Geothermal heat flux in Greenland and its influence upon the ice sheet model topography

The paper describes procedures of verification and subsequent correction by means of mathematical modeling of a field of geothermal heat flux aimed at the following application of the field in numerical experiments with the Earth system model. The main component of the system is the Greenland ice sh...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: O. Rybak O., V. Volodin M., A. Nevecherya P., О. Рыбак О., В. Володин М., А. Невечеря П.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/252
https://doi.org/10.15356/2076-6734-2015-4-19-34
id ftjias:oai:oai.ice.elpub.ru:article/252
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Climate
climate model
Earth system model
geothermal heat flux
Greenland
ice deformation
ice flow
ice sheet
mathematical model
Гренландия;деформация льда;климат;климатическая модель;ледниковый щит;математическая модель;модель земной системы;поток геотермического тепла;течение льда
spellingShingle Climate
climate model
Earth system model
geothermal heat flux
Greenland
ice deformation
ice flow
ice sheet
mathematical model
Гренландия;деформация льда;климат;климатическая модель;ледниковый щит;математическая модель;модель земной системы;поток геотермического тепла;течение льда
O. Rybak O.
V. Volodin M.
A. Nevecherya P.
О. Рыбак О.
В. Володин М.
А. Невечеря П.
Geothermal heat flux in Greenland and its influence upon the ice sheet model topography
topic_facet Climate
climate model
Earth system model
geothermal heat flux
Greenland
ice deformation
ice flow
ice sheet
mathematical model
Гренландия;деформация льда;климат;климатическая модель;ледниковый щит;математическая модель;модель земной системы;поток геотермического тепла;течение льда
description The paper describes procedures of verification and subsequent correction by means of mathematical modeling of a field of geothermal heat flux aimed at the following application of the field in numerical experiments with the Earth system model. The main component of the system is the Greenland ice sheet which is investigated here. The corrected field of the geothermal heat flux is tested for a case when the field is reconstructed from data of measured atmospheric precipitation sums as well as for a field generated by means of simple model of the water-heat balance. This simple model is used as a buffer between the general atmosphere circulation model and the ice sheet model. Рассматриваются верификация и последующая коррекция методом математического моделирования поля потока геотермического тепла для дальнейшего применения в численных экспериментах с моделью земной системы, составная часть которой – Гренландский ледниковый щит. Скорректированное поле потока геотермического тепла тестируется как для случая, реконструированного по данным измерений поля сумм атмосферных осадков, так и для поля, сгенерированного простой моделью баланса влаги и тепла, которая служит буфером между моделью общей циркуляции атмосферы и океана и моделью ледникового щита.
format Article in Journal/Newspaper
author O. Rybak O.
V. Volodin M.
A. Nevecherya P.
О. Рыбак О.
В. Володин М.
А. Невечеря П.
author_facet O. Rybak O.
V. Volodin M.
A. Nevecherya P.
О. Рыбак О.
В. Володин М.
А. Невечеря П.
author_sort O. Rybak O.
title Geothermal heat flux in Greenland and its influence upon the ice sheet model topography
title_short Geothermal heat flux in Greenland and its influence upon the ice sheet model topography
title_full Geothermal heat flux in Greenland and its influence upon the ice sheet model topography
title_fullStr Geothermal heat flux in Greenland and its influence upon the ice sheet model topography
title_full_unstemmed Geothermal heat flux in Greenland and its influence upon the ice sheet model topography
title_sort geothermal heat flux in greenland and its influence upon the ice sheet model topography
publisher IGRAS
publishDate 2015
url https://ice-snow.igras.ru/jour/article/view/252
https://doi.org/10.15356/2076-6734-2015-4-19-34
geographic Greenland
geographic_facet Greenland
genre Annals of Glaciology
Arctic
Greenland
Ice Sheet
The Cryosphere
Гренландия
Гренландский
genre_facet Annals of Glaciology
Arctic
Greenland
Ice Sheet
The Cryosphere
Гренландия
Гренландский
op_source Ice and Snow; Том 55, № 4 (2015); 19-34
Лёд и Снег; Том 55, № 4 (2015); 19-34
2412-3765
2076-6734
10.15356/2076-6734-2015-4
op_relation https://ice-snow.igras.ru/jour/article/view/252/97
Рыбак О.О., Хёбрехтс Ф. Гренландский ледниковый щит на пике потепления предыдущего межледниковья // Лёд и Снег. 2014. № 2 (126). С. 91–101.
Рыбак О.О., Володин Е.М. Использование энерговлагобалансовой модели для включения криосферной компоненты в климатическую модель. Часть I. Описание модели и расчетные климатические поля приземной температуры воздуха и осадков // Метеорология и гидрология. 2015 (в печати).
Bamber J.L., Ekholm S., Krabill W.B. A new, high resolution digital elevation model of Greenland fully validated with airborne laser altimeter data // Journ. of Geophys. Research. 2001. V. 106. P. 6733–6745.
Barker S., Knorr G., Edwards R.L., Parrenin F., Putnam A.E., Skinner L.C., Wolff E., Ziegler M. 800,000 years of abrupt climate variability // Science. 2011. V. 334. P. 347–351. doi:10.1126/science.1203580
Braithwaite R.J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy balance modelling // Journ. of Glaciology. 1995. V. 41. № 137. P. 155–160.
Buchardt S.L., Dahl-Jensen D. Estimating the basal melt rate at NorthGRIP using a Monte Carlo technique // Annals of Glaciology. 2007. V. 45. P. 137–142.
Buchardt S.L., Dahl-Jensen D. At what depth is the Eemian layer expected to be found at NEEM? // Annals of Glaciology. 2008. V. 48. P. 100–103.
Dahl-Jensen D., Gundestrup N., Gogineni S.P., Miller H. Basal melt at North GRIP modeled from borehole, ice-core and radio-echo sounding observations // Annals of Glaciology. 2003. V. 37. P. 207–212.
Fahnestock M., Abdalati W., Joughin I., Bozena J., Gogineni P. High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice flow in Central Greenland // Science. 2001. V. 294. P. 2338–2342.
Fox Maule C., Purucker M.E., Olsen N., Mosegaard K. Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data // Science. 2005. V. 309. P. 464–467.
Fox Maule C., Purucker M.E., Olsen N. Inferring magnetic crustal thickness and geothermal heat flux from crustal magnetic field models. Estimating the geothermal heat flux beneath the Greenland ice sheet. Danish Climate Centre Report 09-09. Danish Meteorological Institute, Ministry for Climate and Energy, Copenhagen, 2009. 33 p.
Greve R. Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet // Annаls of Glaciology. 2005. V. 42. P. 424–432.
Grinsted A., Dahl-Jensen D. A Monte Carlo tuned model of the flow in the NorthGrip area // Annals of Glaciology. 2002. V. 35. P. 527–530.
Huybrechts P. Basal temperature conditions of the Greenland ice sheet during the glacial cycles // Annas of Glaciology. 1996. V. 23. P. 226–236.
Huybrechts P. Sea-level changes at the LGM from icedynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles // Quaternary Science Reviews. 2002. V. 21. P. 203–231.
Huybrechts P., de Wolde J. The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming // Journ. of Climate. 1999. V. 12. P. 2169–2188.
Janssens I., Huybrechts P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet // Annals of Glaciology. 2000. V. 31. P. 133–140.
Johnsen S.J., Dahl-Jensen D., Gundestrup N., Steffensen P., Clausen H.B., Miller H. Masson-Delmotte V., Sveinbjörnsdottir A.E., White J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye‑3, GRIP, GISP2, Renland and NorthGRIP // Journ. of Quaternary Science. 2001. V. 16. P. 299–307.
NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core // Nature. 2013. V. 493. P. 489–494.
North Greenland Ice Core Project members. Highresolution record of Northern Hemisphere climate extending into the last interglacial period // Nature. 2004. V. 431. P. 147–151.
Ohmura A., Reeh N. New precipitation and accumulation map for Greenland // Journ. of Glaciology. 1991. V. 37. P. 140–148.
Pattyn F. 2010. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model // Earth and Planetary Science Letters. 2010. V. 295. P. 451–461.
Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M.E., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica // Nature. 1999. V. 399. P. 429–436.
Petrunin A., Rogozhina I., Vaughan A.P.M., Kukkonen I.T., Kaban M., Koulakov I., Thomas M. Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere // Nature Geoscience. 2013. V. 6. P. 746–750.
Pollack H.N., Hurter S.J., Johnson J.R. Heat flow from the Earth’s interior: analysis of the global data set // Reviews of Geophysics and Space Physics. 1993. V. 31. № 3. P. 267–280.
Popp T.J., Hansen S.B., Sheldon S.G., Schwander J., Johnson J.A. Drilling into debris-rich basal ice at the bottom of the NEEM (Greenland) birehole // Annals of Glaciology. 2014. V. 55. P. 199–206.
Robinson A., Calov R., Ganopolski A. An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change // The Cryosphere. 2010. V. 4. P. 129–144.
Rogozhina I., Hagedoorn J.M., Martinec Z., Fleming K., Soucek O., Greve R., Thomas M. Effects of uncertainties in the geothermal heat flux distribution on the Greenland Ice Sheet: An assessment of existing heat flow models // Journ. of Geophys. Research. 2012. V. 117. F02025. doi:10.1029/2011JF002098
Rybak O., Huybrechts P. A comparison of Eulerian and Lagrangian methods for dating in numerical ice sheet models // Annals of Glaciology. 2003. V. 37. P. 150–158.
Rybak O., Huybrechts P. Sensitivity of the EDML ice core chronology to geothermal heat flux // МГИ. 2008. Вып. 105. C. 35–40.
Shapiro N.M., Ritzwoller M.H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica // Earth and Planetary Science Letters. 2004. V. 223. P. 213–224.
Volodin E.M. The mechanism of multidecadal variability in the Arctic and North Atlantic in climate model INMCM4 // Environmental Research Letters. 2013. V. 8. doi:10.1088/1748-9326/8/3/035038
Zweck C., Huybrechts P. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity // Journ. of Geophys. Research. 2005. V. 110. D07103. doi:10.1029/2004JD005489
https://ice-snow.igras.ru/jour/article/view/252
doi:10.15356/2076-6734-2015-4-19-34
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2015-4-19-34
https://doi.org/10.15356/2076-6734-2015-4
https://doi.org/10.1126/science.1203580
https://doi.org/10.1029/2011JF002098
https://doi.org/10.1088/1748-9326/8/3/035038
https://doi.org/10.1029/2004JD005
container_title Ice and Snow
container_volume 55
container_issue 4
container_start_page 19
_version_ 1766003354799964160
spelling ftjias:oai:oai.ice.elpub.ru:article/252 2023-05-15T13:29:49+02:00 Geothermal heat flux in Greenland and its influence upon the ice sheet model topography Поток геотермического тепла в Гренландии и его влияние на модельную топографию ледникового щита O. Rybak O. V. Volodin M. A. Nevecherya P. О. Рыбак О. В. Володин М. А. Невечеря П. 2015-11-20 application/pdf https://ice-snow.igras.ru/jour/article/view/252 https://doi.org/10.15356/2076-6734-2015-4-19-34 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/252/97 Рыбак О.О., Хёбрехтс Ф. Гренландский ледниковый щит на пике потепления предыдущего межледниковья // Лёд и Снег. 2014. № 2 (126). С. 91–101. Рыбак О.О., Володин Е.М. Использование энерговлагобалансовой модели для включения криосферной компоненты в климатическую модель. Часть I. Описание модели и расчетные климатические поля приземной температуры воздуха и осадков // Метеорология и гидрология. 2015 (в печати). Bamber J.L., Ekholm S., Krabill W.B. A new, high resolution digital elevation model of Greenland fully validated with airborne laser altimeter data // Journ. of Geophys. Research. 2001. V. 106. P. 6733–6745. Barker S., Knorr G., Edwards R.L., Parrenin F., Putnam A.E., Skinner L.C., Wolff E., Ziegler M. 800,000 years of abrupt climate variability // Science. 2011. V. 334. P. 347–351. doi:10.1126/science.1203580 Braithwaite R.J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy balance modelling // Journ. of Glaciology. 1995. V. 41. № 137. P. 155–160. Buchardt S.L., Dahl-Jensen D. Estimating the basal melt rate at NorthGRIP using a Monte Carlo technique // Annals of Glaciology. 2007. V. 45. P. 137–142. Buchardt S.L., Dahl-Jensen D. At what depth is the Eemian layer expected to be found at NEEM? // Annals of Glaciology. 2008. V. 48. P. 100–103. Dahl-Jensen D., Gundestrup N., Gogineni S.P., Miller H. Basal melt at North GRIP modeled from borehole, ice-core and radio-echo sounding observations // Annals of Glaciology. 2003. V. 37. P. 207–212. Fahnestock M., Abdalati W., Joughin I., Bozena J., Gogineni P. High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice flow in Central Greenland // Science. 2001. V. 294. P. 2338–2342. Fox Maule C., Purucker M.E., Olsen N., Mosegaard K. Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data // Science. 2005. V. 309. P. 464–467. Fox Maule C., Purucker M.E., Olsen N. Inferring magnetic crustal thickness and geothermal heat flux from crustal magnetic field models. Estimating the geothermal heat flux beneath the Greenland ice sheet. Danish Climate Centre Report 09-09. Danish Meteorological Institute, Ministry for Climate and Energy, Copenhagen, 2009. 33 p. Greve R. Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet // Annаls of Glaciology. 2005. V. 42. P. 424–432. Grinsted A., Dahl-Jensen D. A Monte Carlo tuned model of the flow in the NorthGrip area // Annals of Glaciology. 2002. V. 35. P. 527–530. Huybrechts P. Basal temperature conditions of the Greenland ice sheet during the glacial cycles // Annas of Glaciology. 1996. V. 23. P. 226–236. Huybrechts P. Sea-level changes at the LGM from icedynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles // Quaternary Science Reviews. 2002. V. 21. P. 203–231. Huybrechts P., de Wolde J. The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming // Journ. of Climate. 1999. V. 12. P. 2169–2188. Janssens I., Huybrechts P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet // Annals of Glaciology. 2000. V. 31. P. 133–140. Johnsen S.J., Dahl-Jensen D., Gundestrup N., Steffensen P., Clausen H.B., Miller H. Masson-Delmotte V., Sveinbjörnsdottir A.E., White J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye‑3, GRIP, GISP2, Renland and NorthGRIP // Journ. of Quaternary Science. 2001. V. 16. P. 299–307. NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core // Nature. 2013. V. 493. P. 489–494. North Greenland Ice Core Project members. Highresolution record of Northern Hemisphere climate extending into the last interglacial period // Nature. 2004. V. 431. P. 147–151. Ohmura A., Reeh N. New precipitation and accumulation map for Greenland // Journ. of Glaciology. 1991. V. 37. P. 140–148. Pattyn F. 2010. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model // Earth and Planetary Science Letters. 2010. V. 295. P. 451–461. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M.E., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica // Nature. 1999. V. 399. P. 429–436. Petrunin A., Rogozhina I., Vaughan A.P.M., Kukkonen I.T., Kaban M., Koulakov I., Thomas M. Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere // Nature Geoscience. 2013. V. 6. P. 746–750. Pollack H.N., Hurter S.J., Johnson J.R. Heat flow from the Earth’s interior: analysis of the global data set // Reviews of Geophysics and Space Physics. 1993. V. 31. № 3. P. 267–280. Popp T.J., Hansen S.B., Sheldon S.G., Schwander J., Johnson J.A. Drilling into debris-rich basal ice at the bottom of the NEEM (Greenland) birehole // Annals of Glaciology. 2014. V. 55. P. 199–206. Robinson A., Calov R., Ganopolski A. An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change // The Cryosphere. 2010. V. 4. P. 129–144. Rogozhina I., Hagedoorn J.M., Martinec Z., Fleming K., Soucek O., Greve R., Thomas M. Effects of uncertainties in the geothermal heat flux distribution on the Greenland Ice Sheet: An assessment of existing heat flow models // Journ. of Geophys. Research. 2012. V. 117. F02025. doi:10.1029/2011JF002098 Rybak O., Huybrechts P. A comparison of Eulerian and Lagrangian methods for dating in numerical ice sheet models // Annals of Glaciology. 2003. V. 37. P. 150–158. Rybak O., Huybrechts P. Sensitivity of the EDML ice core chronology to geothermal heat flux // МГИ. 2008. Вып. 105. C. 35–40. Shapiro N.M., Ritzwoller M.H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica // Earth and Planetary Science Letters. 2004. V. 223. P. 213–224. Volodin E.M. The mechanism of multidecadal variability in the Arctic and North Atlantic in climate model INMCM4 // Environmental Research Letters. 2013. V. 8. doi:10.1088/1748-9326/8/3/035038 Zweck C., Huybrechts P. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity // Journ. of Geophys. Research. 2005. V. 110. D07103. doi:10.1029/2004JD005489 https://ice-snow.igras.ru/jour/article/view/252 doi:10.15356/2076-6734-2015-4-19-34 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 55, № 4 (2015); 19-34 Лёд и Снег; Том 55, № 4 (2015); 19-34 2412-3765 2076-6734 10.15356/2076-6734-2015-4 Climate climate model Earth system model geothermal heat flux Greenland ice deformation ice flow ice sheet mathematical model Гренландия;деформация льда;климат;климатическая модель;ледниковый щит;математическая модель;модель земной системы;поток геотермического тепла;течение льда info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2015-4-19-34 https://doi.org/10.15356/2076-6734-2015-4 https://doi.org/10.1126/science.1203580 https://doi.org/10.1029/2011JF002098 https://doi.org/10.1088/1748-9326/8/3/035038 https://doi.org/10.1029/2004JD005 2022-12-20T13:30:01Z The paper describes procedures of verification and subsequent correction by means of mathematical modeling of a field of geothermal heat flux aimed at the following application of the field in numerical experiments with the Earth system model. The main component of the system is the Greenland ice sheet which is investigated here. The corrected field of the geothermal heat flux is tested for a case when the field is reconstructed from data of measured atmospheric precipitation sums as well as for a field generated by means of simple model of the water-heat balance. This simple model is used as a buffer between the general atmosphere circulation model and the ice sheet model. Рассматриваются верификация и последующая коррекция методом математического моделирования поля потока геотермического тепла для дальнейшего применения в численных экспериментах с моделью земной системы, составная часть которой – Гренландский ледниковый щит. Скорректированное поле потока геотермического тепла тестируется как для случая, реконструированного по данным измерений поля сумм атмосферных осадков, так и для поля, сгенерированного простой моделью баланса влаги и тепла, которая служит буфером между моделью общей циркуляции атмосферы и океана и моделью ледникового щита. Article in Journal/Newspaper Annals of Glaciology Arctic Greenland Ice Sheet The Cryosphere Гренландия Гренландский Ice and Snow (E-Journal) Greenland Ice and Snow 55 4 19