EVOLUTIONARY CONCEPTION OF SNOW METAMORPHISM BASED ON CRYSTAL-MORPHOLOGY AND THEORY OF SYMMETRY
The paper presents a novel approach to the study of development of microstructures in snowpack based on the crystal-morphology and on the fundamental laws of natural symmetry. An empirical deterministic model describing the sublimation-metamorphic cycle in seasonal snow cover and the polymorphic var...
Published in: | Ice and Snow |
---|---|
Main Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | Russian |
Published: |
IGRAS
2015
|
Subjects: | |
Online Access: | https://ice-snow.igras.ru/jour/article/view/222 https://doi.org/10.15356/2076-6734-2012-3-31-46 |
id |
ftjias:oai:oai.ice.elpub.ru:article/222 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Ice and Snow (E-Journal) |
op_collection_id |
ftjias |
language |
Russian |
topic |
auto-regulation classification of snow crystals crystal-morphology snow cover theory of symmetry авторегуляция классификация форм снежных кристаллов кристалломорфология снежный покров теория симметрии |
spellingShingle |
auto-regulation classification of snow crystals crystal-morphology snow cover theory of symmetry авторегуляция классификация форм снежных кристаллов кристалломорфология снежный покров теория симметрии E. Kolomyts G. Э. Коломыц Г. EVOLUTIONARY CONCEPTION OF SNOW METAMORPHISM BASED ON CRYSTAL-MORPHOLOGY AND THEORY OF SYMMETRY |
topic_facet |
auto-regulation classification of snow crystals crystal-morphology snow cover theory of symmetry авторегуляция классификация форм снежных кристаллов кристалломорфология снежный покров теория симметрии |
description |
The paper presents a novel approach to the study of development of microstructures in snowpack based on the crystal-morphology and on the fundamental laws of natural symmetry. An empirical deterministic model describing the sublimation-metamorphic cycle in seasonal snow cover and the polymorphic variants of this cycle is suggested. Staging in the formation of crystal shapes and self-development of snow microstructure in snow layers is revealed. The crystal shapes are the result of successive process of superposition of ice crystal-chemical symmetry and dissymmetry of the soil – snow cover – atmosphere system, according to the known P. Curie principle. Morphological classification of snow crystals in seasonal snow cover is developed on the base of evolutionary model. Evolution of snow microstructure is conditioned by a marked degree by probabilistic conformity to natural laws, manifesting itself in the processes of auto-regulation of metamorphism. These processes include two types of regulation: the self-regulation of snow layers, on the one hand, and the regulation related to external conditions – under the influence of atmospheric perturbations, on the other hand. The accounting the processes of auto-regulation of snow metamorphism for allows development of new methods in short- and long-term avalanche forecast. Изложена эмпирически обоснованная теория эволюции сезонного снежного покрова, опирающаяся на его кристалломофологию и фундаментальные законы природной симметрии. Это – принципиально новое направление в развитии структурного снеговедения как самостоятельной отрасли гляциологии. Снежный покров рассматривается в качестве иерархически организованного сообщества форм кристаллов, растущих в тесном взаимодействии через парообразную фазу и испытывающих регулирующее (направляющее) воздействие извне, прежде всего со стороны атмосферы.В свете известного принципа симметрии–диссимметрии П. Кюри развитие структуры снега представляет собой необратимый во времени процесс, который состоит из последовательных этапов ... |
format |
Article in Journal/Newspaper |
author |
E. Kolomyts G. Э. Коломыц Г. |
author_facet |
E. Kolomyts G. Э. Коломыц Г. |
author_sort |
E. Kolomyts G. |
title |
EVOLUTIONARY CONCEPTION OF SNOW METAMORPHISM BASED ON CRYSTAL-MORPHOLOGY AND THEORY OF SYMMETRY |
title_short |
EVOLUTIONARY CONCEPTION OF SNOW METAMORPHISM BASED ON CRYSTAL-MORPHOLOGY AND THEORY OF SYMMETRY |
title_full |
EVOLUTIONARY CONCEPTION OF SNOW METAMORPHISM BASED ON CRYSTAL-MORPHOLOGY AND THEORY OF SYMMETRY |
title_fullStr |
EVOLUTIONARY CONCEPTION OF SNOW METAMORPHISM BASED ON CRYSTAL-MORPHOLOGY AND THEORY OF SYMMETRY |
title_full_unstemmed |
EVOLUTIONARY CONCEPTION OF SNOW METAMORPHISM BASED ON CRYSTAL-MORPHOLOGY AND THEORY OF SYMMETRY |
title_sort |
evolutionary conception of snow metamorphism based on crystal-morphology and theory of symmetry |
publisher |
IGRAS |
publishDate |
2015 |
url |
https://ice-snow.igras.ru/jour/article/view/222 https://doi.org/10.15356/2076-6734-2012-3-31-46 |
genre |
Annals of Glaciology |
genre_facet |
Annals of Glaciology |
op_source |
Ice and Snow; Том 52, № 3 (2012); 31-46 Лёд и Снег; Том 52, № 3 (2012); 31-46 2412-3765 2076-6734 10.15356/2076-6734-2012-3 |
op_relation |
Armand D.L. Nauka o landshafte. Science of landscape. Moscow: Mysl’, 1975: 287 p. [In Russian]. Vernadsky V.I. Khimicheskor stroenie biosfery Zemli I ee okruzheniya. Chemical structure of the Earth biosphere and its surrounding. Moscow: Nauka, 1965: 374 p. [In Russian]. Grigoriev D.P., Zhabin A.G. Ontogeniya mineralov. Individy. Ontogeny of minerals. Individuals. Moscow: Nauka, 1975: 339 p. [In Russian]. Kolovyts E.G. Struktura snega i landshftnaya indikatsiya. Snow structure and landscape indication. Moscow: Nauka, 1976: 206 p. [In Russian]. Sokratov S.A., Troshkina E.S. Development of structure-stratigraphy investigations of snow cover. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2009, 107: 103–109. [In Russian]. Timofeev-Resovsky N.V., Vorontsov N.N., Yablokov A.V. KLratkiy ocherk teorii evolyutsii. Short essay of the evolution theory. Moscow: Nauka, 1977: 301 p. [In Russian]. Tushinsky G.K., Gus’kova E.F., Gubareva V.D. Perekristallizatsiya snega i vozniknovenie lavin. Snow recrystallization and avalanche formation. Moscow State University, 1953: 116 p. [In Russian]. Chernov R.A. Influence of temperature regime of snow thickness to the formation of loose-snow horizons. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2003, 94: 100–102. [In Russian]. Shafranovsky I.I. Lektsii po kristallomorfologii. Lectures on crystal-morphology. Moscow: Vysshaya shkola, 1968: 174 p. [In Russian]. Sheftal N.N., Kolomyts E.G. Evolution of ultimate forms in crystal grows depending of environmental income to their composition. Acta Physica Academiae Scientiarum Hungaricae. 1973, 33 (3–4): 335–351. [In Russian]. Shubnikov A.V. Izbrannye trudy po kristallografii. Selected works on crystallography. Moscow: Nauka, 1975: 548 p. [In Russian]. Yushkin A.V. Teoriya i metody mineralogii. Theory and methods of mineralogy. Leningrad: Nauka, 1977: 291 p. [In Russian]. Ashby W.R. Introduction to Cybernetic. London, Macmillan & Co, 1956: 430 p. Bailey N.T.J. The mathematical approach to biology and medicine. London – New York – Sydney: John Wiley and sons, 1967: 326 p. Bartelt P., Buser O., Sokratov S.A. A nonequilibrium treatment of heat and mass transfer in alpine anowcowers. Cold Region Science and Technology. 2004, 35 (39): 219–242. Bartelt P., Lehning M. A physical SNOWPACK model for Swiss avalanche warning. Part I; numerical model. Cold Region Science and Technology. 2002, 35 (3): 123–145. Bozhinskiy A.N., Nazarov A.N., Chernous P.A. A probabilistic model of snow avalanche: origin and motion. Data of Glaciological Studies. 2002, 93: 79–84. Brown R.L., Edens M.Q. On the relationship between neck length and bond radius during compression of snow. Journ. of Glaciology. 1991, 37 (126): 203–208. Brun E., David P., Sudul M., Brunot G.A. A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. Journ. of Glaciology. 1992, 38 (128): 13–22. Colbeck S.C. An overview of seasonal snow metamorphism. Reviews of Geophysics and Space Physics. 1982, 20 (1): 45–61. Colbeck S., Akitaya E., Armstrong R., Gulber Y., Lafeuille J., Lied K., McClung D. The International Classification for Seasonal Snow on the Ground. Intern. Commission of Snow and Ice of Internat. Association of Scientific Hydrology. Working group on Snow Classification, 1990. Durand Y., Brun E., Merindol L., Guyomarc’h G., Lesaffre B., Martin E. A meteorological estimation of relevant parameters for snow model. Annals of Glaciology. 1993, 18: 65–71. Edens M.Q., Brown R.L. Changes in microstructure of snow under large deformation. Journ. of Glaciology. 1991, 37 (126): 193–202. Fierz C., Armstrong R.L., Durand Y., Etchevers P., Greene E., McClung D.M., Nishimura K., Satyawali P.K., Sokratov S.A. The international classification for seasonal snow on the ground (UNESCO, IHP (International Hydrological Programme)–VII, Technical Documents in Hydrology, No 83; IACS (International Association of Cryospheric Sciences) contribution № 1). Paris: UNESCO/Division of Water Sciences, 2009: vi+67+18 p. Golybev V.N., Frolov A.D. Modelling the change in structure and mechanical properties in dry-snow densification to ice. Annals of Glaciology. 1998, 26: 45–50. Handbook of snow. Principle, processes, management and use. Eds. D.V. Gray, D.H. Male. Toronto, Division of Hydrology, University of Saskatchewan, Saskatoon, Canada, 1981: 750 p. Harbaugh J.W., Bonham-Carter G. Computer simulation in geology. New York – London – Sydney – Toronto. Wiley-Interscience, 1970: 320 p. Kaempher Th.U., Sokratov S.A., Schneebeli M. The effect of the structural evolution of snow on heat transfer. Proc. of the 3rd Intern. Symposium on two-phase flow modeling and experimentation, Pisa, Italy, 22–25 September, 2004. Eds. G.P. Celata, P. Di Marco, A. Mariani and R.K. Shah. Edizioni ETS, Pisa, 2004, 2: 715–720. Kobayashi Т. Experimental researches on the snow crystal habit and growth by means of diffusion cloud chamber. Journ. Met. Soc. Japan. 1957. 75th ann. V: 38–47. Kolomyts E.G. A Crystal-morphological Atlas of Snow (A Handbook for Snow-Avalanche Station). Birmensdorf, Swiss Federal Inst. for Forest, Snow and Landscape Research, 1997: 130 p. Lehning M., Bartelt P.B., Brown R.L., Fierz Ch. A physical SNOWPACK model for the Swiss avalanche warning: Part III: meteorological forcing, thin layer formation and evolution. Cold Region Science and Technology. 2002, 35: 169–184. Nakaya U. Snow crystals: natural and artificial. Cambridge, MA. Harvard Univ. Press, 1954: 288 p. Odum E.P. Basic Ecology. V. 2. Philadephia – New York – Chicago. Saunders College Publishing, 1983: 376 p. Paulke W. Eisbildungen. I. Der Schnee und seine Diadenese. Zeitschrift für Gletcherkunde. 1934, 21: 25. Pielmeier Chr., Schneebeli M. Developments in the stratigraphy of snow. Surveys in Geophysics. 2003, 24: 389–416. Schaefer V.J., Klein G.J., de Quervain M.R. The International Classification for Snow (with special reference to snow on the ground). 31. The Commission of Snow and Ice of the Internat. Assoc. of Hydrology. Ottawa, Canada: Associate Committee on soil and snow mechanics. National Research Council, 1954. Seligman G. Snow Structure and Ski Fields. London: Macmillan and Co. Ltd., 1936: 555 p. Shneebeli M., Sokratov S.A. Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity. Hydrological Processes. 2004, 18 (18): 3655–3665. Sokratov S.A. Parameters influencing the recrystallization rate of snow. Cold Regions Science and Technology. 2001, 33 (2–3): 263–274. Sokratov S.A., Barry R.G. Intraseasonal variation in the thermoinsulation effect of snow cover on soil temperatures and energy balance. Journ. of Geophys. Research. b – Atmosphere. 2002, 107 (D10). 4093 (ACL 13 1–6). Sommerfeld R.A., LaChapelle E. R. The classification of snow metamorphism. Journ. of Glaciology. 1970, 9 (55): 3–17. Watanabe Z. Tensile strain and fracture of snow. Journ. of Glaciology. 1980, 26 (94): 255–262. Yosida Z. Surface structure of ice crystal and its equilibrium form. Proc. of the Intern. Conf. on Low Temperature Science. I. Physics of snow and ice. V. 1. Pt. 1, ILTS: 1967: 1–19. Yushkin N.P. Informative laws of crystal genesis and genetic informative significance of natural crystals. Fourth Intern. Conf. Crystal Growth, Collected Abstracts. Tokyo, 1974: 273–274. https://ice-snow.igras.ru/jour/article/view/222 doi:10.15356/2076-6734-2012-3-31-46 |
op_rights |
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.15356/2076-6734-2012-3-31-46 https://doi.org/10.15356/2076-6734-2012-3 |
container_title |
Ice and Snow |
container_volume |
52 |
container_issue |
3 |
container_start_page |
31 |
_version_ |
1766003660897124352 |
spelling |
ftjias:oai:oai.ice.elpub.ru:article/222 2023-05-15T13:29:50+02:00 EVOLUTIONARY CONCEPTION OF SNOW METAMORPHISM BASED ON CRYSTAL-MORPHOLOGY AND THEORY OF SYMMETRY ЭВОЛЮЦИОННАЯ КОНЦЕПЦИЯ МЕТАМОРФИЗМА СНЕГА НА ОСНОВЕ КРИСТАЛЛОМОРФОЛОГИИ И ТЕОРИИ СИММЕТРИИ E. Kolomyts G. Э. Коломыц Г. 2015-11-14 https://ice-snow.igras.ru/jour/article/view/222 https://doi.org/10.15356/2076-6734-2012-3-31-46 ru rus IGRAS Armand D.L. Nauka o landshafte. Science of landscape. Moscow: Mysl’, 1975: 287 p. [In Russian]. Vernadsky V.I. Khimicheskor stroenie biosfery Zemli I ee okruzheniya. Chemical structure of the Earth biosphere and its surrounding. Moscow: Nauka, 1965: 374 p. [In Russian]. Grigoriev D.P., Zhabin A.G. Ontogeniya mineralov. Individy. Ontogeny of minerals. Individuals. Moscow: Nauka, 1975: 339 p. [In Russian]. Kolovyts E.G. Struktura snega i landshftnaya indikatsiya. Snow structure and landscape indication. Moscow: Nauka, 1976: 206 p. [In Russian]. Sokratov S.A., Troshkina E.S. Development of structure-stratigraphy investigations of snow cover. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2009, 107: 103–109. [In Russian]. Timofeev-Resovsky N.V., Vorontsov N.N., Yablokov A.V. KLratkiy ocherk teorii evolyutsii. Short essay of the evolution theory. Moscow: Nauka, 1977: 301 p. [In Russian]. Tushinsky G.K., Gus’kova E.F., Gubareva V.D. Perekristallizatsiya snega i vozniknovenie lavin. Snow recrystallization and avalanche formation. Moscow State University, 1953: 116 p. [In Russian]. Chernov R.A. Influence of temperature regime of snow thickness to the formation of loose-snow horizons. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2003, 94: 100–102. [In Russian]. Shafranovsky I.I. Lektsii po kristallomorfologii. Lectures on crystal-morphology. Moscow: Vysshaya shkola, 1968: 174 p. [In Russian]. Sheftal N.N., Kolomyts E.G. Evolution of ultimate forms in crystal grows depending of environmental income to their composition. Acta Physica Academiae Scientiarum Hungaricae. 1973, 33 (3–4): 335–351. [In Russian]. Shubnikov A.V. Izbrannye trudy po kristallografii. Selected works on crystallography. Moscow: Nauka, 1975: 548 p. [In Russian]. Yushkin A.V. Teoriya i metody mineralogii. Theory and methods of mineralogy. Leningrad: Nauka, 1977: 291 p. [In Russian]. Ashby W.R. Introduction to Cybernetic. London, Macmillan & Co, 1956: 430 p. Bailey N.T.J. The mathematical approach to biology and medicine. London – New York – Sydney: John Wiley and sons, 1967: 326 p. Bartelt P., Buser O., Sokratov S.A. A nonequilibrium treatment of heat and mass transfer in alpine anowcowers. Cold Region Science and Technology. 2004, 35 (39): 219–242. Bartelt P., Lehning M. A physical SNOWPACK model for Swiss avalanche warning. Part I; numerical model. Cold Region Science and Technology. 2002, 35 (3): 123–145. Bozhinskiy A.N., Nazarov A.N., Chernous P.A. A probabilistic model of snow avalanche: origin and motion. Data of Glaciological Studies. 2002, 93: 79–84. Brown R.L., Edens M.Q. On the relationship between neck length and bond radius during compression of snow. Journ. of Glaciology. 1991, 37 (126): 203–208. Brun E., David P., Sudul M., Brunot G.A. A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. Journ. of Glaciology. 1992, 38 (128): 13–22. Colbeck S.C. An overview of seasonal snow metamorphism. Reviews of Geophysics and Space Physics. 1982, 20 (1): 45–61. Colbeck S., Akitaya E., Armstrong R., Gulber Y., Lafeuille J., Lied K., McClung D. The International Classification for Seasonal Snow on the Ground. Intern. Commission of Snow and Ice of Internat. Association of Scientific Hydrology. Working group on Snow Classification, 1990. Durand Y., Brun E., Merindol L., Guyomarc’h G., Lesaffre B., Martin E. A meteorological estimation of relevant parameters for snow model. Annals of Glaciology. 1993, 18: 65–71. Edens M.Q., Brown R.L. Changes in microstructure of snow under large deformation. Journ. of Glaciology. 1991, 37 (126): 193–202. Fierz C., Armstrong R.L., Durand Y., Etchevers P., Greene E., McClung D.M., Nishimura K., Satyawali P.K., Sokratov S.A. The international classification for seasonal snow on the ground (UNESCO, IHP (International Hydrological Programme)–VII, Technical Documents in Hydrology, No 83; IACS (International Association of Cryospheric Sciences) contribution № 1). Paris: UNESCO/Division of Water Sciences, 2009: vi+67+18 p. Golybev V.N., Frolov A.D. Modelling the change in structure and mechanical properties in dry-snow densification to ice. Annals of Glaciology. 1998, 26: 45–50. Handbook of snow. Principle, processes, management and use. Eds. D.V. Gray, D.H. Male. Toronto, Division of Hydrology, University of Saskatchewan, Saskatoon, Canada, 1981: 750 p. Harbaugh J.W., Bonham-Carter G. Computer simulation in geology. New York – London – Sydney – Toronto. Wiley-Interscience, 1970: 320 p. Kaempher Th.U., Sokratov S.A., Schneebeli M. The effect of the structural evolution of snow on heat transfer. Proc. of the 3rd Intern. Symposium on two-phase flow modeling and experimentation, Pisa, Italy, 22–25 September, 2004. Eds. G.P. Celata, P. Di Marco, A. Mariani and R.K. Shah. Edizioni ETS, Pisa, 2004, 2: 715–720. Kobayashi Т. Experimental researches on the snow crystal habit and growth by means of diffusion cloud chamber. Journ. Met. Soc. Japan. 1957. 75th ann. V: 38–47. Kolomyts E.G. A Crystal-morphological Atlas of Snow (A Handbook for Snow-Avalanche Station). Birmensdorf, Swiss Federal Inst. for Forest, Snow and Landscape Research, 1997: 130 p. Lehning M., Bartelt P.B., Brown R.L., Fierz Ch. A physical SNOWPACK model for the Swiss avalanche warning: Part III: meteorological forcing, thin layer formation and evolution. Cold Region Science and Technology. 2002, 35: 169–184. Nakaya U. Snow crystals: natural and artificial. Cambridge, MA. Harvard Univ. Press, 1954: 288 p. Odum E.P. Basic Ecology. V. 2. Philadephia – New York – Chicago. Saunders College Publishing, 1983: 376 p. Paulke W. Eisbildungen. I. Der Schnee und seine Diadenese. Zeitschrift für Gletcherkunde. 1934, 21: 25. Pielmeier Chr., Schneebeli M. Developments in the stratigraphy of snow. Surveys in Geophysics. 2003, 24: 389–416. Schaefer V.J., Klein G.J., de Quervain M.R. The International Classification for Snow (with special reference to snow on the ground). 31. The Commission of Snow and Ice of the Internat. Assoc. of Hydrology. Ottawa, Canada: Associate Committee on soil and snow mechanics. National Research Council, 1954. Seligman G. Snow Structure and Ski Fields. London: Macmillan and Co. Ltd., 1936: 555 p. Shneebeli M., Sokratov S.A. Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity. Hydrological Processes. 2004, 18 (18): 3655–3665. Sokratov S.A. Parameters influencing the recrystallization rate of snow. Cold Regions Science and Technology. 2001, 33 (2–3): 263–274. Sokratov S.A., Barry R.G. Intraseasonal variation in the thermoinsulation effect of snow cover on soil temperatures and energy balance. Journ. of Geophys. Research. b – Atmosphere. 2002, 107 (D10). 4093 (ACL 13 1–6). Sommerfeld R.A., LaChapelle E. R. The classification of snow metamorphism. Journ. of Glaciology. 1970, 9 (55): 3–17. Watanabe Z. Tensile strain and fracture of snow. Journ. of Glaciology. 1980, 26 (94): 255–262. Yosida Z. Surface structure of ice crystal and its equilibrium form. Proc. of the Intern. Conf. on Low Temperature Science. I. Physics of snow and ice. V. 1. Pt. 1, ILTS: 1967: 1–19. Yushkin N.P. Informative laws of crystal genesis and genetic informative significance of natural crystals. Fourth Intern. Conf. Crystal Growth, Collected Abstracts. Tokyo, 1974: 273–274. https://ice-snow.igras.ru/jour/article/view/222 doi:10.15356/2076-6734-2012-3-31-46 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 52, № 3 (2012); 31-46 Лёд и Снег; Том 52, № 3 (2012); 31-46 2412-3765 2076-6734 10.15356/2076-6734-2012-3 auto-regulation classification of snow crystals crystal-morphology snow cover theory of symmetry авторегуляция классификация форм снежных кристаллов кристалломорфология снежный покров теория симметрии info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2012-3-31-46 https://doi.org/10.15356/2076-6734-2012-3 2022-12-20T13:30:18Z The paper presents a novel approach to the study of development of microstructures in snowpack based on the crystal-morphology and on the fundamental laws of natural symmetry. An empirical deterministic model describing the sublimation-metamorphic cycle in seasonal snow cover and the polymorphic variants of this cycle is suggested. Staging in the formation of crystal shapes and self-development of snow microstructure in snow layers is revealed. The crystal shapes are the result of successive process of superposition of ice crystal-chemical symmetry and dissymmetry of the soil – snow cover – atmosphere system, according to the known P. Curie principle. Morphological classification of snow crystals in seasonal snow cover is developed on the base of evolutionary model. Evolution of snow microstructure is conditioned by a marked degree by probabilistic conformity to natural laws, manifesting itself in the processes of auto-regulation of metamorphism. These processes include two types of regulation: the self-regulation of snow layers, on the one hand, and the regulation related to external conditions – under the influence of atmospheric perturbations, on the other hand. The accounting the processes of auto-regulation of snow metamorphism for allows development of new methods in short- and long-term avalanche forecast. Изложена эмпирически обоснованная теория эволюции сезонного снежного покрова, опирающаяся на его кристалломофологию и фундаментальные законы природной симметрии. Это – принципиально новое направление в развитии структурного снеговедения как самостоятельной отрасли гляциологии. Снежный покров рассматривается в качестве иерархически организованного сообщества форм кристаллов, растущих в тесном взаимодействии через парообразную фазу и испытывающих регулирующее (направляющее) воздействие извне, прежде всего со стороны атмосферы.В свете известного принципа симметрии–диссимметрии П. Кюри развитие структуры снега представляет собой необратимый во времени процесс, который состоит из последовательных этапов ... Article in Journal/Newspaper Annals of Glaciology Ice and Snow (E-Journal) Ice and Snow 52 3 31 |