН, 2006. 624 с. Китаев Л.М., Титкова Т.Б. Оценка снегозапасов по данным спутниковой информации // Криосфера Земли. 2010. Т. 14. № 1. С. 76–80. Котляков В.М. Избранные сочинения в шести книгах: Книга 2. Снежный покров и ледники Земли. М.: Наука, 2004. 488 с. Митник М.Л., Митник Л.М. Калибровка и валидация данных микроволнового радиометра AMSR-E спутника AQUA // Современные проблемы дистанционного зондирования Земли из космоса. 2005. Вып. 2. Т. 1. С. 244–249. Носенко Г.А., Долгих Н.А., Носенко О.А. О возможности практической реализации существующих алгоритмов восстановления характеристик снежного покрова по данным микроволновых съемок из космоса для мониторинга водных ресурсов // Физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений и объектов: Сборник. Т. II. М.: изд. GRANP polygraph, 2005. С. 150–156. Носенко О.А., Носенко Г.А. Снежный покров Европейской части России в микроволновом диапазоне (AMSR-E и SSM/I) // Современные проблемы дистанционного зондирования Земли из космоса. 2007. Вып. 4. Т. 2. С. 97–103. Chang A.T.C., Foster J.L., Hall D.K., Rango A., Hartline B.K. Snow water equivalent determination by microwave radiometry // Cold Regions Science and Technology. 1982. № 5. P. 259–267. Chang A.T.C., Foster J.L., Hall D.K. Nimbus-7 SMMR derived global snow cover parameters // Annals of Glaciology. 1987. № 9. P. 39–44. Foster J.L., Chang A.T.C., Chang K.H.D. Comparison of snow mass estimates from a зrototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology // Remote Sensing of Environment. 1997. № 62. P. 132–142. Gan T.Y., Kalinga O., Purushottam S. Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions // Remote Sensing of Environment. 2009. V. 113. № 5. P. 919–927. Global snow monitoring for climate research – design justification file. European Space Agency Study Contract Report 21703/08/I-EC Deliverable 1.7, 2010. 246 p. Hollinger J.P., Pierce J.L., Poes G.A. SSM/I Instrument evaluation // IEEE Trans. Geos. Remote Sensing. 1990. № 28. P. 781–790. Rumelhart D.E. Hinton G.E., Williams R.J. Learning Internal Representations by Error Propagation // Parallel Distributed Processing: V. 1. Cambridge: MIT Press, 1986. P. 318–362. Semmens K.A., Ramage J., Bartsch A., Liston G.E. Early snowmelt events: Detection, distribution, and significance in a major sub-arctic watershed // Environmental Research Letters. 2013. V. 8. № 1, art. no. 014020. Stiles W.H., Ulaby F.T. The active and passive microwave response to snow parameters // Journ. of Geophys. Research. 1980. № 85. P. 1037–1044. Tedesco M., Pulliainen J., Takala M., Hallikainen M., Pampaloni P. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data // Remote Sensing of Environment. 2004. V. 90. № 1. P. 76–85. Tong J., Déry S.J., Jackson P.L., Derksen C. Testing snow water equivalent retrieval algorithms for passive microwave remote sensing in an alpine watershed of western Canada // Canadian Journ. of Remote Sensing. 2010. V. 36. Suppl. 1. P. S74–S86. https://ice-snow.igras.ru/jour/article/view/268 doi:10.15356/2076-6734-2016-1-43-51 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 56, № 1 (2016); 43-51 Лёд и Снег; Том 56, № 1 (2016); 43-51 2412-3765 2076-6734 10.15356/2076-6734-2016-1 artificial neural network;microwave remote sensing;snow storage;snow water equivalent водный эквивалент снежного покрова;искусственная нейронная сеть;микроволновое дистанционное зондирование;снегозапасы info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2016 ftjias https://doi.org/10.15356/2076-6734-2016-1-43-51 https://doi.org/10.15356/2076-6734-2016-1 2022-12-20T13:30:26Z Using of the Chang model for calculation of the snow water equivalent on the basis of measurements of the Earth thermo-microwave radiation by means of scanning polarimeters (SMMR, SSM/I, AMSR-E) from board of orbital satellites does not allow obtaining the accuracy needed hydrological purposes. Low accuracy of the calculations is caused by both simplified character of the mathematical model, and due to significant influence of the surface characteristics (relief, vegetation and complex structure of snow thickness) upon the microwave radiation propagation. This work was aimed at finding a way to increase accuracy of calculations of the snow water equivalent on the Russian Federation territory with its different climate conditions by means of application the neural network approach for processing of results of the passive microwave scanning of the Earth surface. Feed-forward multi-layer artificial neural network was trained by back-propagation algorithm using SSM/I data and results of snow water equivalent in situ measurements obtained at 117 meteorological stations during the period from January 1st, 1988 till December 31st, 1988. Validation was performed using data from the same sources collected during 7 years (1992–1998). Results of performed numerical experiments and obtained values of rootmean-square error (σ = 24.9 мм; r = 0.39±0,01) allow coming to conclusion that the best estimation of water equivalent of a snow cover is provided by artificial neural network using as the input data a set of the SSM/I channels 19.35, 37.0, 85.5 GHz of horizontal and vertical polarizations with meteorological data differentiated by types of the snow survey route.It is shown that low correlation coefficients (< 0.5) as compared with similar studies on small areas is not caused by the chosen mathematical model and its realization but it is due to a strong diversity of climatic conditions and low density of meteorological stations on the land areas covered by our study. For the purpose of further improvement of quality of ... Article in Journal/Newspaper Annals of Glaciology Arctic Ice and Snow (E-Journal) Ice and Snow 56 1 43 51 |