PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK

In early February 2012, the drill hole at the Vostok Station encountered theLakeVostokwater. This step is important to study the lake composition including possible microbial life and to model subglacial environments however, the next ambitious target of the Vostok Drilling Project is sampling of bo...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: G. Leychenkov I., A. Popkov M., Г. Лейченков Л., А. Попков М.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/203
https://doi.org/10.15356/2076-6734-2012-4-21-30
id ftjias:oai:oai.ice.elpub.ru:article/203
record_format openpolar
institution Open Polar
collection Ice and Snow
op_collection_id ftjias
language Russian
topic Antarctica
climate change
exaration
ice sheet
rift
sedimentation
subglacial Lake Vostok
Антарктида
изменение климата
ледниковый щит
осадконакопление
подледниковое озеро Восток
рифт
экзарация
spellingShingle Antarctica
climate change
exaration
ice sheet
rift
sedimentation
subglacial Lake Vostok
Антарктида
изменение климата
ледниковый щит
осадконакопление
подледниковое озеро Восток
рифт
экзарация
G. Leychenkov I.
A. Popkov M.
Г. Лейченков Л.
А. Попков М.
PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK
topic_facet Antarctica
climate change
exaration
ice sheet
rift
sedimentation
subglacial Lake Vostok
Антарктида
изменение климата
ледниковый щит
осадконакопление
подледниковое озеро Восток
рифт
экзарация
description In early February 2012, the drill hole at the Vostok Station encountered theLakeVostokwater. This step is important to study the lake composition including possible microbial life and to model subglacial environments however, the next ambitious target of the Vostok Drilling Project is sampling of bottom sediments, which contain the unique record of ice sheet evolution and environmental changes in centralAntarcticafor millions of years. In this connection, the forecast of sedimentary succession based on existing geophysical data, study of mineral inclusions in the accretion ice cores and tectonic models is important task. Interpretation of Airborne geophysical data suggests thatLakeVostokis the part of spacious rift system, which exists at least from Cretaceous. Reflection and refraction seismic experiments conducted in the southern part ofLakeVostokshow very thin (200–300 m) stratified sedimentary cover overlying crystalline basement with velocity of 6.0–6.2 km/s. At present, deposition in southernLakeVostokis absent and similar conditions occurred likely at least last3 m.y. when ice sheet aboveLakeVostokchanged insignificantly. It can be also inferred that from the Late Miocene the rate of deposition inLakeVostokwas extremely low and so the most of sedimentary section is older being possibly of Oligocene to early to middle Miocene age when ice sheet oscillated and deposition was more vigorous. If so, the sampling of upper few meters of this condensed section is very informative in terms of history of Antarctic glaciation. Small thickness of sedimentary cover raises a question about existence of lake (rift) depression during preglacial and early glacial times. После достижения скважиной 5Г на станции Восток поверхности оз. Восток перед исследователями стоит следующая важнейшая задача – проникновение в донные осадки, которые несут важнейшую информацию о подледной экосистеме и изменениях природной среды Антарктиды в геологическом прошлом. Депрессия подледникового оз. Восток представляет собой рифтовый грабен на ...
format Article in Journal/Newspaper
author G. Leychenkov I.
A. Popkov M.
Г. Лейченков Л.
А. Попков М.
author_facet G. Leychenkov I.
A. Popkov M.
Г. Лейченков Л.
А. Попков М.
author_sort G. Leychenkov I.
title PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK
title_short PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK
title_full PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK
title_fullStr PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK
title_full_unstemmed PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK
title_sort predicted sedimentary section of subglacial lake vostok
publisher IGRAS
publishDate 2015
url https://ice-snow.igras.ru/jour/article/view/203
https://doi.org/10.15356/2076-6734-2012-4-21-30
genre Annals of Glaciology
Antarc*
Antarctic
Antarctica
Ice Sheet
Антарктида
genre_facet Annals of Glaciology
Antarc*
Antarctic
Antarctica
Ice Sheet
Антарктида
op_source Ice and Snow; Том 52, № 4 (2012); 21-30
Лёд и Снег; Том 52, № 4 (2012); 21-30
2412-3765
2076-6734
10.15356/2076-6734-2012-4
op_relation Leychenkov G.L., Verkulich S.R., Masolov V.N. Lake Vostok in geological structure of Antarctic and possible information presented in its bottom sediments. Izuchenie ozera Vostok – nauchnye zadachi i technologii. Tezisy dokladov. Study of Lake Vostok – scientific problems and technologies. Thesis of reports. St.-Petersburg: AARI, 1998: 62−65. [In Russian].
Leychenkov G.L., Belyatsky B.V., Popkov A.M., Popov S.V. Geological nature of subglacial Lake Vostok in the East Antarctica. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2004, 98: 81−92. [In Russian].
Leychenkov G.L., Belyatsky B.V., Antonov A.V., Rodionov N.V. First information about geological structure of Central Antarctica based on results of study of mineral inclusions in ice core from the borehole at Vostok station. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2011, 440 (1): 77–81. [In Russian].
Lipenkov V.Ya., Lukin V.V., Bulat S.A., Vasil’ev N.I., Ekaykin A.A., Leychenkov G.L., Masolov V.N., Popov S.V., Savatyugin L.M., Salamatin A.N., Shibaev Yu.A. Results of study of subglacial Lake Vostok in the IPY period. Vklad Rossii v Mezhdunarodnyi polyarnyi god 2007/08. Polyarnaya kriosfera i vody sushi. Input of Russia to the International Polar Year 2007/08. Polar Cryosphere and Land Water. Moscow: Paulsen, 2011: 17−47. [In Russian].
Masolov V.N., Lukin V.V., Sheremet’ev A.N., Popov S.V. Geophysical studies of subglacial Lake Vostok in the East Antarctica. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2001, 379 (5): 680–685. [In Russian].
Antarctic Climate Evolution. Developments in Earth and Environmental Science, 8. The Netherlands: Elsevier, 2008: 593 p.
Barrett P.J. Cenozoic climate and sea level history from glacimarine strata off the Victoria Land coast, Cape Roberts Project. Antarctica. Glacial Processes and Products. Intern. Association of Sedimentologists. Special Publication. 2007, 39: 259–287.
Cohen A.S., Soreghan M.J., Scholz C.A. Estimating the age of formation of lakes: an example from Lake Tanganyika, East African Rift System. Geology. 1993, 21: 511–514.
De Conto R.M., Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature. 2003, 421: 245–249.
Ferraccioli F., Finn C.A., Jordan T.A., Bell R.E., Anderson L.M., Damaske D. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature. 2011, 479: P. 388–394.
Filina I., Lukin V., Masolov V., Blankenship D. Unconsolidated sediments at the bottom of Lake Vostok from seismic data. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C. The National Academies Press. 2008. Short Research Paper 031. doi:10.3133/of2007-1047. srp031
Francis J.E., Ashworth A., Cantrill D.J, Crame J.A., Howe J., Stephens R., Tosolini A.-M., Thorn V. 100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C.: The National Academies Press, 2008: 19–27.
Gersonde R., Kyte F.T., Bleil U., Diekmann B., Flores J.A., Gohl K., Grahl G., Hagen R., Kuhn G., Sierro F.J., Volker D., Abelmann-Gersonde A., Bostwick J.A. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature. 1997, 390: 357–363.
Gersonde R., Censarek B. Middle-Late Miocene Southern Ocean climate development and its implication on Antarctic ice sheet development – Diatom evidence from Atlantic sector ODP Sites. EGU Geophys. Research Abstracts. 2006, 8.
Hallet B. A. Theoretical model of glacial abrasion. Journ. of Glaciology. 1979, 23 (89): 39–50.
Huybers P., Langmuir C. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planetary Science Letters. 2009, 286: 479–491
Jamieson S.S.R., Sugden D.E., Hulton N.R.J. The evolution of the subglacial landscape of Antarctica. Earth Planetary Science Letters. 2010, 293: P. 1–27.
Kapitsa A.P., Ridley J.K., Robin G.de Q., Siegert M.J., Zotikov I.A. A large deepfreshwater lake beneath the ice of central East Anytarctica. Nature. 1996, 381: 684–686.
Lawver L.A., Gahagan L.M., Coffin M.F. The development of paleoseaways around Antarctica. The role of the Southern Ocean and Antarctica in global change: an Ocean Drilling Perspective. AGU Antarctic Research Series. 1992, 56: 7–30.
Miller K.G., Kominz M.A., Browning J.V., Hernandez J., Olsson R.K., Wright J.D., Feigenson M.D. The Phanerozoic record of global sea-level change. Science. 2005, 310: 1293–1298.
Miller K.G., Wright J D., Katz M.E., Browning, J.V. Cramer B.S., Wade B S., Mizintseva S.F. A View of Antarctic Ice-Sheet Evolution from Sea-Level and Deep-Sea Isotope Changes During the Late Cretaceous-Cenozoic. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C.: The National Academies Press, 2008: 55–70.
Naish T., Carter L., Wolff E., Pollard D., Powell R. Late Pliocene-Pleistocene Antarctic climate variability at orbital and suborbital scale: ice sheet ocean and atmospheric interactions. Antarctic climate evolution. The Netherlands: Elsevier, 2009: 465–529.
Pekar S.F., DeConto R.M. High-resolution ice-volume estimates for the early Miocene: evidence for a dynamic ice sheet in Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology. 2006, 231: 101–109.
Pekar S.F., Cristie-Blick N. Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in CO2 during the Oligocene through early Miocene (34–16 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology. 2008, 260: 41–49.
Pollard D., De Conto R.M., Nyblade A.A. Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux. Global and Planetary Change. 2005, 49: 63–74.
Ridley J.K., Cudlip W., Laxon S.W. Identification of subglacial lakes using ERS-1 radar altimeter. Journ. of Glaciology. 1993, 39: 625–634.
Robin G.de Q., Drewry D.J., Meldrum D.T. International studies of ice sheet and bedrock // Philosophical Transactions of Royal Society of London. 1977, 279: 185–196.
Salamatin A.N., Tsyganova E.A., Popov S.V., Lipenkov V.Ya. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica). Physics of Ice Core Records. 2009, 2: 167–194.
Simoes J.C., Petit J.-R., Souchez R., Lipenkov V.Ya., Angelis M. De, Liu L., Jouzel J., Duval P. Evidence of glacial flour in the deepest 89 m of the Vostok ice core. Annals of Glaciology. 2002, 35: 340–346.
Studinger M., Bell R., Karner G.D., Tikku A.A., Holt J.W., Morse D.L., Richter T.G., Kempf S.D., Peters M.E., Blankenship D.D., Sweeney R.E., Rystrom V.L. Ice cover, landscape setting and geological framework of Lake Vostok, East Antarctica. Earth Planetary Science Letters. 2002, 205: 195–210.
Studinger M., Karner K.D., Bell R.E., Levin V., Raymond C.A., Tikku A.A. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planetary Science Letters. 2003, 216: 663–677.
Tison, J.-L., Petit J.-R., Barnola J.-M, Mahaney W.C. Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adelie, Antarctica). Journ. of Glaciology. 1993, 39 (132): 303–315.
Thoma M., Grosfeld K., Mayer C. Modelling mixing and circulation in subglacial Lake Vostok, Antarctica. Ocean Dynamics. 2007. doi 10.1007/s10236-007-0110-9.
Tripati A., Backman J., Elderfield H., Ferretti P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature. 2005, 436: 341–346.
Zachos J., Pagani M., Sloan L., Thomas E. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001, 292: 686–693.
https://ice-snow.igras.ru/jour/article/view/203
doi:10.15356/2076-6734-2012-4-21-30
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.15356/2076-6734-2012-4-21-3010.15356/2076-6734-2012-410.3133/of2007-1047
container_title Ice and Snow
container_volume 52
container_issue 4
container_start_page 21
_version_ 1810484266800250880
spelling ftjias:oai:oai.ice.elpub.ru:article/203 2024-09-15T17:40:02+00:00 PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK ПРОГНОЗНЫЙ ОСАДОЧНЫЙ РАЗРЕЗ ПОДЛЕДНИКОВОГО ОЗЕРА ВОСТОК G. Leychenkov I. A. Popkov M. Г. Лейченков Л. А. Попков М. 2015-11-13 https://ice-snow.igras.ru/jour/article/view/203 https://doi.org/10.15356/2076-6734-2012-4-21-30 ru rus IGRAS Leychenkov G.L., Verkulich S.R., Masolov V.N. Lake Vostok in geological structure of Antarctic and possible information presented in its bottom sediments. Izuchenie ozera Vostok – nauchnye zadachi i technologii. Tezisy dokladov. Study of Lake Vostok – scientific problems and technologies. Thesis of reports. St.-Petersburg: AARI, 1998: 62−65. [In Russian]. Leychenkov G.L., Belyatsky B.V., Popkov A.M., Popov S.V. Geological nature of subglacial Lake Vostok in the East Antarctica. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2004, 98: 81−92. [In Russian]. Leychenkov G.L., Belyatsky B.V., Antonov A.V., Rodionov N.V. First information about geological structure of Central Antarctica based on results of study of mineral inclusions in ice core from the borehole at Vostok station. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2011, 440 (1): 77–81. [In Russian]. Lipenkov V.Ya., Lukin V.V., Bulat S.A., Vasil’ev N.I., Ekaykin A.A., Leychenkov G.L., Masolov V.N., Popov S.V., Savatyugin L.M., Salamatin A.N., Shibaev Yu.A. Results of study of subglacial Lake Vostok in the IPY period. Vklad Rossii v Mezhdunarodnyi polyarnyi god 2007/08. Polyarnaya kriosfera i vody sushi. Input of Russia to the International Polar Year 2007/08. Polar Cryosphere and Land Water. Moscow: Paulsen, 2011: 17−47. [In Russian]. Masolov V.N., Lukin V.V., Sheremet’ev A.N., Popov S.V. Geophysical studies of subglacial Lake Vostok in the East Antarctica. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2001, 379 (5): 680–685. [In Russian]. Antarctic Climate Evolution. Developments in Earth and Environmental Science, 8. The Netherlands: Elsevier, 2008: 593 p. Barrett P.J. Cenozoic climate and sea level history from glacimarine strata off the Victoria Land coast, Cape Roberts Project. Antarctica. Glacial Processes and Products. Intern. Association of Sedimentologists. Special Publication. 2007, 39: 259–287. Cohen A.S., Soreghan M.J., Scholz C.A. Estimating the age of formation of lakes: an example from Lake Tanganyika, East African Rift System. Geology. 1993, 21: 511–514. De Conto R.M., Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature. 2003, 421: 245–249. Ferraccioli F., Finn C.A., Jordan T.A., Bell R.E., Anderson L.M., Damaske D. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature. 2011, 479: P. 388–394. Filina I., Lukin V., Masolov V., Blankenship D. Unconsolidated sediments at the bottom of Lake Vostok from seismic data. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C. The National Academies Press. 2008. Short Research Paper 031. doi:10.3133/of2007-1047. srp031 Francis J.E., Ashworth A., Cantrill D.J, Crame J.A., Howe J., Stephens R., Tosolini A.-M., Thorn V. 100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C.: The National Academies Press, 2008: 19–27. Gersonde R., Kyte F.T., Bleil U., Diekmann B., Flores J.A., Gohl K., Grahl G., Hagen R., Kuhn G., Sierro F.J., Volker D., Abelmann-Gersonde A., Bostwick J.A. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature. 1997, 390: 357–363. Gersonde R., Censarek B. Middle-Late Miocene Southern Ocean climate development and its implication on Antarctic ice sheet development – Diatom evidence from Atlantic sector ODP Sites. EGU Geophys. Research Abstracts. 2006, 8. Hallet B. A. Theoretical model of glacial abrasion. Journ. of Glaciology. 1979, 23 (89): 39–50. Huybers P., Langmuir C. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planetary Science Letters. 2009, 286: 479–491 Jamieson S.S.R., Sugden D.E., Hulton N.R.J. The evolution of the subglacial landscape of Antarctica. Earth Planetary Science Letters. 2010, 293: P. 1–27. Kapitsa A.P., Ridley J.K., Robin G.de Q., Siegert M.J., Zotikov I.A. A large deepfreshwater lake beneath the ice of central East Anytarctica. Nature. 1996, 381: 684–686. Lawver L.A., Gahagan L.M., Coffin M.F. The development of paleoseaways around Antarctica. The role of the Southern Ocean and Antarctica in global change: an Ocean Drilling Perspective. AGU Antarctic Research Series. 1992, 56: 7–30. Miller K.G., Kominz M.A., Browning J.V., Hernandez J., Olsson R.K., Wright J.D., Feigenson M.D. The Phanerozoic record of global sea-level change. Science. 2005, 310: 1293–1298. Miller K.G., Wright J D., Katz M.E., Browning, J.V. Cramer B.S., Wade B S., Mizintseva S.F. A View of Antarctic Ice-Sheet Evolution from Sea-Level and Deep-Sea Isotope Changes During the Late Cretaceous-Cenozoic. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C.: The National Academies Press, 2008: 55–70. Naish T., Carter L., Wolff E., Pollard D., Powell R. Late Pliocene-Pleistocene Antarctic climate variability at orbital and suborbital scale: ice sheet ocean and atmospheric interactions. Antarctic climate evolution. The Netherlands: Elsevier, 2009: 465–529. Pekar S.F., DeConto R.M. High-resolution ice-volume estimates for the early Miocene: evidence for a dynamic ice sheet in Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology. 2006, 231: 101–109. Pekar S.F., Cristie-Blick N. Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in CO2 during the Oligocene through early Miocene (34–16 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology. 2008, 260: 41–49. Pollard D., De Conto R.M., Nyblade A.A. Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux. Global and Planetary Change. 2005, 49: 63–74. Ridley J.K., Cudlip W., Laxon S.W. Identification of subglacial lakes using ERS-1 radar altimeter. Journ. of Glaciology. 1993, 39: 625–634. Robin G.de Q., Drewry D.J., Meldrum D.T. International studies of ice sheet and bedrock // Philosophical Transactions of Royal Society of London. 1977, 279: 185–196. Salamatin A.N., Tsyganova E.A., Popov S.V., Lipenkov V.Ya. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica). Physics of Ice Core Records. 2009, 2: 167–194. Simoes J.C., Petit J.-R., Souchez R., Lipenkov V.Ya., Angelis M. De, Liu L., Jouzel J., Duval P. Evidence of glacial flour in the deepest 89 m of the Vostok ice core. Annals of Glaciology. 2002, 35: 340–346. Studinger M., Bell R., Karner G.D., Tikku A.A., Holt J.W., Morse D.L., Richter T.G., Kempf S.D., Peters M.E., Blankenship D.D., Sweeney R.E., Rystrom V.L. Ice cover, landscape setting and geological framework of Lake Vostok, East Antarctica. Earth Planetary Science Letters. 2002, 205: 195–210. Studinger M., Karner K.D., Bell R.E., Levin V., Raymond C.A., Tikku A.A. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planetary Science Letters. 2003, 216: 663–677. Tison, J.-L., Petit J.-R., Barnola J.-M, Mahaney W.C. Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adelie, Antarctica). Journ. of Glaciology. 1993, 39 (132): 303–315. Thoma M., Grosfeld K., Mayer C. Modelling mixing and circulation in subglacial Lake Vostok, Antarctica. Ocean Dynamics. 2007. doi 10.1007/s10236-007-0110-9. Tripati A., Backman J., Elderfield H., Ferretti P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature. 2005, 436: 341–346. Zachos J., Pagani M., Sloan L., Thomas E. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001, 292: 686–693. https://ice-snow.igras.ru/jour/article/view/203 doi:10.15356/2076-6734-2012-4-21-30 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 52, № 4 (2012); 21-30 Лёд и Снег; Том 52, № 4 (2012); 21-30 2412-3765 2076-6734 10.15356/2076-6734-2012-4 Antarctica climate change exaration ice sheet rift sedimentation subglacial Lake Vostok Антарктида изменение климата ледниковый щит осадконакопление подледниковое озеро Восток рифт экзарация info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2012-4-21-3010.15356/2076-6734-2012-410.3133/of2007-1047 2024-06-28T03:05:47Z In early February 2012, the drill hole at the Vostok Station encountered theLakeVostokwater. This step is important to study the lake composition including possible microbial life and to model subglacial environments however, the next ambitious target of the Vostok Drilling Project is sampling of bottom sediments, which contain the unique record of ice sheet evolution and environmental changes in centralAntarcticafor millions of years. In this connection, the forecast of sedimentary succession based on existing geophysical data, study of mineral inclusions in the accretion ice cores and tectonic models is important task. Interpretation of Airborne geophysical data suggests thatLakeVostokis the part of spacious rift system, which exists at least from Cretaceous. Reflection and refraction seismic experiments conducted in the southern part ofLakeVostokshow very thin (200–300 m) stratified sedimentary cover overlying crystalline basement with velocity of 6.0–6.2 km/s. At present, deposition in southernLakeVostokis absent and similar conditions occurred likely at least last3 m.y. when ice sheet aboveLakeVostokchanged insignificantly. It can be also inferred that from the Late Miocene the rate of deposition inLakeVostokwas extremely low and so the most of sedimentary section is older being possibly of Oligocene to early to middle Miocene age when ice sheet oscillated and deposition was more vigorous. If so, the sampling of upper few meters of this condensed section is very informative in terms of history of Antarctic glaciation. Small thickness of sedimentary cover raises a question about existence of lake (rift) depression during preglacial and early glacial times. После достижения скважиной 5Г на станции Восток поверхности оз. Восток перед исследователями стоит следующая важнейшая задача – проникновение в донные осадки, которые несут важнейшую информацию о подледной экосистеме и изменениях природной среды Антарктиды в геологическом прошлом. Депрессия подледникового оз. Восток представляет собой рифтовый грабен на ... Article in Journal/Newspaper Annals of Glaciology Antarc* Antarctic Antarctica Ice Sheet Антарктида Ice and Snow Ice and Snow 52 4 21