THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS

We study the methane emission over the East Siberian Arctic Shelf (ESAS) under the changing sub-aquatic permafrost conditions from the time of inundation 9–6 thousand years BP to present and further until the end of the millennium. The study is based on the full-physics model of hydrothermal regime...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: O. Anisimov A., I. Borzenkova I., S. Lavrov A., Yu. Strel’chenko G., О. Анисимов А., И. Борзенкова И., С. Лавров А., Ю. Стрельченко Г.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/231
https://doi.org/10.15356/2076-6734-2012-2-97-105
id ftjias:oai:oai.ice.elpub.ru:article/231
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Gas hydrates
methane emission
shelf
sub-aquatic permafrost
Газовые гидраты
субаквальная мерзлота
шельф
эмиссия метана
spellingShingle Gas hydrates
methane emission
shelf
sub-aquatic permafrost
Газовые гидраты
субаквальная мерзлота
шельф
эмиссия метана
O. Anisimov A.
I. Borzenkova I.
S. Lavrov A.
Yu. Strel’chenko G.
О. Анисимов А.
И. Борзенкова И.
С. Лавров А.
Ю. Стрельченко Г.
THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS
topic_facet Gas hydrates
methane emission
shelf
sub-aquatic permafrost
Газовые гидраты
субаквальная мерзлота
шельф
эмиссия метана
description We study the methane emission over the East Siberian Arctic Shelf (ESAS) under the changing sub-aquatic permafrost conditions from the time of inundation 9–6 thousand years BP to present and further until the end of the millennium. The study is based on the full-physics model of hydrothermal regime of soil. Our results indicate that the current elevated methane emission from ESAS is responsible for 0.01 ºС global air temperature rise. Even under the hypothetic climate scenario that overestimates the range of near-bottom water temperature rise, projected by the end of the millennium thawing of the bottom sediments is likely to be about90 mand will thus not reach the upper limit of the methane hydrate stability zone that is located 100–140 munderneath the sea bottom. The results of the study do not support the so called «methane bomb» hypothesis that is widely discussed in the scientific literature and in the media. Рассматривается эмиссия метана в связи с изменениями многолетнемёрзлых донных отложений на шельфе морей Восточной Арктики за период с начала затопления 9–6 тыс. л.н. до настоящего времени и далее до конца текущего тысячелетия. Оценка проводится на основе физически полной модели гидротермического режима грунтов. Показано, что вклад в среднегодовую глобальную температуру воздуха за счёт повышенной эмиссии метана на морском шельфе составляет около 0,01 ºС. Даже для климатического сценария, в котором завышается возможный диапазон увеличения температуры придонных вод, к концу 3000 г. мощность верхнего оттаявшего слоя донных отложений составит 90 м и не достигнет верхней границы зоны распространения гидратов, находящейся на уровне 100–140 м подо дном шельфа. Полученные результаты не подтверждают широко обсуждаемую гипотезу о возможности «метановой катастрофы» на шельфе морей Восточной Арктики.
format Article in Journal/Newspaper
author O. Anisimov A.
I. Borzenkova I.
S. Lavrov A.
Yu. Strel’chenko G.
О. Анисимов А.
И. Борзенкова И.
С. Лавров А.
Ю. Стрельченко Г.
author_facet O. Anisimov A.
I. Borzenkova I.
S. Lavrov A.
Yu. Strel’chenko G.
О. Анисимов А.
И. Борзенкова И.
С. Лавров А.
Ю. Стрельченко Г.
author_sort O. Anisimov A.
title THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS
title_short THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS
title_full THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS
title_fullStr THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS
title_full_unstemmed THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS
title_sort current dynamics of the submarine permafrost and methane emission on the shelf of the eastern arctic seas
publisher IGRAS
publishDate 2015
url https://ice-snow.igras.ru/jour/article/view/231
https://doi.org/10.15356/2076-6734-2012-2-97-105
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
Methane hydrate
permafrost
Permafrost and Periglacial Processes
Polarforschung
genre_facet Arctic
Arctic
Methane hydrate
permafrost
Permafrost and Periglacial Processes
Polarforschung
op_source Ice and Snow; Том 52, № 2 (2012); 97-105
Лёд и Снег; Том 52, № 2 (2012); 97-105
2412-3765
2076-6734
10.15356/2076-6734-2012-2
op_relation Andreev A.A., Klimanov V.A. Vegetation and climate of lower course of Yana river in Holocene. Izvestiya Ross. Akad. Nauk, Seriya Geogr. Proc. of the RAS, Geographical Series. 2000, 1: 88–93. [In Russian].
Anisimov O.A., Lavrov S.A., Reneva S.A. Emission of methane from long-term freezing swamps of Russia in the conditions of climate changing. Problemy ekologicheskogo modelirovaniya i monitoringa ekosistem. Problems of ecological modeling and monitoring of ecosystems. St.-Petersburg: Hydrometeoizdat, 2005: 124–142. [In Russian].
Arzhanov M.M., Eliseev A.V., Demchenko P.F., Mokhov I.I., Khon V. Modeling of temperature and hydrological regime of the Siberian rivers catchments in the conditions of permafrost using data of reanalysis. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of Russian Academy of Sciences. Physics of Atmosphere and Ocean. 2008, 44 (1): 86–93. [In Russian].
Borzenkova I.I. IOzmenenie klimata v kaynozoe. Climate changes in Cenozoic. St.-Petersburg: Hydrometeoizdat, 1992: 247 p. [In Russian].
Denisov S.N., Arzhanov M.M., Eliseev A.V., Mokhov I.I. Evaluation of response of subaqual methane hydrates deposits to the possible climate changes in 21st century. Doklady Akademii nauk. Proc. of the Russian Academy of Sciences. 2011, 441 (5): 1–4. [In Russian].
Kaplina T.N., Chekhovsky A.A. Rekonstruktsiya paleogeograficheskikh usloviy golotsenovogo klimaticheskogo optimuma na primorskikh nizmennostyakh Yakutii. Reconstruction of paleogeographic conditions of Holocene climatic optimum in seaside Yakutian plains. Magadan, 1987: 145–151. [In Russian].
Klimat i landshfty Severnoy Evrazii v usloviyakh global'nogo potepleniya. Retrospektivnyi analiz i stsenariy. Climate and landscapes of North Eurasia in the conditions of global changes. Retrospective analysis and scenario. Moscow: GEOS, 2010: 219 p. [In Russian].
Lavrov S.A., Anisivov O.A. Modeling of grounds hydrothermal regime: description of physical dynamic model and comparison of calculations with observation. Problemy ekologicheskogo modelirovaniya i monitoringa ekosistem. Problems of ecological modeling and monitoring of ecosystems. Moscow: Planeta, 2011: 22–41. [In Russian].
Laukhin S.A. Evolution of natural zonality in the North-East of Asia in Pleistocene. Doklady Akademii Nauk. Proc. of Russian Academy of Sciences. 1994, 338: 683–686. [In Russian].
Semenov S.M., Popov I.O. Comparative assessment of influence of changes in concentrations of carbon, methane, nitrous oxide and water vapor to the radiation-equilibrium temperature of Earth surface. Meteorologiya i gidrologiya. Meteorology and Hydrology. 2011, 8: 34–43. [In Russian].
Semiletov I.P. Global warming and carbon cycle in Arctic. Vestnik DVO RAN. Herald of the Far East Branch, Russian Academy of Sciences. 1997, 4: 75–85. [In Russian].
Shakhova N.E., Semiletov I.P., Sergienko V.I., Salyuk A.N., Belcheva N.N., Kosmach D.A. Status of problem on the role of East-Siberian shelf in present-day cycle of methane. Izmenenie okruzhayushchey sredy i klimata. Changes of environment and climate: natural catastrophes. Moscow: Probel 2000, 2008: 164–176. [In Russian].
Shakhova N.E., Sergienko V.I., Semiletov I.P. Input of East-Siberian shelf in the modern cycle of methane. Vestnik RAN. Herald of the Russian Academy of Sciences. 2009, 79 (6): 507–518. [In Russian].
Shakhova N.E., Yusupov V.A., Salyuk A.N., Kosmach D.A. Semiletov I.P. Anthropogenic factor and methane emission at the East-Siberian shelf. Doklady Akademii Nauk. Proc. of the Russian Academy of Sciences. 2009, 429 (3): 398–401. [In Russian].
Anisimov O. Potential feedback of thawing permafrost to the global climate system through methane emission. Environmental Research Letters. 2007, 2. doi:10.1088/1748-9326/2/4/045016
Anisimov O.A., Reneva S.A. Permafrost and changing climate: the Russian perspective. Ambio. 2006, 35 (4): 169–175.
Bradley R.S. Climate forcing during the Holocene. Global changes in the Holocene approaches to reconstructing fine-resolution climate change. Eds. A.W. Mackay, R.W. Battarbee, H.J.B. Birks, F. Oldlield. London: Arnold, 2003: 10–19.
Brook E.L., Harder S., Severinghaus J., Steig E.J., Sucher C.M. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cycles. 2000, 15: 559–572.
Chappellaz J., Blunier T., Kints S., Dallenbach A., Barnola J.-M., Schwander J., Raynaud D., Stauffer B. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. Journ. of Geophys. Research. 1997, 102 (D13): 15987–15999.
Christensen T.R., Johansson T.R., Akerman H.J., Mastepanov M., Malmer N., Friborg T., Crill P., Svensson B.H. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys. Research Letters. 2004, 31. L04501. doi:10.1029/2003GL018680
Delisle G. Temporal variability of subsea permafrost and gas hydrate occurrences as function of climate change in the Laptev Sea, Siberia. Polarforschung. 2000, 6: 221–225.
Dmitrenko I.A., Kirillov S.A., Tremblay B., Kassens H., Anisimov O.A., Lavrov S.A., Razumov S.O., Grigoriev M.N. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. Journ. of Geophys. Research. 2011, 116. C10027. doi:10.1029/2011JC007218
Flückiger J., Monnin E., Stauffer B., Schwander J., Stocker T.F., Chappellaz J., Raynaud D., Barnola J.-M. High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Global Biogeochem. Cycles. 2002, 16 (1): 1010–1016.
Frenzel B., Pecsi M., Velichko A.A. Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere, Late Pleistocene – Holocene. Budapest. Frankfurt. N.Y.: Gustav Fisher Verlag, 1992: 153 p.
Friborg T., Soegaard H., Christensen T.R., Lloyd C.R., Panikov N.S. Siberian Wetlands: Where a sink is a source. Geophys. Research Letters. 2003, 30 (21): 2129.
Joos F., Spahni R. Rates of change in natural and anthropogenic radiative forcing over the last 20,000 years. Proc. of the National Academy of Sciences of the USA. 2008, 105: 1425–1430.
MacDonald G.M., Beilman D.W., Kremenetski C.V., Sheng Y., Smith L.C., Velichko A.A. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science. 2006, 314: 285–288.
Mix A.C., Bard E., Schneider R. Environmental processes of the Ice Age: Land, ocean, glaciers (EPILOG). Quaternary Science Reviews. 2001, 20: 627–657.
Monnin E., Steig E.J., Siegentaler U., Kawamura K., Schwander J., Stauffer B., Stocker T.F., Morse D.L., Barnola J.-M., Bellier B. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth and Planetary Science Letters. 2004, 224 (1/2): 45–54.
Nikolsky D., Shakhova N. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait. Environmental Research Letters. 2010, 5: 1–9.
Prather M., Ehhalt D. Atmospheric chemistry and greenhouse gases. Climate Change 2001: The Scientific Basis Contribution of Working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson. Cambridge: Cambridge University Press. 2001: 239–387.
Ramaswamy V. Radiative forcing of climate change. Climate Change 2001: The Scientific Basis Contribution of Working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson. Cambridge: Cambridge University Press. 2001: 349–416.
Romanovskii N.N., Hubberten H.W. Results of permafrost modeling of the lowlands and shelf of the Laptev Sea region, Russia. Permafrost and Periglacial Processes. 2001, 12 (2): 191–202.
Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-mar. Letters. 2005, 25: 167–182.
Shakhova N., Semiletov I., Panteleev G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophys. Research Letters. 2005, 32 (9): 27–35.
Shakhova N., Semiletov I. Methane release and coastal environment in the East Siberian Arctic shelf. Journ. of Marine Systems. 2007, 66 (1–4): 227–243.
Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science. 2010, 327: 1246–1250.
Tishchenko P., Hensen C., Wallmann K., Wong C.S. Calculation of the stability and solubility of methane hydrate in seawater. Chemical Geology. 2005, 219: 37–52.
Walter K.M., Zimov S.A., Chanton J.P., Verbyla D., Chapin I., F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature. 2006, 443 (7107): 71–75.
Weber S.L., Crowley Y.J., Van der Schrier G. Solar irradiance forcing of centennial climate variability during the Holocene. Climate Dynamics. 2004, 22: 539–553.
Walter K.M., Edwards M.E., Grosse G., Zimov S.A., Chapin III F. S. Thermokarst Lakes as a Source of Atmospheric CH4 During the Last Deglaciation. Science. 2007, 318 (5850): 633–636.
https://ice-snow.igras.ru/jour/article/view/231
doi:10.15356/2076-6734-2012-2-97-105
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2012-2-97-105
https://doi.org/10.15356/2076-6734-2012-2
https://doi.org/10.1088/1748-9326/2/4/045016
https://doi.org/10.1029/2003GL018680
https://doi.org/10.1029/2011JC007218
container_title Ice and Snow
container_volume 52
container_issue 2
container_start_page 97
_version_ 1766302374207422464
spelling ftjias:oai:oai.ice.elpub.ru:article/231 2023-05-15T14:28:13+02:00 THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS СОВРЕМЕННАЯ ДИНАМИКА ПОДВОДНОЙ МЕРЗЛОТЫ И ЭМИССИЯ МЕТАНА НА ШЕЛЬФЕ МОРЕЙ ВОСТОЧНОЙ АРКТИКИ O. Anisimov A. I. Borzenkova I. S. Lavrov A. Yu. Strel’chenko G. О. Анисимов А. И. Борзенкова И. С. Лавров А. Ю. Стрельченко Г. 2015-11-15 https://ice-snow.igras.ru/jour/article/view/231 https://doi.org/10.15356/2076-6734-2012-2-97-105 ru rus IGRAS Andreev A.A., Klimanov V.A. Vegetation and climate of lower course of Yana river in Holocene. Izvestiya Ross. Akad. Nauk, Seriya Geogr. Proc. of the RAS, Geographical Series. 2000, 1: 88–93. [In Russian]. Anisimov O.A., Lavrov S.A., Reneva S.A. Emission of methane from long-term freezing swamps of Russia in the conditions of climate changing. Problemy ekologicheskogo modelirovaniya i monitoringa ekosistem. Problems of ecological modeling and monitoring of ecosystems. St.-Petersburg: Hydrometeoizdat, 2005: 124–142. [In Russian]. Arzhanov M.M., Eliseev A.V., Demchenko P.F., Mokhov I.I., Khon V. Modeling of temperature and hydrological regime of the Siberian rivers catchments in the conditions of permafrost using data of reanalysis. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of Russian Academy of Sciences. Physics of Atmosphere and Ocean. 2008, 44 (1): 86–93. [In Russian]. Borzenkova I.I. IOzmenenie klimata v kaynozoe. Climate changes in Cenozoic. St.-Petersburg: Hydrometeoizdat, 1992: 247 p. [In Russian]. Denisov S.N., Arzhanov M.M., Eliseev A.V., Mokhov I.I. Evaluation of response of subaqual methane hydrates deposits to the possible climate changes in 21st century. Doklady Akademii nauk. Proc. of the Russian Academy of Sciences. 2011, 441 (5): 1–4. [In Russian]. Kaplina T.N., Chekhovsky A.A. Rekonstruktsiya paleogeograficheskikh usloviy golotsenovogo klimaticheskogo optimuma na primorskikh nizmennostyakh Yakutii. Reconstruction of paleogeographic conditions of Holocene climatic optimum in seaside Yakutian plains. Magadan, 1987: 145–151. [In Russian]. Klimat i landshfty Severnoy Evrazii v usloviyakh global'nogo potepleniya. Retrospektivnyi analiz i stsenariy. Climate and landscapes of North Eurasia in the conditions of global changes. Retrospective analysis and scenario. Moscow: GEOS, 2010: 219 p. [In Russian]. Lavrov S.A., Anisivov O.A. Modeling of grounds hydrothermal regime: description of physical dynamic model and comparison of calculations with observation. Problemy ekologicheskogo modelirovaniya i monitoringa ekosistem. Problems of ecological modeling and monitoring of ecosystems. Moscow: Planeta, 2011: 22–41. [In Russian]. Laukhin S.A. Evolution of natural zonality in the North-East of Asia in Pleistocene. Doklady Akademii Nauk. Proc. of Russian Academy of Sciences. 1994, 338: 683–686. [In Russian]. Semenov S.M., Popov I.O. Comparative assessment of influence of changes in concentrations of carbon, methane, nitrous oxide and water vapor to the radiation-equilibrium temperature of Earth surface. Meteorologiya i gidrologiya. Meteorology and Hydrology. 2011, 8: 34–43. [In Russian]. Semiletov I.P. Global warming and carbon cycle in Arctic. Vestnik DVO RAN. Herald of the Far East Branch, Russian Academy of Sciences. 1997, 4: 75–85. [In Russian]. Shakhova N.E., Semiletov I.P., Sergienko V.I., Salyuk A.N., Belcheva N.N., Kosmach D.A. Status of problem on the role of East-Siberian shelf in present-day cycle of methane. Izmenenie okruzhayushchey sredy i klimata. Changes of environment and climate: natural catastrophes. Moscow: Probel 2000, 2008: 164–176. [In Russian]. Shakhova N.E., Sergienko V.I., Semiletov I.P. Input of East-Siberian shelf in the modern cycle of methane. Vestnik RAN. Herald of the Russian Academy of Sciences. 2009, 79 (6): 507–518. [In Russian]. Shakhova N.E., Yusupov V.A., Salyuk A.N., Kosmach D.A. Semiletov I.P. Anthropogenic factor and methane emission at the East-Siberian shelf. Doklady Akademii Nauk. Proc. of the Russian Academy of Sciences. 2009, 429 (3): 398–401. [In Russian]. Anisimov O. Potential feedback of thawing permafrost to the global climate system through methane emission. Environmental Research Letters. 2007, 2. doi:10.1088/1748-9326/2/4/045016 Anisimov O.A., Reneva S.A. Permafrost and changing climate: the Russian perspective. Ambio. 2006, 35 (4): 169–175. Bradley R.S. Climate forcing during the Holocene. Global changes in the Holocene approaches to reconstructing fine-resolution climate change. Eds. A.W. Mackay, R.W. Battarbee, H.J.B. Birks, F. Oldlield. London: Arnold, 2003: 10–19. Brook E.L., Harder S., Severinghaus J., Steig E.J., Sucher C.M. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cycles. 2000, 15: 559–572. Chappellaz J., Blunier T., Kints S., Dallenbach A., Barnola J.-M., Schwander J., Raynaud D., Stauffer B. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. Journ. of Geophys. Research. 1997, 102 (D13): 15987–15999. Christensen T.R., Johansson T.R., Akerman H.J., Mastepanov M., Malmer N., Friborg T., Crill P., Svensson B.H. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys. Research Letters. 2004, 31. L04501. doi:10.1029/2003GL018680 Delisle G. Temporal variability of subsea permafrost and gas hydrate occurrences as function of climate change in the Laptev Sea, Siberia. Polarforschung. 2000, 6: 221–225. Dmitrenko I.A., Kirillov S.A., Tremblay B., Kassens H., Anisimov O.A., Lavrov S.A., Razumov S.O., Grigoriev M.N. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. Journ. of Geophys. Research. 2011, 116. C10027. doi:10.1029/2011JC007218 Flückiger J., Monnin E., Stauffer B., Schwander J., Stocker T.F., Chappellaz J., Raynaud D., Barnola J.-M. High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Global Biogeochem. Cycles. 2002, 16 (1): 1010–1016. Frenzel B., Pecsi M., Velichko A.A. Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere, Late Pleistocene – Holocene. Budapest. Frankfurt. N.Y.: Gustav Fisher Verlag, 1992: 153 p. Friborg T., Soegaard H., Christensen T.R., Lloyd C.R., Panikov N.S. Siberian Wetlands: Where a sink is a source. Geophys. Research Letters. 2003, 30 (21): 2129. Joos F., Spahni R. Rates of change in natural and anthropogenic radiative forcing over the last 20,000 years. Proc. of the National Academy of Sciences of the USA. 2008, 105: 1425–1430. MacDonald G.M., Beilman D.W., Kremenetski C.V., Sheng Y., Smith L.C., Velichko A.A. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science. 2006, 314: 285–288. Mix A.C., Bard E., Schneider R. Environmental processes of the Ice Age: Land, ocean, glaciers (EPILOG). Quaternary Science Reviews. 2001, 20: 627–657. Monnin E., Steig E.J., Siegentaler U., Kawamura K., Schwander J., Stauffer B., Stocker T.F., Morse D.L., Barnola J.-M., Bellier B. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth and Planetary Science Letters. 2004, 224 (1/2): 45–54. Nikolsky D., Shakhova N. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait. Environmental Research Letters. 2010, 5: 1–9. Prather M., Ehhalt D. Atmospheric chemistry and greenhouse gases. Climate Change 2001: The Scientific Basis Contribution of Working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson. Cambridge: Cambridge University Press. 2001: 239–387. Ramaswamy V. Radiative forcing of climate change. Climate Change 2001: The Scientific Basis Contribution of Working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson. Cambridge: Cambridge University Press. 2001: 349–416. Romanovskii N.N., Hubberten H.W. Results of permafrost modeling of the lowlands and shelf of the Laptev Sea region, Russia. Permafrost and Periglacial Processes. 2001, 12 (2): 191–202. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-mar. Letters. 2005, 25: 167–182. Shakhova N., Semiletov I., Panteleev G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophys. Research Letters. 2005, 32 (9): 27–35. Shakhova N., Semiletov I. Methane release and coastal environment in the East Siberian Arctic shelf. Journ. of Marine Systems. 2007, 66 (1–4): 227–243. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science. 2010, 327: 1246–1250. Tishchenko P., Hensen C., Wallmann K., Wong C.S. Calculation of the stability and solubility of methane hydrate in seawater. Chemical Geology. 2005, 219: 37–52. Walter K.M., Zimov S.A., Chanton J.P., Verbyla D., Chapin I., F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature. 2006, 443 (7107): 71–75. Weber S.L., Crowley Y.J., Van der Schrier G. Solar irradiance forcing of centennial climate variability during the Holocene. Climate Dynamics. 2004, 22: 539–553. Walter K.M., Edwards M.E., Grosse G., Zimov S.A., Chapin III F. S. Thermokarst Lakes as a Source of Atmospheric CH4 During the Last Deglaciation. Science. 2007, 318 (5850): 633–636. https://ice-snow.igras.ru/jour/article/view/231 doi:10.15356/2076-6734-2012-2-97-105 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 52, № 2 (2012); 97-105 Лёд и Снег; Том 52, № 2 (2012); 97-105 2412-3765 2076-6734 10.15356/2076-6734-2012-2 Gas hydrates methane emission shelf sub-aquatic permafrost Газовые гидраты субаквальная мерзлота шельф эмиссия метана info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2012-2-97-105 https://doi.org/10.15356/2076-6734-2012-2 https://doi.org/10.1088/1748-9326/2/4/045016 https://doi.org/10.1029/2003GL018680 https://doi.org/10.1029/2011JC007218 2022-12-20T13:30:01Z We study the methane emission over the East Siberian Arctic Shelf (ESAS) under the changing sub-aquatic permafrost conditions from the time of inundation 9–6 thousand years BP to present and further until the end of the millennium. The study is based on the full-physics model of hydrothermal regime of soil. Our results indicate that the current elevated methane emission from ESAS is responsible for 0.01 ºС global air temperature rise. Even under the hypothetic climate scenario that overestimates the range of near-bottom water temperature rise, projected by the end of the millennium thawing of the bottom sediments is likely to be about90 mand will thus not reach the upper limit of the methane hydrate stability zone that is located 100–140 munderneath the sea bottom. The results of the study do not support the so called «methane bomb» hypothesis that is widely discussed in the scientific literature and in the media. Рассматривается эмиссия метана в связи с изменениями многолетнемёрзлых донных отложений на шельфе морей Восточной Арктики за период с начала затопления 9–6 тыс. л.н. до настоящего времени и далее до конца текущего тысячелетия. Оценка проводится на основе физически полной модели гидротермического режима грунтов. Показано, что вклад в среднегодовую глобальную температуру воздуха за счёт повышенной эмиссии метана на морском шельфе составляет около 0,01 ºС. Даже для климатического сценария, в котором завышается возможный диапазон увеличения температуры придонных вод, к концу 3000 г. мощность верхнего оттаявшего слоя донных отложений составит 90 м и не достигнет верхней границы зоны распространения гидратов, находящейся на уровне 100–140 м подо дном шельфа. Полученные результаты не подтверждают широко обсуждаемую гипотезу о возможности «метановой катастрофы» на шельфе морей Восточной Арктики. Article in Journal/Newspaper Arctic Arctic Methane hydrate permafrost Permafrost and Periglacial Processes Polarforschung Ice and Snow (E-Journal) Arctic Ice and Snow 52 2 97