SNOW TEMPERATURE MEASUREMENTS AT VOSTOK STATION FROM AN AUTONOMOUS RECORDING SYSTEM (TAUTO): PRELIMINARY RESULTS FROM THE FIRST YEAR OPERATION

Temperature gradients in the upper layers of the snow pack are of importance for studying the emissivity properties of the snow surface with respect to microwaves used in remote sensing as well as for the heat and mass transfer in snow thickness. Gradients drive the initial snow microstructure metam...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: E. Lefebvre, L. Arnaud, A. Ekaykin A., V. Lipenkov Y., G. Picard, J.-R. Petit, Е. Lefebvre, А. Екайкин А., В. Липенков Я.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/217
https://doi.org/10.15356/2076-6734-2012-4-138-145
id ftjias:oai:oai.ice.elpub.ru:article/217
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Antarctica
autonomous recording system
snow temperature
snow thermal properties
temperature monitoring
winter warming
spellingShingle Antarctica
autonomous recording system
snow temperature
snow thermal properties
temperature monitoring
winter warming
E. Lefebvre
L. Arnaud
A. Ekaykin A.
V. Lipenkov Y.
G. Picard
J.-R. Petit
Е. Lefebvre
А. Екайкин А.
В. Липенков Я.
SNOW TEMPERATURE MEASUREMENTS AT VOSTOK STATION FROM AN AUTONOMOUS RECORDING SYSTEM (TAUTO): PRELIMINARY RESULTS FROM THE FIRST YEAR OPERATION
topic_facet Antarctica
autonomous recording system
snow temperature
snow thermal properties
temperature monitoring
winter warming
description Temperature gradients in the upper layers of the snow pack are of importance for studying the emissivity properties of the snow surface with respect to microwaves used in remote sensing as well as for the heat and mass transfer in snow thickness. Gradients drive the initial snow microstructure metamorphisms that probably influence the firn properties in regard to air molecules fractionation and the air bubble enclosure process at close-off depths. As a contribution to investigation of these problems and following J.-M. Barnola initiative, we developed an autonomous recording system to monitor the temperature of the upper layers of the snow pack. The instrument was built to be autonomous and to be continuously operating within environmental conditions of the Antarctic plateau and the polar night. The apparatus which monitors temperature from the first 10 mof snow by 15 sensors of a «temperature grape» was set at Vostok station during 55th Russian Antarctic Expedition within the frame of the French Russian collaboration (GDRI Vostok). From the available hourly measurements over the first year, we present preliminary results on the thermal diffusive properties of the snow pack as well as some character of the temperature variations on the Antarctic plateau. Точные измерения температурных градиентов в верхнем слое снега в Антарктиде необходимы для исследования излучения снежной поверхности в микроволновом диапазоне, которое используется в дистанционных наблюдениях, а также для изучения процессов тепло- и массопереноса в снежной толще. Градиент температуры – важнейший фактор, контролирующий метаморфизм снега, в ходе которого закладываются первоначальные структурные особенности снежных слоёв, влияющие на последующее уплотнение снега и фирна, захват атмосферного воздуха в ходе превращения фирна в лёд и фракционирование этого воздуха по газовому составу. С целью изучения этих процессов и в развитие инициатив Ж.-М. Барнола разработана автоматическая система мониторинга температуры верхних слоёв снежной толщи. Созданная ...
format Article in Journal/Newspaper
author E. Lefebvre
L. Arnaud
A. Ekaykin A.
V. Lipenkov Y.
G. Picard
J.-R. Petit
Е. Lefebvre
А. Екайкин А.
В. Липенков Я.
author_facet E. Lefebvre
L. Arnaud
A. Ekaykin A.
V. Lipenkov Y.
G. Picard
J.-R. Petit
Е. Lefebvre
А. Екайкин А.
В. Липенков Я.
author_sort E. Lefebvre
title SNOW TEMPERATURE MEASUREMENTS AT VOSTOK STATION FROM AN AUTONOMOUS RECORDING SYSTEM (TAUTO): PRELIMINARY RESULTS FROM THE FIRST YEAR OPERATION
title_short SNOW TEMPERATURE MEASUREMENTS AT VOSTOK STATION FROM AN AUTONOMOUS RECORDING SYSTEM (TAUTO): PRELIMINARY RESULTS FROM THE FIRST YEAR OPERATION
title_full SNOW TEMPERATURE MEASUREMENTS AT VOSTOK STATION FROM AN AUTONOMOUS RECORDING SYSTEM (TAUTO): PRELIMINARY RESULTS FROM THE FIRST YEAR OPERATION
title_fullStr SNOW TEMPERATURE MEASUREMENTS AT VOSTOK STATION FROM AN AUTONOMOUS RECORDING SYSTEM (TAUTO): PRELIMINARY RESULTS FROM THE FIRST YEAR OPERATION
title_full_unstemmed SNOW TEMPERATURE MEASUREMENTS AT VOSTOK STATION FROM AN AUTONOMOUS RECORDING SYSTEM (TAUTO): PRELIMINARY RESULTS FROM THE FIRST YEAR OPERATION
title_sort snow temperature measurements at vostok station from an autonomous recording system (tauto): preliminary results from the first year operation
publisher IGRAS
publishDate 2015
url https://ice-snow.igras.ru/jour/article/view/217
https://doi.org/10.15356/2076-6734-2012-4-138-145
long_lat ENVELOPE(106.837,106.837,-78.464,-78.464)
geographic Antarctic
The Antarctic
Vostok Station
geographic_facet Antarctic
The Antarctic
Vostok Station
genre Annals of Glaciology
Antarc*
Antarctic
Antarctica
polar night
genre_facet Annals of Glaciology
Antarc*
Antarctic
Antarctica
polar night
op_source Ice and Snow; Том 52, № 4 (2012); 138-145
Лёд и Снег; Том 52, № 4 (2012); 138-145
2412-3765
2076-6734
10.15356/2076-6734-2012-4
op_relation Lipenkov V.Ya., Shibaev Yu.A., Salamatin A.N., Ekaykin A.A., Vostretsov R.N., Preobraxhenskaya A.V. Modern climatic changes registered in variations of temperature in the upper 80 m layer of ice thickness at Vostok Station. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2004, 97: 44–56. [In Russian].
Barnola J.M., Raynaud D., Korotkevich Y.S., Lorius C. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature. 1987, 329 (6138): 408–414.
Bender M.L. Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth and Planetary Science Letters. 2002, 204: 275–289.
Ekaykin A.A., Hondoh T., Lipenkov V.Ya., Miyamoto A. Post-depositional changes in snow isotope content: preliminary results of laboratory experiments. Climat. Past. 2009, 5: 2239–2267.
Ekaykin A.A., Lipenkov V.Ya., Kuzmina I.N., Petit J.R., Masson-Delmotte V., Johnsen S.J. The changes in isotope composition and accumulation of snow at Vostok Station, East Antarctica, over the past 200 years. Annals of Glaciology. 2004, 39: 569–575.
EPICA-community-member. Eight glacial cycles from an Antarctic ice core. Nature. 2004, 429: 623–628.
Frey M.M., Savarino J., Morin S., Erbland J., Martins J.M.F. Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmospheric Chemistry and Physics. 2009, 9 (22): 8681–8696.
Gallée H., Gorodetskaya I. Validation of a limited area model over Dome C, Antarctic Plateau, during winter. Climate Dynamics. 2010, 34: 61–72.
Goujon C., Barnola J.-M., Ritz C. Modeling the densification of polar firn including heat diffusion: Application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. Journ. of Geophys. Research. 2003, 108: 4792. doi:10.1029/2002JD003319.
IPCC, Jansen E., Overpeck J., Briffa K.R., Duplessy J.-C., Joos F., Masson-Delmotte V., Olago D., Otto-Bliesner B., Peltier W.R., Rahmstorf S., Ramesh D.R., Rind D., Solomina O., Villalba R., Zhang D. Palaeoclimate. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller. Cambridge: Cambridge University Press, 2007.
Johnsen S.J., Clausen H.B., Cuffey K.M., Hoffmann G., Schwander J., Creyts T. Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion. Physics of Ice Core Records. Sapporo: Hokkaido University Press, 2000: 121–140.
Lipenkov V.Ya., Raynaud D., Loutre M.F., Duval P. On the potential of coupling air content and O2/N2 from trapped air for establishing an ice core chronology tuned on local insolation. Quaternary Science Reviews. 2011, 30: 3280–3289. doi:10.1016/j.quascirev.2011.07.013.
Luthi D., Le Floch M., Bereiter B., Blunier T., Barnola J.-M., Siegenthaler U., Raynaud D., Jouzel J., Fischer H., Kawamura K., Stocker T.F. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature. 2008, 453 (7193): 379–382.
Paillard D., Labeyrie L.D., Yiou P. Macintosh program performs time-series analysis. EOS, Trans. AGU, 1996, 77: 379.
Parrenin F., Barker S., Blunier T., Chappellaz J., Jouzel J., Landais A., Masson-Delmotte V., Schwander J., Veres D. On the gas-ice depth difference  depth) along the EPICA Dome C ice core. Climat. Past. 2012, 8: 1239–1255. doi:10.5194/cp-8-1239-2012b.
Picard G., Brucker L., Fily M., Gallee H., Krinner G. Modeling time series of microwave brightness temperature in Antarctica. Journ. of Glaciology. 2009, 55 (191): 537–551.
Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999, 399 (6735): 429–436.
Raynaud D., Lipenkov V.Ya., Lemieux-Dudon B., Duval P., Loutre M.-F., Lhomme N. The local insolation signature of air content in Antarctic ice. A new step toward an absolute dating of ice records. Earth Planetary Science Letters. 2007, 261: 337–349.
Salamatin A.N., Lipenkov V.Ya. Simple relations for the close-off depth and age in dry snow densification. Annals of Glaciology. 2008, 49: 71–76.
Severinghaus J.P., Grachev A., Battle M. Thermal fractionation of air in polar firn by seasonal temperature gradients. Geochemistry Geophysics Geosystems. 2001, 2 (7): 290. doi:10.1029/2000GC000146.
Siegenthaler U., Stocker T.F., Monnin E., Luthi D., Schwander J., Stauffer B., Raynaud D., Barnola J.-M., Fischer H., Masson-Delmotte V., Jouzel J. Stable Carbon Cycle-Climate Relationship During the Late Pleistocene. Science. 2005, 310 (5752): 1313–1317.
Surdyk S. Low microwave brightness temperatures in central Antarctica: observed features and implications. Annals of Glaciology. 2002, 34: 134–140.
https://ice-snow.igras.ru/jour/article/view/217
doi:10.15356/2076-6734-2012-4-138-145
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2012-4-138-145
https://doi.org/10.15356/2076-6734-2012-4
https://doi.org/10.1029/2002JD003319
https://doi.org/10.1016/j.quascirev.2011.07.013
https://doi.org/10.5194/cp-8-1239-2012b
https://doi.org/10.1029/2000
container_title Ice and Snow
container_volume 52
container_issue 4
container_start_page 138
_version_ 1766003444375617536
spelling ftjias:oai:oai.ice.elpub.ru:article/217 2023-05-15T13:29:50+02:00 SNOW TEMPERATURE MEASUREMENTS AT VOSTOK STATION FROM AN AUTONOMOUS RECORDING SYSTEM (TAUTO): PRELIMINARY RESULTS FROM THE FIRST YEAR OPERATION ТЕМПЕРАТУРА СНЕЖНОЙ ТОЛЩИ НА СТАНЦИИ ВОСТОК ПО ДАННЫМ АВТОМАТИЧЕСКОЙ СТАНЦИИ TAUTO: ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ ПЕРВОГО ГОДА НАБЛЮДЕНИЙ E. Lefebvre L. Arnaud A. Ekaykin A. V. Lipenkov Y. G. Picard J.-R. Petit Е. Lefebvre А. Екайкин А. В. Липенков Я. 2015-11-14 https://ice-snow.igras.ru/jour/article/view/217 https://doi.org/10.15356/2076-6734-2012-4-138-145 ru rus IGRAS Lipenkov V.Ya., Shibaev Yu.A., Salamatin A.N., Ekaykin A.A., Vostretsov R.N., Preobraxhenskaya A.V. Modern climatic changes registered in variations of temperature in the upper 80 m layer of ice thickness at Vostok Station. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2004, 97: 44–56. [In Russian]. Barnola J.M., Raynaud D., Korotkevich Y.S., Lorius C. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature. 1987, 329 (6138): 408–414. Bender M.L. Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth and Planetary Science Letters. 2002, 204: 275–289. Ekaykin A.A., Hondoh T., Lipenkov V.Ya., Miyamoto A. Post-depositional changes in snow isotope content: preliminary results of laboratory experiments. Climat. Past. 2009, 5: 2239–2267. Ekaykin A.A., Lipenkov V.Ya., Kuzmina I.N., Petit J.R., Masson-Delmotte V., Johnsen S.J. The changes in isotope composition and accumulation of snow at Vostok Station, East Antarctica, over the past 200 years. Annals of Glaciology. 2004, 39: 569–575. EPICA-community-member. Eight glacial cycles from an Antarctic ice core. Nature. 2004, 429: 623–628. Frey M.M., Savarino J., Morin S., Erbland J., Martins J.M.F. Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmospheric Chemistry and Physics. 2009, 9 (22): 8681–8696. Gallée H., Gorodetskaya I. Validation of a limited area model over Dome C, Antarctic Plateau, during winter. Climate Dynamics. 2010, 34: 61–72. Goujon C., Barnola J.-M., Ritz C. Modeling the densification of polar firn including heat diffusion: Application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. Journ. of Geophys. Research. 2003, 108: 4792. doi:10.1029/2002JD003319. IPCC, Jansen E., Overpeck J., Briffa K.R., Duplessy J.-C., Joos F., Masson-Delmotte V., Olago D., Otto-Bliesner B., Peltier W.R., Rahmstorf S., Ramesh D.R., Rind D., Solomina O., Villalba R., Zhang D. Palaeoclimate. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller. Cambridge: Cambridge University Press, 2007. Johnsen S.J., Clausen H.B., Cuffey K.M., Hoffmann G., Schwander J., Creyts T. Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion. Physics of Ice Core Records. Sapporo: Hokkaido University Press, 2000: 121–140. Lipenkov V.Ya., Raynaud D., Loutre M.F., Duval P. On the potential of coupling air content and O2/N2 from trapped air for establishing an ice core chronology tuned on local insolation. Quaternary Science Reviews. 2011, 30: 3280–3289. doi:10.1016/j.quascirev.2011.07.013. Luthi D., Le Floch M., Bereiter B., Blunier T., Barnola J.-M., Siegenthaler U., Raynaud D., Jouzel J., Fischer H., Kawamura K., Stocker T.F. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature. 2008, 453 (7193): 379–382. Paillard D., Labeyrie L.D., Yiou P. Macintosh program performs time-series analysis. EOS, Trans. AGU, 1996, 77: 379. Parrenin F., Barker S., Blunier T., Chappellaz J., Jouzel J., Landais A., Masson-Delmotte V., Schwander J., Veres D. On the gas-ice depth difference  depth) along the EPICA Dome C ice core. Climat. Past. 2012, 8: 1239–1255. doi:10.5194/cp-8-1239-2012b. Picard G., Brucker L., Fily M., Gallee H., Krinner G. Modeling time series of microwave brightness temperature in Antarctica. Journ. of Glaciology. 2009, 55 (191): 537–551. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999, 399 (6735): 429–436. Raynaud D., Lipenkov V.Ya., Lemieux-Dudon B., Duval P., Loutre M.-F., Lhomme N. The local insolation signature of air content in Antarctic ice. A new step toward an absolute dating of ice records. Earth Planetary Science Letters. 2007, 261: 337–349. Salamatin A.N., Lipenkov V.Ya. Simple relations for the close-off depth and age in dry snow densification. Annals of Glaciology. 2008, 49: 71–76. Severinghaus J.P., Grachev A., Battle M. Thermal fractionation of air in polar firn by seasonal temperature gradients. Geochemistry Geophysics Geosystems. 2001, 2 (7): 290. doi:10.1029/2000GC000146. Siegenthaler U., Stocker T.F., Monnin E., Luthi D., Schwander J., Stauffer B., Raynaud D., Barnola J.-M., Fischer H., Masson-Delmotte V., Jouzel J. Stable Carbon Cycle-Climate Relationship During the Late Pleistocene. Science. 2005, 310 (5752): 1313–1317. Surdyk S. Low microwave brightness temperatures in central Antarctica: observed features and implications. Annals of Glaciology. 2002, 34: 134–140. https://ice-snow.igras.ru/jour/article/view/217 doi:10.15356/2076-6734-2012-4-138-145 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 52, № 4 (2012); 138-145 Лёд и Снег; Том 52, № 4 (2012); 138-145 2412-3765 2076-6734 10.15356/2076-6734-2012-4 Antarctica autonomous recording system snow temperature snow thermal properties temperature monitoring winter warming info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2012-4-138-145 https://doi.org/10.15356/2076-6734-2012-4 https://doi.org/10.1029/2002JD003319 https://doi.org/10.1016/j.quascirev.2011.07.013 https://doi.org/10.5194/cp-8-1239-2012b https://doi.org/10.1029/2000 2022-12-20T13:30:18Z Temperature gradients in the upper layers of the snow pack are of importance for studying the emissivity properties of the snow surface with respect to microwaves used in remote sensing as well as for the heat and mass transfer in snow thickness. Gradients drive the initial snow microstructure metamorphisms that probably influence the firn properties in regard to air molecules fractionation and the air bubble enclosure process at close-off depths. As a contribution to investigation of these problems and following J.-M. Barnola initiative, we developed an autonomous recording system to monitor the temperature of the upper layers of the snow pack. The instrument was built to be autonomous and to be continuously operating within environmental conditions of the Antarctic plateau and the polar night. The apparatus which monitors temperature from the first 10 mof snow by 15 sensors of a «temperature grape» was set at Vostok station during 55th Russian Antarctic Expedition within the frame of the French Russian collaboration (GDRI Vostok). From the available hourly measurements over the first year, we present preliminary results on the thermal diffusive properties of the snow pack as well as some character of the temperature variations on the Antarctic plateau. Точные измерения температурных градиентов в верхнем слое снега в Антарктиде необходимы для исследования излучения снежной поверхности в микроволновом диапазоне, которое используется в дистанционных наблюдениях, а также для изучения процессов тепло- и массопереноса в снежной толще. Градиент температуры – важнейший фактор, контролирующий метаморфизм снега, в ходе которого закладываются первоначальные структурные особенности снежных слоёв, влияющие на последующее уплотнение снега и фирна, захват атмосферного воздуха в ходе превращения фирна в лёд и фракционирование этого воздуха по газовому составу. С целью изучения этих процессов и в развитие инициатив Ж.-М. Барнола разработана автоматическая система мониторинга температуры верхних слоёв снежной толщи. Созданная ... Article in Journal/Newspaper Annals of Glaciology Antarc* Antarctic Antarctica polar night Ice and Snow (E-Journal) Antarctic The Antarctic Vostok Station ENVELOPE(106.837,106.837,-78.464,-78.464) Ice and Snow 52 4 138