Isotopic composition of the ice cores obtained on the Western Plateau of the Mt Elbrus

The results of the isotopic investigations of several ice cores obtained at the Western Plateau of Mt. Elbrus (the Caucasus) are presented. There is a distinct seasonal cycle in the isotopic composition record in these cores. Mean annual and seasonal values of the isotopic composition and accumulati...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: A. Kozachek V., A. Ekaykin A., V. Mikhalenko N., V. Lipenkov Ya., S. Kutuzov S., А. Козачек В., А. Екайкин А., В. Михаленко Н., В. Липенков Я., С. Кутузов С.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/253
https://doi.org/10.15356/2076-6734-2015-4-35-49
id ftjias:oai:oai.ice.elpub.ru:article/253
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Atmospheric circulation
Caucasus
climate change
Elbrus
ice cores
isotopic composition
Изменения климата;изотопный состав;Кавказ;ледяные керны;циркуляция атмосферы;Эльбрус
spellingShingle Atmospheric circulation
Caucasus
climate change
Elbrus
ice cores
isotopic composition
Изменения климата;изотопный состав;Кавказ;ледяные керны;циркуляция атмосферы;Эльбрус
A. Kozachek V.
A. Ekaykin A.
V. Mikhalenko N.
V. Lipenkov Ya.
S. Kutuzov S.
А. Козачек В.
А. Екайкин А.
В. Михаленко Н.
В. Липенков Я.
С. Кутузов С.
Isotopic composition of the ice cores obtained on the Western Plateau of the Mt Elbrus
topic_facet Atmospheric circulation
Caucasus
climate change
Elbrus
ice cores
isotopic composition
Изменения климата;изотопный состав;Кавказ;ледяные керны;циркуляция атмосферы;Эльбрус
description The results of the isotopic investigations of several ice cores obtained at the Western Plateau of Mt. Elbrus (the Caucasus) are presented. There is a distinct seasonal cycle in the isotopic composition record in these cores. Mean annual and seasonal values of the isotopic composition and accumulation rate were reconstructed for 89 years (1924–2012). These values were compared with the available regional meteorological data and the atmospheric circulation characteristics. It was shown that in the summer season the isotopic composition reflects the local temperature while in winter it depends on the atmospheric circulation. Представлены результаты изотопных исследований нескольких ледяных кернов, полученных на Западном плато Эльбруса (Кавказ). В изотопном составе кернов прослеживается чёткий сезонный сигнал. Рассчитаны среднегодовые и среднесезонные значения изотопного состава и скорости снегонакопления за 89 лет (с 1924 по 2012 г.). Эти значения сопоставлены с данными метеонаблюдений в регионе и с характеристиками циркуляции атмосферы. Показано, что в тёплый период года изотопный состав зависит от температуры воздуха в регионе, а в холодный – от особенностей циркуляции атмосферы.
format Article in Journal/Newspaper
author A. Kozachek V.
A. Ekaykin A.
V. Mikhalenko N.
V. Lipenkov Ya.
S. Kutuzov S.
А. Козачек В.
А. Екайкин А.
В. Михаленко Н.
В. Липенков Я.
С. Кутузов С.
author_facet A. Kozachek V.
A. Ekaykin A.
V. Mikhalenko N.
V. Lipenkov Ya.
S. Kutuzov S.
А. Козачек В.
А. Екайкин А.
В. Михаленко Н.
В. Липенков Я.
С. Кутузов С.
author_sort A. Kozachek V.
title Isotopic composition of the ice cores obtained on the Western Plateau of the Mt Elbrus
title_short Isotopic composition of the ice cores obtained on the Western Plateau of the Mt Elbrus
title_full Isotopic composition of the ice cores obtained on the Western Plateau of the Mt Elbrus
title_fullStr Isotopic composition of the ice cores obtained on the Western Plateau of the Mt Elbrus
title_full_unstemmed Isotopic composition of the ice cores obtained on the Western Plateau of the Mt Elbrus
title_sort isotopic composition of the ice cores obtained on the western plateau of the mt elbrus
publisher IGRAS
publishDate 2015
url https://ice-snow.igras.ru/jour/article/view/253
https://doi.org/10.15356/2076-6734-2015-4-35-49
genre Annals of Glaciology
The Cryosphere
genre_facet Annals of Glaciology
The Cryosphere
op_source Ice and Snow; Том 55, № 4 (2015); 35-49
Лёд и Снег; Том 55, № 4 (2015); 35-49
2412-3765
2076-6734
10.15356/2076-6734-2015-4
op_relation https://ice-snow.igras.ru/jour/article/view/253/98
Бажев А.Б., Гордиенко Ф.Г., Смирнов К.Е. Вариации изотопа 18O в толще Марухского ледника (Западный Кавказ) // МГИ. 1973. Вып. 21. С. 198–203.
Васильчук Ю.К., Чижова Ю.Н., Папеш В., Буданцева Н.А. Высотный изотопный эффект в снеге на леднике Гарабаши в Приэльбрусье // Криосфера Земли. 2005. Т. IX. № 4. С. 72–81.
Васильчук Ю.К., Чижова Ю.Н., Папеш В., Буданцева Н.А. Изотопный состав языка ледника Большой Азау в Приэльбрусье // Криосфера Земли. 2006. Т. X. № 1. С. 56–68.
Васильчук Ю.К., Чижова Ю.Н. Высотный градиент распределения δ18О и δD в атмосферных осадках и в снежном покрове высокогорных районов // Криосфера Земли. 2010. Т. XIV. № 1. С. 13–21.
Голубев В.Н., Михаленко В.Н., Серебренников А.В., Гвоздик О.А. Структурные исследования ледяного керна Джантуганского фирнового плато на Центральном Кавказе // МГИ. 1988. Вып. 64. С. 25–33.
Лаврентьев И.И., Михаленко В.Н., Кутузов С.С. Толщина льда и подлёдный рельеф Западного ледникового плато Эльбруса // Лёд и Снег. 2010. № 2 (110). С. 12–18.
Михаленко В.Н. Глубинное строение ледников тропических и умеренных широт. М.: Издательство ЛКИ, 2008. 320 с.
Михаленко В.Н. Бурение льда близ вершины Эльбруса // Лёд и Снег. 2010. № 1 (109). С. 123–126.
Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Кунахович М.Г., Томпсон Л.Г. Исследования западного ледникового плато Эльбруса: результаты и перспективы // МГИ. 2005. Вып. 99. С. 185–190.
Aemisegger F., Pfahl S., Sodemann H., Lehner I., Seneviratne S.I., Wernli H. Deuterium excess as a proxy for continental moisture recycling and plant transpiration // Atmos. Chem. Phys. 2014. V. 14. P. 4029–4054.
Ahmad M., Aggarwal P., van Duren M., Poltenstein L., Araguas L., Kurttas T., Wassenaar L.I. Final Report on Fourth interlaboratory comparison exercise for δ2H and δ18O analysis of water samples (WICO2011). Isotope Hydrology Laboratory, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency. 2012. 67 p.
Baldini L.M., McDermott F., Foley A.M., Baldini J.U.L. Spatial variability in the European winter precipitation δ18O-NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene // Geophys. Research Letters. 2008. V. 35. L04709.
Brunetti M., Kutiel H. The relevance of the North-Sea Caspian Pattern (NCP) in explaining temperature variability in Europe and the Mediterranean // Nat. Hazards Earth Syst. Sci. 2011. V. 11. P. 2881–2888.
Casado M., Ortega P., Masson-Delmotte V., Risi C., Swingedouw D., Daux V., Genty D., Maignan F., Solomina O., Vinther B., Viovy N., Yiou P. Impact of precipitation intermittency on NAO-temperature signals in proxy records // Clim. Past. 2013. V. 9. P. 871–886.
Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. № 4. P. 436–468.
Dansgaard W., Johnsen S.J., Moller J., Langway C.C.J. One thousand centuries of climatic record from Camp Century on the Greenland ice sheet // Science. 1969. V. 166. P. 377–381.
Dansgaard W., Johnsen S.J. A Flow Model and a Time Scale for the Ice Core from Camp Century, Greenland // Journ. of Glaciology. 1969. V. 8. № 53. P. 215–223.
Forster C., Stohl A., Siebert P. Parametrization of convective transport in a lagrangian particle dispersion model and its evaluation // Journ. of Applied Meteorology and Climatology. 2007. V. 46. № 4. P. 403–422. doi:10.1175/JAM2470.1.
Ekaykin A.A. Meteorological regime of central Antarctica and its role in the formation of isotope composition of snow thickness. Thése de Doctorat d'Etat. Université Joseph Fourier – Grenoble I, 2003. 136 p.
Ekaykin A.A., Kozachek A.V., Lipenkov V.Ya., Shibaev Yu.A. Multiple climate shifts in the Southern Hemisphere over the past three centuries based on central Antarctic snow pits and core studies // Annals of Glaciology. 2014. V. 55 (66). P. 259–266.
EPICA community members. Eight glacial cycles from an Antarctic ice core // Nature. 2004. V. 429. P. 623–628.
Giese B.S., Urizar S.C., Fuckar N.S. The Southern Hemisphere origin of the 1976 climate shift // Geophys. Research Letters. 2002. V. 29. P. 1–4.
Gkinis V., Simonsen S.B., Buchardt S.L., White J.W.C., Vinther B.M. Water isotope diffusion rates from the NorthGRIP ice core for the last 16,000 years – Glaciological and paleoclimatic implications // Earth and Planetary Science Letters. 2014. V. 405. P. 132–141.
Hurrel J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation // Science. 1995. V. 269. P. 676–679.
Johnsen S., Clausen H.B., Cuffey K.M., Hoffmann G., Schwander J., Creyts T. Diffusion of stable isotopes in olar firn and ice: the isotope effect in firn diffusion // Physics of Ice Core Records / Ed. by T. Hondoh. Hokkaido University Press, Sapporo, 2000. P. 121–140.
Jones P., Osborn T., Briffa K. Pressure-Based Measures of the North Atlantic Oscillation (NAO): A Comparison and an Assessment of Changes in the Strength of the NAO and in its Influence on Surface Climate Parameters // The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophys. Monograph 134. 2003. P. 51–62.
Kutiel H., Maheras P., Guika S. Circulation Indices over the Mediterranean and Europe and their Relationship with Rainfall Conditions Across the Mediterranean // Theor. Appl. Climatol. 1996. V. 54. P. 125–138.
Kutuzov S., Shahgedanova M., Mikhalenko V., Ginot P., Lavrentiev I., Kemp S. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records // The Cryosphere. 2013. V. 7. P. 1481–1498.
Mariani I., Eichler A., Jenk M., Brönnimann S., Auchmann R., Leuenberger M.C., Schwikowski M. Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001 // Clim. Past. 2014. V. 10. P. 1093–1108.
Meehl G., Hu A., Sunter B. The Mid‑1970s Climate Shift in the Pacific and the Relative Roles of Forced versus Inherent Decadal Variability // Journ. of Climate. 2009. V. 22. P. 780–792.
Merlivat l., Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation // Journ. of Geophys. Research. 1979. V. 84. № С8. P. 5029–5033.
Mikhalenko V., Sokratov S., Kutuzov S., Lavrentiev I., Ginot P., Legrand M., Preunkert S., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of deep ice core from the Elbrus Western Plateau, the Caucasus, Russia // The Cryosphere Discuss. 2015. V. 9. P. 3661–3708.
Mikhalenko V.N., Kozachek A.V., Ekba J.A. Ground water stable isotopic composition in the caves of the South-Western Caucasus // Geography, Environment, Sustainability. 2015. V. 8. № 2. P. 4–12.
Nye J.F. Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet // Journ. of Glaciology. 1963. V. 4. № 36. P. 785–788.
Osterberg E.C., Mayewski P.A., Fisher D.A., Kreutz K.J., Maasch K.A., Sneed S.B., Kelsey E. Mount Logan ice core record of tropical and solar influences on Aleutian Low variability: 500–1998 A.D. // Journ. of Geophys. Research: Atmosphere. 2004. V. 119. P. 11189–11204. doi:10.1002/2014JD021847.
Petit J., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile L., Bender M., Chapellaz J., Davis J., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica // Nature. 1999. V. 399. P. 429–436. doi:10.1038/20859.
Pierrehumbert R.T. Huascarán δ18O as an indicator of tropical climate during the Last Glacial Maximum // Geophys. Research Letters. 1999. V. 26. P. 1345–1348. doi:10.1029/1999GL900183.
Popovnin V.V. Annual mass-balance series of a temperate glacier in the Caucasus, reconstructed from an ice core // Geografiska Annaler. 1999. V. 81A. P. 713–724. doi:10.111/1468-0459.00099.
Rozanski K., Johnsen S.J., Schotterer U., Thompson L.G. Reconstruction of past climates from stable isotope records of palaeo-precipitation preserved in continental archives // Journ. of Hydrological Sciences. 1997. V. 42. № 5. P. 725–745.
Shahgedanova M., Stokes C., Gurney S., Popovnin V. Interactions between mass balance, atmospheric circulation, and recent climate change on the Djankuat Glacier, Caucasus Mountains, Russia // Journ. of Geophys. Research. 2005. V. 110. D04108.
Stohl A., Thompson D.J. A density correction for lagrangian particle dispersion models // Boundary Layer Meteorology. 1999. V. 90. № 1. P. 155–167. doi:10.1023/A:1001741110696.
Thompson D.W.J., Wallace J.M. Regional Climate Impacts of the Northern Hemisphere Annular Mode // Science. 2001. V. 293. P. 85–89.
Thompson L.G., Mosley-Thompson E., Henderson K. Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum // Journ. of Quaternary Science. 2000. V. 15. P. 377–394.
Tsushima A., Matoba S., Shiraiwa T., Okamoto S., Sasaki H., Solie D.J., Yoshikawa K. Reconstruction of recent climate change in Alaska from the Aurora Peak ice core, central Alaska // Clim. Past. 2015. V. 11. P. 217–226.
Vaughan D.G., Comiso J.C., Allison I., Carrasco J., Kaser G., Kwok R., Mote P., Murray T., Paul F., Ren J.,ignot E., Solomina O., Steffen K., Zhang T. Observations: Cryosphere // Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Еd. by: T.F. Stocker, D. Qin, G.‑K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2013.
Vinther B.M., Andersen K.K., Hansen A.W., Schmith T., Jones P.D. Improving the Gibraltar/Reykjavik NAO index // Geophys. Research. Letters. 2003. V. 30 (23). P. 2222.
https://ice-snow.igras.ru/jour/article/view/253
doi:10.15356/2076-6734-2015-4-35-49
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2015-4-35-49
https://doi.org/10.15356/2076-6734-2015-4
https://doi.org/10.1175/JAM2470.1
https://doi.org/10.1002/2014JD021847
https://doi.org/10.1038/20859
https://doi.org/10.1029/1999GL900183
https://doi.org
container_title Ice and Snow
container_volume 55
container_issue 4
container_start_page 35
_version_ 1766003911448068096
spelling ftjias:oai:oai.ice.elpub.ru:article/253 2023-05-15T13:29:52+02:00 Isotopic composition of the ice cores obtained on the Western Plateau of the Mt Elbrus Изотопный состав ледяных кернов, полученных на Западном плато Эльбруса A. Kozachek V. A. Ekaykin A. V. Mikhalenko N. V. Lipenkov Ya. S. Kutuzov S. А. Козачек В. А. Екайкин А. В. Михаленко Н. В. Липенков Я. С. Кутузов С. 2015-11-20 application/pdf https://ice-snow.igras.ru/jour/article/view/253 https://doi.org/10.15356/2076-6734-2015-4-35-49 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/253/98 Бажев А.Б., Гордиенко Ф.Г., Смирнов К.Е. Вариации изотопа 18O в толще Марухского ледника (Западный Кавказ) // МГИ. 1973. Вып. 21. С. 198–203. Васильчук Ю.К., Чижова Ю.Н., Папеш В., Буданцева Н.А. Высотный изотопный эффект в снеге на леднике Гарабаши в Приэльбрусье // Криосфера Земли. 2005. Т. IX. № 4. С. 72–81. Васильчук Ю.К., Чижова Ю.Н., Папеш В., Буданцева Н.А. Изотопный состав языка ледника Большой Азау в Приэльбрусье // Криосфера Земли. 2006. Т. X. № 1. С. 56–68. Васильчук Ю.К., Чижова Ю.Н. Высотный градиент распределения δ18О и δD в атмосферных осадках и в снежном покрове высокогорных районов // Криосфера Земли. 2010. Т. XIV. № 1. С. 13–21. Голубев В.Н., Михаленко В.Н., Серебренников А.В., Гвоздик О.А. Структурные исследования ледяного керна Джантуганского фирнового плато на Центральном Кавказе // МГИ. 1988. Вып. 64. С. 25–33. Лаврентьев И.И., Михаленко В.Н., Кутузов С.С. Толщина льда и подлёдный рельеф Западного ледникового плато Эльбруса // Лёд и Снег. 2010. № 2 (110). С. 12–18. Михаленко В.Н. Глубинное строение ледников тропических и умеренных широт. М.: Издательство ЛКИ, 2008. 320 с. Михаленко В.Н. Бурение льда близ вершины Эльбруса // Лёд и Снег. 2010. № 1 (109). С. 123–126. Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Кунахович М.Г., Томпсон Л.Г. Исследования западного ледникового плато Эльбруса: результаты и перспективы // МГИ. 2005. Вып. 99. С. 185–190. Aemisegger F., Pfahl S., Sodemann H., Lehner I., Seneviratne S.I., Wernli H. Deuterium excess as a proxy for continental moisture recycling and plant transpiration // Atmos. Chem. Phys. 2014. V. 14. P. 4029–4054. Ahmad M., Aggarwal P., van Duren M., Poltenstein L., Araguas L., Kurttas T., Wassenaar L.I. Final Report on Fourth interlaboratory comparison exercise for δ2H and δ18O analysis of water samples (WICO2011). Isotope Hydrology Laboratory, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency. 2012. 67 p. Baldini L.M., McDermott F., Foley A.M., Baldini J.U.L. Spatial variability in the European winter precipitation δ18O-NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene // Geophys. Research Letters. 2008. V. 35. L04709. Brunetti M., Kutiel H. The relevance of the North-Sea Caspian Pattern (NCP) in explaining temperature variability in Europe and the Mediterranean // Nat. Hazards Earth Syst. Sci. 2011. V. 11. P. 2881–2888. Casado M., Ortega P., Masson-Delmotte V., Risi C., Swingedouw D., Daux V., Genty D., Maignan F., Solomina O., Vinther B., Viovy N., Yiou P. Impact of precipitation intermittency on NAO-temperature signals in proxy records // Clim. Past. 2013. V. 9. P. 871–886. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. № 4. P. 436–468. Dansgaard W., Johnsen S.J., Moller J., Langway C.C.J. One thousand centuries of climatic record from Camp Century on the Greenland ice sheet // Science. 1969. V. 166. P. 377–381. Dansgaard W., Johnsen S.J. A Flow Model and a Time Scale for the Ice Core from Camp Century, Greenland // Journ. of Glaciology. 1969. V. 8. № 53. P. 215–223. Forster C., Stohl A., Siebert P. Parametrization of convective transport in a lagrangian particle dispersion model and its evaluation // Journ. of Applied Meteorology and Climatology. 2007. V. 46. № 4. P. 403–422. doi:10.1175/JAM2470.1. Ekaykin A.A. Meteorological regime of central Antarctica and its role in the formation of isotope composition of snow thickness. Thése de Doctorat d'Etat. Université Joseph Fourier – Grenoble I, 2003. 136 p. Ekaykin A.A., Kozachek A.V., Lipenkov V.Ya., Shibaev Yu.A. Multiple climate shifts in the Southern Hemisphere over the past three centuries based on central Antarctic snow pits and core studies // Annals of Glaciology. 2014. V. 55 (66). P. 259–266. EPICA community members. Eight glacial cycles from an Antarctic ice core // Nature. 2004. V. 429. P. 623–628. Giese B.S., Urizar S.C., Fuckar N.S. The Southern Hemisphere origin of the 1976 climate shift // Geophys. Research Letters. 2002. V. 29. P. 1–4. Gkinis V., Simonsen S.B., Buchardt S.L., White J.W.C., Vinther B.M. Water isotope diffusion rates from the NorthGRIP ice core for the last 16,000 years – Glaciological and paleoclimatic implications // Earth and Planetary Science Letters. 2014. V. 405. P. 132–141. Hurrel J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation // Science. 1995. V. 269. P. 676–679. Johnsen S., Clausen H.B., Cuffey K.M., Hoffmann G., Schwander J., Creyts T. Diffusion of stable isotopes in olar firn and ice: the isotope effect in firn diffusion // Physics of Ice Core Records / Ed. by T. Hondoh. Hokkaido University Press, Sapporo, 2000. P. 121–140. Jones P., Osborn T., Briffa K. Pressure-Based Measures of the North Atlantic Oscillation (NAO): A Comparison and an Assessment of Changes in the Strength of the NAO and in its Influence on Surface Climate Parameters // The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophys. Monograph 134. 2003. P. 51–62. Kutiel H., Maheras P., Guika S. Circulation Indices over the Mediterranean and Europe and their Relationship with Rainfall Conditions Across the Mediterranean // Theor. Appl. Climatol. 1996. V. 54. P. 125–138. Kutuzov S., Shahgedanova M., Mikhalenko V., Ginot P., Lavrentiev I., Kemp S. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records // The Cryosphere. 2013. V. 7. P. 1481–1498. Mariani I., Eichler A., Jenk M., Brönnimann S., Auchmann R., Leuenberger M.C., Schwikowski M. Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001 // Clim. Past. 2014. V. 10. P. 1093–1108. Meehl G., Hu A., Sunter B. The Mid‑1970s Climate Shift in the Pacific and the Relative Roles of Forced versus Inherent Decadal Variability // Journ. of Climate. 2009. V. 22. P. 780–792. Merlivat l., Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation // Journ. of Geophys. Research. 1979. V. 84. № С8. P. 5029–5033. Mikhalenko V., Sokratov S., Kutuzov S., Lavrentiev I., Ginot P., Legrand M., Preunkert S., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of deep ice core from the Elbrus Western Plateau, the Caucasus, Russia // The Cryosphere Discuss. 2015. V. 9. P. 3661–3708. Mikhalenko V.N., Kozachek A.V., Ekba J.A. Ground water stable isotopic composition in the caves of the South-Western Caucasus // Geography, Environment, Sustainability. 2015. V. 8. № 2. P. 4–12. Nye J.F. Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet // Journ. of Glaciology. 1963. V. 4. № 36. P. 785–788. Osterberg E.C., Mayewski P.A., Fisher D.A., Kreutz K.J., Maasch K.A., Sneed S.B., Kelsey E. Mount Logan ice core record of tropical and solar influences on Aleutian Low variability: 500–1998 A.D. // Journ. of Geophys. Research: Atmosphere. 2004. V. 119. P. 11189–11204. doi:10.1002/2014JD021847. Petit J., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile L., Bender M., Chapellaz J., Davis J., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica // Nature. 1999. V. 399. P. 429–436. doi:10.1038/20859. Pierrehumbert R.T. Huascarán δ18O as an indicator of tropical climate during the Last Glacial Maximum // Geophys. Research Letters. 1999. V. 26. P. 1345–1348. doi:10.1029/1999GL900183. Popovnin V.V. Annual mass-balance series of a temperate glacier in the Caucasus, reconstructed from an ice core // Geografiska Annaler. 1999. V. 81A. P. 713–724. doi:10.111/1468-0459.00099. Rozanski K., Johnsen S.J., Schotterer U., Thompson L.G. Reconstruction of past climates from stable isotope records of palaeo-precipitation preserved in continental archives // Journ. of Hydrological Sciences. 1997. V. 42. № 5. P. 725–745. Shahgedanova M., Stokes C., Gurney S., Popovnin V. Interactions between mass balance, atmospheric circulation, and recent climate change on the Djankuat Glacier, Caucasus Mountains, Russia // Journ. of Geophys. Research. 2005. V. 110. D04108. Stohl A., Thompson D.J. A density correction for lagrangian particle dispersion models // Boundary Layer Meteorology. 1999. V. 90. № 1. P. 155–167. doi:10.1023/A:1001741110696. Thompson D.W.J., Wallace J.M. Regional Climate Impacts of the Northern Hemisphere Annular Mode // Science. 2001. V. 293. P. 85–89. Thompson L.G., Mosley-Thompson E., Henderson K. Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum // Journ. of Quaternary Science. 2000. V. 15. P. 377–394. Tsushima A., Matoba S., Shiraiwa T., Okamoto S., Sasaki H., Solie D.J., Yoshikawa K. Reconstruction of recent climate change in Alaska from the Aurora Peak ice core, central Alaska // Clim. Past. 2015. V. 11. P. 217–226. Vaughan D.G., Comiso J.C., Allison I., Carrasco J., Kaser G., Kwok R., Mote P., Murray T., Paul F., Ren J.,ignot E., Solomina O., Steffen K., Zhang T. Observations: Cryosphere // Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Еd. by: T.F. Stocker, D. Qin, G.‑K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2013. Vinther B.M., Andersen K.K., Hansen A.W., Schmith T., Jones P.D. Improving the Gibraltar/Reykjavik NAO index // Geophys. Research. Letters. 2003. V. 30 (23). P. 2222. https://ice-snow.igras.ru/jour/article/view/253 doi:10.15356/2076-6734-2015-4-35-49 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 55, № 4 (2015); 35-49 Лёд и Снег; Том 55, № 4 (2015); 35-49 2412-3765 2076-6734 10.15356/2076-6734-2015-4 Atmospheric circulation Caucasus climate change Elbrus ice cores isotopic composition Изменения климата;изотопный состав;Кавказ;ледяные керны;циркуляция атмосферы;Эльбрус info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2015-4-35-49 https://doi.org/10.15356/2076-6734-2015-4 https://doi.org/10.1175/JAM2470.1 https://doi.org/10.1002/2014JD021847 https://doi.org/10.1038/20859 https://doi.org/10.1029/1999GL900183 https://doi.org 2022-12-20T13:30:09Z The results of the isotopic investigations of several ice cores obtained at the Western Plateau of Mt. Elbrus (the Caucasus) are presented. There is a distinct seasonal cycle in the isotopic composition record in these cores. Mean annual and seasonal values of the isotopic composition and accumulation rate were reconstructed for 89 years (1924–2012). These values were compared with the available regional meteorological data and the atmospheric circulation characteristics. It was shown that in the summer season the isotopic composition reflects the local temperature while in winter it depends on the atmospheric circulation. Представлены результаты изотопных исследований нескольких ледяных кернов, полученных на Западном плато Эльбруса (Кавказ). В изотопном составе кернов прослеживается чёткий сезонный сигнал. Рассчитаны среднегодовые и среднесезонные значения изотопного состава и скорости снегонакопления за 89 лет (с 1924 по 2012 г.). Эти значения сопоставлены с данными метеонаблюдений в регионе и с характеристиками циркуляции атмосферы. Показано, что в тёплый период года изотопный состав зависит от температуры воздуха в регионе, а в холодный – от особенностей циркуляции атмосферы. Article in Journal/Newspaper Annals of Glaciology The Cryosphere Ice and Snow (E-Journal) Ice and Snow 55 4 35