MATHEMATICAL MODELING OF ICE FLOW IN QUEEN MAUD LAND, ANTARCTICA, AND ITS APPLICATION TO THE LATE QUATERNARY CLIMATIC PALEORECONSTRUCTION

One of the main sources of our knowledge about past air temperature variations is the isotopic composition of the ice cores obtained during deep drilling of the ice sheets. During 2001–2006 deep drilling was carried out at Kohnen station in Dronning Maud Land, Antarcticawithin the frameworks of the...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: O. Rybak O., P. Huybrechts, O. Рыбак O., Ф. Хёбрехтс
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/219
https://doi.org/10.15356/2076-6734-2012-4-5-16
_version_ 1828686819857793024
author O. Rybak O.
P. Huybrechts
O. Рыбак O.
Ф. Хёбрехтс
author_facet O. Rybak O.
P. Huybrechts
O. Рыбак O.
Ф. Хёбрехтс
author_sort O. Rybak O.
collection Ice and Snow
container_issue 3
container_start_page 5
container_title Ice and Snow
container_volume 52
description One of the main sources of our knowledge about past air temperature variations is the isotopic composition of the ice cores obtained during deep drilling of the ice sheets. During 2001–2006 deep drilling was carried out at Kohnen station in Dronning Maud Land, Antarcticawithin the frameworks of the European Project for Ice Coring in Antarctica (EPICA). As a result, an ice core of 2774 mlength was obtained. Variations of air temperature are linearly dependent on isotopic composition of an ice core, but the reconstructed temperature series contains besides the climatic signal, a topographic bias. Appearance of this bias is explained by the upstream advection from the elevated sites where the ice particles were originally deposited, and by the local vertical movements of the surface of the ice sheet through time. In order to calculate this non-climatic (topographic) bias in the isotopic and reconstructed air temperature record, we applied a methodology based on mathematical ice-flow modeling. In the lower part of the ice sheet ice chronology and non-climatic biases are strongly affected by unknown value of the geothermal heat flux (G). Melt water, which was found close to the bedrock suggests that that assumed G = 54.6 mWm-2 (the average value for Antarctica) was very likely underestimated in the surroundings of Kohnen. In order to estimate the range of possible values of ice age and of non-climatic bias in the lower part of the core we carried out a series of numerical experiment with G increased by 5–30%. Один из основных источников сведений о вариациях температуры воздуха в прошлом – физико-химические свойства льда в кернах, получаемых при глубоком бурении ледниковых щитов. В 2001–2006 гг. на станции Конен на Земле Королевы Мод в Антарктиде в рамках проекта EPICA (European Project for Ice Coring in Antarctica) было проведено глубокое бурение и получен ледяной керн длиной 2774 м. Вариации температуры воздуха практически линейно связаны с вариациями изотопного состава керна, однако восстановленный ряд ...
format Article in Journal/Newspaper
genre Annals of Glaciology
Antarc*
Antarctica
Berichte zur Polarforschung
Dronning Maud Land
EPICA
ice core
Ice Sheet
Polarforschung
Queen Maud Land
genre_facet Annals of Glaciology
Antarc*
Antarctica
Berichte zur Polarforschung
Dronning Maud Land
EPICA
ice core
Ice Sheet
Polarforschung
Queen Maud Land
geographic Dronning Maud Land
Kohnen
Kohnen Station
Queen Maud Land
geographic_facet Dronning Maud Land
Kohnen
Kohnen Station
Queen Maud Land
id ftjias:oai:oai.ice.elpub.ru:article/219
institution Open Polar
language Russian
long_lat ENVELOPE(0.000,0.000,-75.000,-75.000)
ENVELOPE(0.000,0.000,-75.000,-75.000)
ENVELOPE(12.000,12.000,-72.500,-72.500)
op_collection_id ftjias
op_doi https://doi.org/10.15356/2076-6734-2012-4-5-1610.15356/2076-6734-2012-310.1029/2002JB002329
op_relation Kotlyakov V.M., Gordienko F.G. Izotopnaya i geokhimicheskaya glatsiologiya. Isotope and geochemical glaciology. Leningrad: Hydrometeoizdat, 1982: 288 p. [In Russian].
Rybak O.O., Huybrechts F. Pattyn F., Steinhage D. Regional model of ice dynamics. Part 1. Description of model, numerical experiments and modern dynamics of stream in the vicinity of Kohnen Station. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Data. 2007, 102: 3–11. [In Russian].
Rybak O.O., Huybrechts F. Pattyn F., Steinhage D. Regional model of ice dynamics. Part 2. Post-experimental data processing. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Data. 2007, 103: 3–10. [In Russian].
Blatter H. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. Journ. of Glaciology. 1995, 41: 333–344.
Ekaykin A.A., Lipenkov V. Ya., Barkov V.I., Petit J.R., Masson-Delmotte V. Spatial and temporal variability in isotope composition of recent snow in the vicinity of Vostok station. Antarctica: implications for ice-core record interpretation. Annals of Glaciology. 2002, 35: 181–186.
Ekaykin A.A., Lipenkov V.Ya., Kuzmina I.N., Petit J.R., Masson-Delmotte V., Johnsen S. The changes in isotope composition and accumulation of snow at Vostok station, East Antarctica, over the past 200 years. Annals of Glaciology. 2004, 39: 569–575.
EPICA community members. Eight glacial cycles from an Antarctic ice core // Nature. 2004. V. 429. P. 623–628.
EPICA community members. One-to-one interhemispheric coupling of polar climate variability during the last glacial. Nature. 2006, 444: 195–198.
Fürst J.J., Rybak O., Goelzer H., De Smedt B., De Groen P., Huybrechts P. Improved convergence and stability properties in a three-dimensional higher-order ice sheet model. Geoscientific Model Development. 2011, 4: 1133–1149.
Hutter K. Theoretical Glaciology: material science of ice and the mechanics of glaciers and ice sheets. Dordrecht etc.: D. Reidel, 1983: 510 p.
Huybrechts P. The Antarctic ice sheet and environmental change. Bremerhaven, Germany, 1992 (Berichte zur Polarforschung. V. 99): 241 p.
Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews. 2002, 21: 203–231.
Huybrechts P., de Wolde J. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. Journ. of Climate. 1999, 12: 2169–2188.
Huybrechts P., Rybak O., Pattyn F., Steinhage D. Simulation of the ice-dynamical history around the EPICA DML drill site with a nested Antarctic ice sheet model [Электронный ресурс]. Abstracts of the Contributions of the EGU 2nd General Assembly, Nice, France, 26–30 April, 2004. Geophys. Research Abstracts, 6. 2004. (1 CD-ROM).
Huybrechts P., Rybak O., Pattyn F., Ruth U., Steinhage D. Ice thinning, upstream advection and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet. Climate of the Past. 2007, 3: 577–589.
Huybrechts P., Rybak O., Steinhage D., Pattyn F. Past and present accumulation rate reconstruction in the Eastern Dronning Maud Land, Antarctica. Annals of Glaciology. 2009, 51: 112–120.
Lorius C., Jouzel J., Ritz C., Merlivat L., Barkov N.I., Korotkevich Y.S., Kotlyakov V.M. A 150,000-year climatic record from Antarctic ice. Nature. 1985, 316 (6029): 591–596.
Oerter H., Graf W., Wilhelms F., Minikin A., Miller H. Accumulation studies on Amundsenisen, Dronning Maud Land, Antarctica, by means of tritium, dielectric profiling and stable-isotope measurements: first results from the 1995-96 and 1996-97 field seasons. Annals of Glaciology. 1999, 29: 1–9.
Oerter H., Wilhelms F., Jung-Rothenhäusler F., Göktas F., Miller H., Graf W., Sommer S. Accumulation rates in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling measurements of shallow firn cores. Annals of Glaciology. 2000, 30: 27–34.
Pattyn F. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. Journ. of Geophys. Research. 2003, 108 (B 8). 2382. doi:10.1029/2002JB002329.
Pollack H.N., Hurter S.J., Johnson J.R. Heat flow from the Earth’s interior: analysis of the global data set. Reviews of Geophys. and Space Physics. 1993, 31 (3): 267–280.
Robin G. de Q. Ice cores and climatic change. Philosophical Transactions of Royal Society. London. Ser. B. 1977, 280: 143–168.
Rybak O., Huybrechts P. Sensitivity of the EDML ice core chronology to geothermal heat flux. Data of Glaciological Data. 2008, 105: 35–40.
Vinther B.M, Buchardt S.L., Clausen H.B., Dahl-Jensen D., Johnsen S.J., Fisher D.A., Koerner R.M., Raynaud D., Lipenkov V., Andersen K.K., Blunier T., Rasmussen S.O., Steffensen J.P., Svensson A.M. Holocene thinning of the Greenland ice sheet. Nature. 2009, 461: 385–388.
Wesche C., Eisen O., Oerter H., Schulte D., Steinhage D. Surface topography and ice flow in the vicinity of EDML deep-drilling site. Journ. of Glaciology. 2007, 53: 442–448.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_source Ice and Snow; Том 52, № 3 (2012); 5-16
Лёд и Снег; Том 52, № 3 (2012); 5-16
2412-3765
2076-6734
10.15356/2076-6734-2012-3
publishDate 2015
publisher IGRAS
record_format openpolar
spelling ftjias:oai:oai.ice.elpub.ru:article/219 2025-04-06T14:32:55+00:00 MATHEMATICAL MODELING OF ICE FLOW IN QUEEN MAUD LAND, ANTARCTICA, AND ITS APPLICATION TO THE LATE QUATERNARY CLIMATIC PALEORECONSTRUCTION МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ ЛЬДА НА ЗЕМЛЕ КОРОЛЕВЫ МОД В АНТАРКТИДЕ И ЕГО ПРИЛОЖЕНИЕ В ПАЛЕОРЕКОНСТРУКЦИЯХ ПОЗДНЕЧЕТВЕРТИЧНОГО КЛИМАТА O. Rybak O. P. Huybrechts O. Рыбак O. Ф. Хёбрехтс 2015-11-14 https://ice-snow.igras.ru/jour/article/view/219 https://doi.org/10.15356/2076-6734-2012-4-5-16 ru rus IGRAS Kotlyakov V.M., Gordienko F.G. Izotopnaya i geokhimicheskaya glatsiologiya. Isotope and geochemical glaciology. Leningrad: Hydrometeoizdat, 1982: 288 p. [In Russian]. Rybak O.O., Huybrechts F. Pattyn F., Steinhage D. Regional model of ice dynamics. Part 1. Description of model, numerical experiments and modern dynamics of stream in the vicinity of Kohnen Station. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Data. 2007, 102: 3–11. [In Russian]. Rybak O.O., Huybrechts F. Pattyn F., Steinhage D. Regional model of ice dynamics. Part 2. Post-experimental data processing. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Data. 2007, 103: 3–10. [In Russian]. Blatter H. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. Journ. of Glaciology. 1995, 41: 333–344. Ekaykin A.A., Lipenkov V. Ya., Barkov V.I., Petit J.R., Masson-Delmotte V. Spatial and temporal variability in isotope composition of recent snow in the vicinity of Vostok station. Antarctica: implications for ice-core record interpretation. Annals of Glaciology. 2002, 35: 181–186. Ekaykin A.A., Lipenkov V.Ya., Kuzmina I.N., Petit J.R., Masson-Delmotte V., Johnsen S. The changes in isotope composition and accumulation of snow at Vostok station, East Antarctica, over the past 200 years. Annals of Glaciology. 2004, 39: 569–575. EPICA community members. Eight glacial cycles from an Antarctic ice core // Nature. 2004. V. 429. P. 623–628. EPICA community members. One-to-one interhemispheric coupling of polar climate variability during the last glacial. Nature. 2006, 444: 195–198. Fürst J.J., Rybak O., Goelzer H., De Smedt B., De Groen P., Huybrechts P. Improved convergence and stability properties in a three-dimensional higher-order ice sheet model. Geoscientific Model Development. 2011, 4: 1133–1149. Hutter K. Theoretical Glaciology: material science of ice and the mechanics of glaciers and ice sheets. Dordrecht etc.: D. Reidel, 1983: 510 p. Huybrechts P. The Antarctic ice sheet and environmental change. Bremerhaven, Germany, 1992 (Berichte zur Polarforschung. V. 99): 241 p. Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews. 2002, 21: 203–231. Huybrechts P., de Wolde J. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. Journ. of Climate. 1999, 12: 2169–2188. Huybrechts P., Rybak O., Pattyn F., Steinhage D. Simulation of the ice-dynamical history around the EPICA DML drill site with a nested Antarctic ice sheet model [Электронный ресурс]. Abstracts of the Contributions of the EGU 2nd General Assembly, Nice, France, 26–30 April, 2004. Geophys. Research Abstracts, 6. 2004. (1 CD-ROM). Huybrechts P., Rybak O., Pattyn F., Ruth U., Steinhage D. Ice thinning, upstream advection and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet. Climate of the Past. 2007, 3: 577–589. Huybrechts P., Rybak O., Steinhage D., Pattyn F. Past and present accumulation rate reconstruction in the Eastern Dronning Maud Land, Antarctica. Annals of Glaciology. 2009, 51: 112–120. Lorius C., Jouzel J., Ritz C., Merlivat L., Barkov N.I., Korotkevich Y.S., Kotlyakov V.M. A 150,000-year climatic record from Antarctic ice. Nature. 1985, 316 (6029): 591–596. Oerter H., Graf W., Wilhelms F., Minikin A., Miller H. Accumulation studies on Amundsenisen, Dronning Maud Land, Antarctica, by means of tritium, dielectric profiling and stable-isotope measurements: first results from the 1995-96 and 1996-97 field seasons. Annals of Glaciology. 1999, 29: 1–9. Oerter H., Wilhelms F., Jung-Rothenhäusler F., Göktas F., Miller H., Graf W., Sommer S. Accumulation rates in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling measurements of shallow firn cores. Annals of Glaciology. 2000, 30: 27–34. Pattyn F. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. Journ. of Geophys. Research. 2003, 108 (B 8). 2382. doi:10.1029/2002JB002329. Pollack H.N., Hurter S.J., Johnson J.R. Heat flow from the Earth’s interior: analysis of the global data set. Reviews of Geophys. and Space Physics. 1993, 31 (3): 267–280. Robin G. de Q. Ice cores and climatic change. Philosophical Transactions of Royal Society. London. Ser. B. 1977, 280: 143–168. Rybak O., Huybrechts P. Sensitivity of the EDML ice core chronology to geothermal heat flux. Data of Glaciological Data. 2008, 105: 35–40. Vinther B.M, Buchardt S.L., Clausen H.B., Dahl-Jensen D., Johnsen S.J., Fisher D.A., Koerner R.M., Raynaud D., Lipenkov V., Andersen K.K., Blunier T., Rasmussen S.O., Steffensen J.P., Svensson A.M. Holocene thinning of the Greenland ice sheet. Nature. 2009, 461: 385–388. Wesche C., Eisen O., Oerter H., Schulte D., Steinhage D. Surface topography and ice flow in the vicinity of EDML deep-drilling site. Journ. of Glaciology. 2007, 53: 442–448. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 52, № 3 (2012); 5-16 Лёд и Снег; Том 52, № 3 (2012); 5-16 2412-3765 2076-6734 10.15356/2076-6734-2012-3 climatic variations geothermal heat flux ice age ice flow ice isotopic composition ice sheet mathematical model вариации климата возраст льда изотопный состав льда ледниковый щит математическая модель поток геотермического тепла течение льда info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2012-4-5-1610.15356/2076-6734-2012-310.1029/2002JB002329 2025-03-10T11:00:05Z One of the main sources of our knowledge about past air temperature variations is the isotopic composition of the ice cores obtained during deep drilling of the ice sheets. During 2001–2006 deep drilling was carried out at Kohnen station in Dronning Maud Land, Antarcticawithin the frameworks of the European Project for Ice Coring in Antarctica (EPICA). As a result, an ice core of 2774 mlength was obtained. Variations of air temperature are linearly dependent on isotopic composition of an ice core, but the reconstructed temperature series contains besides the climatic signal, a topographic bias. Appearance of this bias is explained by the upstream advection from the elevated sites where the ice particles were originally deposited, and by the local vertical movements of the surface of the ice sheet through time. In order to calculate this non-climatic (topographic) bias in the isotopic and reconstructed air temperature record, we applied a methodology based on mathematical ice-flow modeling. In the lower part of the ice sheet ice chronology and non-climatic biases are strongly affected by unknown value of the geothermal heat flux (G). Melt water, which was found close to the bedrock suggests that that assumed G = 54.6 mWm-2 (the average value for Antarctica) was very likely underestimated in the surroundings of Kohnen. In order to estimate the range of possible values of ice age and of non-climatic bias in the lower part of the core we carried out a series of numerical experiment with G increased by 5–30%. Один из основных источников сведений о вариациях температуры воздуха в прошлом – физико-химические свойства льда в кернах, получаемых при глубоком бурении ледниковых щитов. В 2001–2006 гг. на станции Конен на Земле Королевы Мод в Антарктиде в рамках проекта EPICA (European Project for Ice Coring in Antarctica) было проведено глубокое бурение и получен ледяной керн длиной 2774 м. Вариации температуры воздуха практически линейно связаны с вариациями изотопного состава керна, однако восстановленный ряд ... Article in Journal/Newspaper Annals of Glaciology Antarc* Antarctica Berichte zur Polarforschung Dronning Maud Land EPICA ice core Ice Sheet Polarforschung Queen Maud Land Ice and Snow Dronning Maud Land Kohnen ENVELOPE(0.000,0.000,-75.000,-75.000) Kohnen Station ENVELOPE(0.000,0.000,-75.000,-75.000) Queen Maud Land ENVELOPE(12.000,12.000,-72.500,-72.500) Ice and Snow 52 3 5
spellingShingle climatic variations
geothermal heat flux
ice age
ice flow
ice isotopic composition
ice sheet
mathematical model
вариации климата
возраст льда
изотопный состав льда
ледниковый щит
математическая модель
поток геотермического тепла
течение льда
O. Rybak O.
P. Huybrechts
O. Рыбак O.
Ф. Хёбрехтс
MATHEMATICAL MODELING OF ICE FLOW IN QUEEN MAUD LAND, ANTARCTICA, AND ITS APPLICATION TO THE LATE QUATERNARY CLIMATIC PALEORECONSTRUCTION
title MATHEMATICAL MODELING OF ICE FLOW IN QUEEN MAUD LAND, ANTARCTICA, AND ITS APPLICATION TO THE LATE QUATERNARY CLIMATIC PALEORECONSTRUCTION
title_full MATHEMATICAL MODELING OF ICE FLOW IN QUEEN MAUD LAND, ANTARCTICA, AND ITS APPLICATION TO THE LATE QUATERNARY CLIMATIC PALEORECONSTRUCTION
title_fullStr MATHEMATICAL MODELING OF ICE FLOW IN QUEEN MAUD LAND, ANTARCTICA, AND ITS APPLICATION TO THE LATE QUATERNARY CLIMATIC PALEORECONSTRUCTION
title_full_unstemmed MATHEMATICAL MODELING OF ICE FLOW IN QUEEN MAUD LAND, ANTARCTICA, AND ITS APPLICATION TO THE LATE QUATERNARY CLIMATIC PALEORECONSTRUCTION
title_short MATHEMATICAL MODELING OF ICE FLOW IN QUEEN MAUD LAND, ANTARCTICA, AND ITS APPLICATION TO THE LATE QUATERNARY CLIMATIC PALEORECONSTRUCTION
title_sort mathematical modeling of ice flow in queen maud land, antarctica, and its application to the late quaternary climatic paleoreconstruction
topic climatic variations
geothermal heat flux
ice age
ice flow
ice isotopic composition
ice sheet
mathematical model
вариации климата
возраст льда
изотопный состав льда
ледниковый щит
математическая модель
поток геотермического тепла
течение льда
topic_facet climatic variations
geothermal heat flux
ice age
ice flow
ice isotopic composition
ice sheet
mathematical model
вариации климата
возраст льда
изотопный состав льда
ледниковый щит
математическая модель
поток геотермического тепла
течение льда
url https://ice-snow.igras.ru/jour/article/view/219
https://doi.org/10.15356/2076-6734-2012-4-5-16