Spatial-Temporal Variability of the δ18O Values and the Snow Cover Structure on the Territory of the Meteorological Observatory of the Lomonosov Moscow State University

The isotopic composition (δ18O values) of snow layers, constructing snow cover to the time of reaching maximum snow water equivalent (SWE), was compared with the isotopic content of snow precipitated over the whole the winter season 2018/19 on the territory of the Meteorological Observatory of the L...

Full description

Bibliographic Details
Main Authors: S. Sokratov A., A. Komarov Yu., Yu. Vasil’chuk K., N. Budantseva A., J. Vasil’chuk Yu., Yu. Seliverstov G., P. Grebennikov B., D. Frolov M., С. Сократов А., А. Комаров Ю., Ю. Васильчук К., Н. Буданцева А., Дж. Васильчук Ю., Ю. Селиверстов Г., П. Гребенников Б., Д. Фролов М.
Other Authors: This research project was supported by the Russian Science Foundation (grant № 19–77–30004, “Integrated technology for environment assessment of Moscow megacity based on chemical analysis of microparticle composition in the ‘atmosphere – snow – road dust – soil – surface water’ system Megacity”, isotope analyses, and the State Assignment “Danger and risk of naturel processes and phenomena” (121051300175-4), field work and analysis of the obtained results, Работа выполнена при поддержке РНФ (грант № 19–77–30004 “Технология оценки экологического состояния Московского мегаполиса на основе анализа химического состава микрочастиц в системе “атмосфера–снег– дорожная пыль–почвы–поверхностные воды” Мегаполис”), изотопные определения, и по теме гос. задания “Опасность и риск природных процессов и явлений” (121051300175-4), полевые исследования и анализ полученных результатов
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2024
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/1285
https://doi.org/10.31857/S2076673423040154
id ftjias:oai:oai.ice.elpub.ru:article/1285
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic snow cover
stable water isotopes
snow stratigraphy
spatial variability
winter precipitations
temporal variability
снежный покров
стабильные изотопы воды
стратиграфия снежного покрова
пространственная неоднородность
зимние осадки
изменение во времени
spellingShingle snow cover
stable water isotopes
snow stratigraphy
spatial variability
winter precipitations
temporal variability
снежный покров
стабильные изотопы воды
стратиграфия снежного покрова
пространственная неоднородность
зимние осадки
изменение во времени
S. Sokratov A.
A. Komarov Yu.
Yu. Vasil’chuk K.
N. Budantseva A.
J. Vasil’chuk Yu.
Yu. Seliverstov G.
P. Grebennikov B.
D. Frolov M.
С. Сократов А.
А. Комаров Ю.
Ю. Васильчук К.
Н. Буданцева А.
Дж. Васильчук Ю.
Ю. Селиверстов Г.
П. Гребенников Б.
Д. Фролов М.
Spatial-Temporal Variability of the δ18O Values and the Snow Cover Structure on the Territory of the Meteorological Observatory of the Lomonosov Moscow State University
topic_facet snow cover
stable water isotopes
snow stratigraphy
spatial variability
winter precipitations
temporal variability
снежный покров
стабильные изотопы воды
стратиграфия снежного покрова
пространственная неоднородность
зимние осадки
изменение во времени
description The isotopic composition (δ18O values) of snow layers, constructing snow cover to the time of reaching maximum snow water equivalent (SWE), was compared with the isotopic content of snow precipitated over the whole the winter season 2018/19 on the territory of the Meteorological Observatory of the Lomonosov Moscow State University (Moscow, Russia). Snow-sampling was carried out in a trench 20 m long simultaneously with detailed measurements of spatial variability of the structural characteristics of snow depth. Sampling was conducted for each precipitation event over the winter season, with the amount of precipitation also documented. It was found that the spatially-distributed enrichment with heavy oxygen isotopes along the trench fell within the range of 0–3.5‰, with average values for the four main formed snow layers changing from 1.3 to 2.5‰. The enrichment was not much dependent on the age of snow layer in the snowpack, and it was even more pronounced in the upper layers. This suggests that the post-precipitated change in the isotopic composition of snow cover for the conditions of the investigated site mainly took place when the snow was exposed to the atmosphere (due to sublimation and evaporation), while the processes of dry and wet metamorphism were either less important or even led to leveling the effects of isotopic fractionation. A positive correlation was found between the isotope composition of snow and the spatially varying snow density in each layer. This is most probably related to involvement of wind influence into the snow accumulation resulting in more dense snow. The spatial variability of the isotope composition of snow in each layer was smaller than changes in snow density and snow water equivalent. Представлены результаты сравнения изотопного состава (значений δ18O) разновозрастных слоёв снега, слагающих снежную толщу к моменту максимального водозапаса, с изотопным составом осадков, сформировавших эти слои в течение зимнего сезона 2018/19 г. на территории метеообсерватории МГУ. ...
author2 This research project was supported by the Russian Science Foundation (grant № 19–77–30004, “Integrated technology for environment assessment of Moscow megacity based on chemical analysis of microparticle composition in the ‘atmosphere – snow – road dust – soil – surface water’ system Megacity”, isotope analyses
and the State Assignment “Danger and risk of naturel processes and phenomena” (121051300175-4), field work and analysis of the obtained results
Работа выполнена при поддержке РНФ (грант № 19–77–30004 “Технология оценки экологического состояния Московского мегаполиса на основе анализа химического состава микрочастиц в системе “атмосфера–снег– дорожная пыль–почвы–поверхностные воды” Мегаполис”), изотопные определения
и по теме гос. задания “Опасность и риск природных процессов и явлений” (121051300175-4), полевые исследования и анализ полученных результатов
format Article in Journal/Newspaper
author S. Sokratov A.
A. Komarov Yu.
Yu. Vasil’chuk K.
N. Budantseva A.
J. Vasil’chuk Yu.
Yu. Seliverstov G.
P. Grebennikov B.
D. Frolov M.
С. Сократов А.
А. Комаров Ю.
Ю. Васильчук К.
Н. Буданцева А.
Дж. Васильчук Ю.
Ю. Селиверстов Г.
П. Гребенников Б.
Д. Фролов М.
author_facet S. Sokratov A.
A. Komarov Yu.
Yu. Vasil’chuk K.
N. Budantseva A.
J. Vasil’chuk Yu.
Yu. Seliverstov G.
P. Grebennikov B.
D. Frolov M.
С. Сократов А.
А. Комаров Ю.
Ю. Васильчук К.
Н. Буданцева А.
Дж. Васильчук Ю.
Ю. Селиверстов Г.
П. Гребенников Б.
Д. Фролов М.
author_sort S. Sokratov A.
title Spatial-Temporal Variability of the δ18O Values and the Snow Cover Structure on the Territory of the Meteorological Observatory of the Lomonosov Moscow State University
title_short Spatial-Temporal Variability of the δ18O Values and the Snow Cover Structure on the Territory of the Meteorological Observatory of the Lomonosov Moscow State University
title_full Spatial-Temporal Variability of the δ18O Values and the Snow Cover Structure on the Territory of the Meteorological Observatory of the Lomonosov Moscow State University
title_fullStr Spatial-Temporal Variability of the δ18O Values and the Snow Cover Structure on the Territory of the Meteorological Observatory of the Lomonosov Moscow State University
title_full_unstemmed Spatial-Temporal Variability of the δ18O Values and the Snow Cover Structure on the Territory of the Meteorological Observatory of the Lomonosov Moscow State University
title_sort spatial-temporal variability of the δ18o values and the snow cover structure on the territory of the meteorological observatory of the lomonosov moscow state university
publisher IGRAS
publishDate 2024
url https://ice-snow.igras.ru/jour/article/view/1285
https://doi.org/10.31857/S2076673423040154
genre Permafrost and Periglacial Processes
The Cryosphere
genre_facet Permafrost and Periglacial Processes
The Cryosphere
op_source Ice and Snow; Том 63, № 4 (2023); 569-582
Лёд и Снег; Том 63, № 4 (2023); 569-582
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/1285/692
Бородулина Г.С., Токарев И.В., Левичев М.А. Изотопный состав (δ18O, δ2H) снежного покрова Карелии // Лёд и Снег. 2021. Т. 61. № 4. С. 521–532. https://doi.org/10.31857/S2076673421040105
Васильчук Ю.К., Чижова Ю.Н., Буданцева Н.А., Лычагин М.Ю., Поповнин В.В., Ткаченко А.Н. Изотопный состав зимнего снега на хребте Аибга (Красная Поляна), Западный Кавказ // Арктика и Антарктика. 2017. № 3. С. 99–118. https://doi.org/10.7256/2453-8922.2017.3.24402
Екайкин А.А., Владимирова Д.О., Тебенькова Н.А., Бровков Е.В., Верес А.Н., Ковязин А.В., Козачек А.В., Линдрен М., Шибаев Ю.А., Преображенская А.В., Липенков В.Я. Пространственная изменчивость изотопного состава и скорости накопления снега на снегомерном полигоне станции Восток (Центральная Антарктида) // Проблемы Арктики и Антарктики. 2019. Т. 65. № 1. С. 46–62. https://doi.org/10.30758/0555-2648-2019-65-1-46-62
Екайкин А.А., Липенков В.Я., Сократова И.Н., Преображенская А.В. Изотопный состав снега и льда в Антарктиде: климатический сигнал и постдепозиционный шум // Проблемы Арктики и Антарктики. 2007. № 2 (76). С. 96–105.
Зыкин Н.Н., Токарев И.В., Виноград Н.А. Мониторинг стабильных изотопов (δ2 H, δ18O) в осадках Москвы (Россия): сравнение периодов 2005–2014 и 1970–1979 гг. // Вестник Санкт-Петербургского ун-та. Науки о Земле. 2021. Т. 66. № 4. С. 723–733. https://doi.org/10.21638/spbu07.2021.405
Фирц Ш., Армстронг Р.Л., Дюран И., Этхеви П., Грин И., МакКланг Д.М., Нишимура К., Сатьявали П.К., Сократов С.А. Международная классификация для сезонно-выпадающего снега (руководство к описанию снежной толщи и снежного покрова) Русское издание (Материалы гляциологических исследований, 2012, № 2). М: Ин-т географии РАН, Гляциологическая ассоциация, 2012. 80 с.
Фролов Д.М., Комаров А.Ю., Селиверстов Ю.Г., Сократов С.А., Турчанинова А.С., Гребенников П.Б. Изучение пространственно-временной неоднородности снежной толщи на площадке МО МГУ зимой 2018/2019. г. // Эколого-климатические характеристики атмосферы Москвы в 2018 г. по данным Метеорологической обсерватории МГУ имени М.В. Ломоносова. М.: МАКС Пресс, 2019. С. 225–230.
Чижова Ю.Н., Васильчук Ю.К. Дейтериевый эксцесс в снеге и ледниках Полярного Урала и пластовых льдах юга Ямала и побережья Байдарацкой губы // Арктика и Антарктика. 2017. № 2. С. 100–111. https://doi.org/10.7256/2453-8922.2017.2.23342
Чижова Ю.Н., Михаленко В.Н., Васильчук Ю.К., Буданцева Н.А., Козачек А.В., Кутузов С.С., Лаврентьев И.И. Изотопный состав кислорода снежнофирновой толщи на Восточной вершине Эльбруса // Лёд и Снег. 2019. Т. 59. № 3. С. 293–305. https://doi.org/10.15356/2076-6734-2019-3-426
Эколого-климатические характеристики атмосферы Москвы в 2018 г. по данным Метеорологической обсерватории МГУ имени М. В. Ломоносова / Ред. М. А. Локощенко. М.: МАКС Пресс, 2019. 277 с. https://doi.org/
Ala-aho P., Tetzlaff D., McNamara J.P., Laudon H., Kormos P., Soulsby C. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach // Water Resources Research. 2017. V. 53. № 7. P. 5813–5830. https://doi.org/10.1002/2017WR020650
Allen S.T., Jasechko S., Berghuijs W.R., Welker J.M., Goldsmith G.R., Kirchner J.W. Global sinusoidal seasonality in precipitation isotopes // Hydrology and Earth System Sciences. 2019. V. 23. № 8. P. 3423–3436. https://doi.org/10.5194/hess-23-3423-2019
Beria H., Larsen J.R., Ceperley N.C., Michelon A., Vennemann T., Schaefli B. Understanding snow hydrological processes through the lens of stable water isotopes // WIREs Water. 2018. V. 5. № 6. e1311. https://doi.org/10.1002/wat2.1311
Cooper L.W. Isotopic fractionation in snow cover // Isotope tracers in catchment hydrology / Eds. C. Kendall, J. J. McDonnell. New York: Elsevier Sci., 1998. P. 119–136. https://doi.org/10.1016/B978-0-444-81546-0.50011-2
Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. № 4. P. 436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
Dietermann N., Weiler M. Spatial distribution of stable water isotopes in alpine snow cover // Hydrology and Earth System Sciences. 2013. V. 17. № 7. P. 2657–2668. https://doi.org/10.5194/hess-17-2657-2013
Ebner P.P., Steen-Larsen H.C., Stenni B., Schneebeli M., Steinfeld A. Experimental observation of transient δ18O interaction between snow and advective airflow under various temperature gradient conditions // The Cryosphere. 2017. V. 11. № 4. P. 1733–1743. https://doi.org/10.5194/tc-11-1733-2017
Environmental Isotopes in the Hydrological Cycle. Principles and Applications (IHP-V IAEA Technical Documents in Hydrology, No. 39). V. 1 / Ed. W.G. Mook. IAEA, UNESCO, 2001 (reprint [2020]). 164 p.
Koeniger P., Hubbart J.A., Link T., Marshall J.D. Isotopic variation of snow cover and streamflow in response to changes in canopy structure in a snow-dominated mountain catchment // Hydrological Processes. 2008. V. 22. № 4. P. 557–566. https://doi.org/10.1002/hyp.6967
Konishchev V.N., Golubev V.N., Sokratov S.A. Sublimation from a seasonal snow cover and an isotopic content of ice wedges in the light of a palaeoclimate reconstruction // ICOP 2003. Permafrost. Proceedings of the Eighth International Conference on Permafrost, 21–25 July 2003, Zürich, Switzerland. V. 1 / Eds. M. Phillips, S.M. Springman, L.U. Arenson. Lisse: Swets & Zeitlinger, 2003. P. 585–590.
Kozachek A., Mikhalenko V., Masson-Delmotte V., Ekaykin A., Ginot P., Kutuzov S., Legrand M., Lipenkov V., Preunkert S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El’brus ice cores // Climate of the Past. 2017. V. 13. № 5. P. 473– 489. https://doi.org/10.5194/cp-13-473-2017
Lee J., Feng X., Faiia A.M., Posmentier E.S., Kirchner J.W., Osterhuber R., Taylor S. Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice // Chemical geology. 2010. V. 270. № 1–4. P. 126–134. https://doi.org/10.1016/j.chemgeo.2009.11.011
Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere. 2015. V. 9. № 6. P. 2253–2270. https://doi.org/10.5194/tc-9-2253-2015
Penna D., Ahmad M., Birks S.J., Bouchaou L., Brenčič M., Butt S., Holko L., Jeelani G., Martínez D.E., Melikadze G., Shanley J.B., Sokratov S.A., Stadnyk T., Sugimoto A., Vreča P. A new method of snowmelt sampling for water stable isotopes // Hydrological Processes. 2014. V. 28. № 22. P. 5637–5644. https://doi.org/10.1002/hyp.10273
Proksch M., Rutter N., Fierz Ch., Schneebeli M. Intercomparison of snow density measurements: bias, precision, and vertical resolution // The Cryosphere. 2016. V. 10. № 1. P. 371–384. https://doi.org/10.5194/tc-10-371-2016
Sturm M., Holmgren J., Liston G.L. A seasonal snow cover classification system for local to global applications // Journ. of Climate. 1995. V. 8. № 5 (Part 2). P. 1261– 1283. https://doi.org/10.1175/1520-0442(1995)0082.0.CO;2
Taylor S., Feng X., Kirchner J.W., Osterhuber R, Klaue B., Renshaw C.E. Isotopic evolution of a seasonal snowpack and its melt // Water Resources Research. 2001. V. 37. № 3. P. 759–769. https://doi.org/10.1029/2000WR900341
Vasil’chuk Yu., Chizhova Ju., Budantseva N., Vystavna Yu., Eremina I. Stable isotope composition of precipitation events revealed modern climate variability // Theoretical and Applied Climatology. 2022. V. 147. № 3–4. P. 1649–1661. https://doi.org/10.1007/s00704-021-03900-w
Vasil’chuk Yu., Chizhova Ju., Frolova N., Budantseva N., Kireeva M., Oleynikov A., Tokarev I., Rets E., Vasil’- chuk A. A variation of stable isotope composition of snow with altitude on the Elbrus Mountain, Central Caucasus // Geography, Environment, Sustainability. 2020. V. 13. № 1. P. 172–182. https://doi.org/10.24057/2071-9388-2018-22
Vasil’chuk Yu.K., Vasil’chuk A.C., Budantseva N.A. Holocene January paleotemperature of northwestern Siberia reconstructed based on stable isotope ratio of ice wedges // Permafrost and Periglacial Processes. 2023. V. 34. № 1. P. 142–165. https://doi.org/10.1002/ppp.2177
Wahl S., Steen-Larsen H.C., Hughes A.G., Dietrich L.J., Zuhr A., Behrens M., Faber A.-K., Hörhold M. Atmosphere-snow exchange explains surface snow isotope variability // Geophysical Research Letters. 2022. V. 49. № 20. e2022GL099529. https://doi.org/10.1029/2022GL099529
https://ice-snow.igras.ru/jour/article/view/1285
doi:10.31857/S2076673423040154
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.31857/S207667342304015410.31857/S207667342104010510.7256/2453-8922.2017.3.2440210.30758/0555-2648-2019-65-1-46-6210.21638/spbu07.2021.40510.7256/2453-8922.2017.2.2334210.15356/2076-6734-2019-3-42610.1002/2017WR02065010.5194/hess-23-3423
_version_ 1790606804306100224
spelling ftjias:oai:oai.ice.elpub.ru:article/1285 2024-02-11T10:07:56+01:00 Spatial-Temporal Variability of the δ18O Values and the Snow Cover Structure on the Territory of the Meteorological Observatory of the Lomonosov Moscow State University Пространственно-временнáя неоднородность значений δ18O и структуры снежной толщи на территории метеообсерватории МГУ S. Sokratov A. A. Komarov Yu. Yu. Vasil’chuk K. N. Budantseva A. J. Vasil’chuk Yu. Yu. Seliverstov G. P. Grebennikov B. D. Frolov M. С. Сократов А. А. Комаров Ю. Ю. Васильчук К. Н. Буданцева А. Дж. Васильчук Ю. Ю. Селиверстов Г. П. Гребенников Б. Д. Фролов М. This research project was supported by the Russian Science Foundation (grant № 19–77–30004, “Integrated technology for environment assessment of Moscow megacity based on chemical analysis of microparticle composition in the ‘atmosphere – snow – road dust – soil – surface water’ system Megacity”, isotope analyses and the State Assignment “Danger and risk of naturel processes and phenomena” (121051300175-4), field work and analysis of the obtained results Работа выполнена при поддержке РНФ (грант № 19–77–30004 “Технология оценки экологического состояния Московского мегаполиса на основе анализа химического состава микрочастиц в системе “атмосфера–снег– дорожная пыль–почвы–поверхностные воды” Мегаполис”), изотопные определения и по теме гос. задания “Опасность и риск природных процессов и явлений” (121051300175-4), полевые исследования и анализ полученных результатов 2024-01-21 application/pdf https://ice-snow.igras.ru/jour/article/view/1285 https://doi.org/10.31857/S2076673423040154 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/1285/692 Бородулина Г.С., Токарев И.В., Левичев М.А. Изотопный состав (δ18O, δ2H) снежного покрова Карелии // Лёд и Снег. 2021. Т. 61. № 4. С. 521–532. https://doi.org/10.31857/S2076673421040105 Васильчук Ю.К., Чижова Ю.Н., Буданцева Н.А., Лычагин М.Ю., Поповнин В.В., Ткаченко А.Н. Изотопный состав зимнего снега на хребте Аибга (Красная Поляна), Западный Кавказ // Арктика и Антарктика. 2017. № 3. С. 99–118. https://doi.org/10.7256/2453-8922.2017.3.24402 Екайкин А.А., Владимирова Д.О., Тебенькова Н.А., Бровков Е.В., Верес А.Н., Ковязин А.В., Козачек А.В., Линдрен М., Шибаев Ю.А., Преображенская А.В., Липенков В.Я. Пространственная изменчивость изотопного состава и скорости накопления снега на снегомерном полигоне станции Восток (Центральная Антарктида) // Проблемы Арктики и Антарктики. 2019. Т. 65. № 1. С. 46–62. https://doi.org/10.30758/0555-2648-2019-65-1-46-62 Екайкин А.А., Липенков В.Я., Сократова И.Н., Преображенская А.В. Изотопный состав снега и льда в Антарктиде: климатический сигнал и постдепозиционный шум // Проблемы Арктики и Антарктики. 2007. № 2 (76). С. 96–105. Зыкин Н.Н., Токарев И.В., Виноград Н.А. Мониторинг стабильных изотопов (δ2 H, δ18O) в осадках Москвы (Россия): сравнение периодов 2005–2014 и 1970–1979 гг. // Вестник Санкт-Петербургского ун-та. Науки о Земле. 2021. Т. 66. № 4. С. 723–733. https://doi.org/10.21638/spbu07.2021.405 Фирц Ш., Армстронг Р.Л., Дюран И., Этхеви П., Грин И., МакКланг Д.М., Нишимура К., Сатьявали П.К., Сократов С.А. Международная классификация для сезонно-выпадающего снега (руководство к описанию снежной толщи и снежного покрова) Русское издание (Материалы гляциологических исследований, 2012, № 2). М: Ин-т географии РАН, Гляциологическая ассоциация, 2012. 80 с. Фролов Д.М., Комаров А.Ю., Селиверстов Ю.Г., Сократов С.А., Турчанинова А.С., Гребенников П.Б. Изучение пространственно-временной неоднородности снежной толщи на площадке МО МГУ зимой 2018/2019. г. // Эколого-климатические характеристики атмосферы Москвы в 2018 г. по данным Метеорологической обсерватории МГУ имени М.В. Ломоносова. М.: МАКС Пресс, 2019. С. 225–230. Чижова Ю.Н., Васильчук Ю.К. Дейтериевый эксцесс в снеге и ледниках Полярного Урала и пластовых льдах юга Ямала и побережья Байдарацкой губы // Арктика и Антарктика. 2017. № 2. С. 100–111. https://doi.org/10.7256/2453-8922.2017.2.23342 Чижова Ю.Н., Михаленко В.Н., Васильчук Ю.К., Буданцева Н.А., Козачек А.В., Кутузов С.С., Лаврентьев И.И. Изотопный состав кислорода снежнофирновой толщи на Восточной вершине Эльбруса // Лёд и Снег. 2019. Т. 59. № 3. С. 293–305. https://doi.org/10.15356/2076-6734-2019-3-426 Эколого-климатические характеристики атмосферы Москвы в 2018 г. по данным Метеорологической обсерватории МГУ имени М. В. Ломоносова / Ред. М. А. Локощенко. М.: МАКС Пресс, 2019. 277 с. https://doi.org/ Ala-aho P., Tetzlaff D., McNamara J.P., Laudon H., Kormos P., Soulsby C. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach // Water Resources Research. 2017. V. 53. № 7. P. 5813–5830. https://doi.org/10.1002/2017WR020650 Allen S.T., Jasechko S., Berghuijs W.R., Welker J.M., Goldsmith G.R., Kirchner J.W. Global sinusoidal seasonality in precipitation isotopes // Hydrology and Earth System Sciences. 2019. V. 23. № 8. P. 3423–3436. https://doi.org/10.5194/hess-23-3423-2019 Beria H., Larsen J.R., Ceperley N.C., Michelon A., Vennemann T., Schaefli B. Understanding snow hydrological processes through the lens of stable water isotopes // WIREs Water. 2018. V. 5. № 6. e1311. https://doi.org/10.1002/wat2.1311 Cooper L.W. Isotopic fractionation in snow cover // Isotope tracers in catchment hydrology / Eds. C. Kendall, J. J. McDonnell. New York: Elsevier Sci., 1998. P. 119–136. https://doi.org/10.1016/B978-0-444-81546-0.50011-2 Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. № 4. P. 436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x Dietermann N., Weiler M. Spatial distribution of stable water isotopes in alpine snow cover // Hydrology and Earth System Sciences. 2013. V. 17. № 7. P. 2657–2668. https://doi.org/10.5194/hess-17-2657-2013 Ebner P.P., Steen-Larsen H.C., Stenni B., Schneebeli M., Steinfeld A. Experimental observation of transient δ18O interaction between snow and advective airflow under various temperature gradient conditions // The Cryosphere. 2017. V. 11. № 4. P. 1733–1743. https://doi.org/10.5194/tc-11-1733-2017 Environmental Isotopes in the Hydrological Cycle. Principles and Applications (IHP-V IAEA Technical Documents in Hydrology, No. 39). V. 1 / Ed. W.G. Mook. IAEA, UNESCO, 2001 (reprint [2020]). 164 p. Koeniger P., Hubbart J.A., Link T., Marshall J.D. Isotopic variation of snow cover and streamflow in response to changes in canopy structure in a snow-dominated mountain catchment // Hydrological Processes. 2008. V. 22. № 4. P. 557–566. https://doi.org/10.1002/hyp.6967 Konishchev V.N., Golubev V.N., Sokratov S.A. Sublimation from a seasonal snow cover and an isotopic content of ice wedges in the light of a palaeoclimate reconstruction // ICOP 2003. Permafrost. Proceedings of the Eighth International Conference on Permafrost, 21–25 July 2003, Zürich, Switzerland. V. 1 / Eds. M. Phillips, S.M. Springman, L.U. Arenson. Lisse: Swets & Zeitlinger, 2003. P. 585–590. Kozachek A., Mikhalenko V., Masson-Delmotte V., Ekaykin A., Ginot P., Kutuzov S., Legrand M., Lipenkov V., Preunkert S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El’brus ice cores // Climate of the Past. 2017. V. 13. № 5. P. 473– 489. https://doi.org/10.5194/cp-13-473-2017 Lee J., Feng X., Faiia A.M., Posmentier E.S., Kirchner J.W., Osterhuber R., Taylor S. Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice // Chemical geology. 2010. V. 270. № 1–4. P. 126–134. https://doi.org/10.1016/j.chemgeo.2009.11.011 Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere. 2015. V. 9. № 6. P. 2253–2270. https://doi.org/10.5194/tc-9-2253-2015 Penna D., Ahmad M., Birks S.J., Bouchaou L., Brenčič M., Butt S., Holko L., Jeelani G., Martínez D.E., Melikadze G., Shanley J.B., Sokratov S.A., Stadnyk T., Sugimoto A., Vreča P. A new method of snowmelt sampling for water stable isotopes // Hydrological Processes. 2014. V. 28. № 22. P. 5637–5644. https://doi.org/10.1002/hyp.10273 Proksch M., Rutter N., Fierz Ch., Schneebeli M. Intercomparison of snow density measurements: bias, precision, and vertical resolution // The Cryosphere. 2016. V. 10. № 1. P. 371–384. https://doi.org/10.5194/tc-10-371-2016 Sturm M., Holmgren J., Liston G.L. A seasonal snow cover classification system for local to global applications // Journ. of Climate. 1995. V. 8. № 5 (Part 2). P. 1261– 1283. https://doi.org/10.1175/1520-0442(1995)0082.0.CO;2 Taylor S., Feng X., Kirchner J.W., Osterhuber R, Klaue B., Renshaw C.E. Isotopic evolution of a seasonal snowpack and its melt // Water Resources Research. 2001. V. 37. № 3. P. 759–769. https://doi.org/10.1029/2000WR900341 Vasil’chuk Yu., Chizhova Ju., Budantseva N., Vystavna Yu., Eremina I. Stable isotope composition of precipitation events revealed modern climate variability // Theoretical and Applied Climatology. 2022. V. 147. № 3–4. P. 1649–1661. https://doi.org/10.1007/s00704-021-03900-w Vasil’chuk Yu., Chizhova Ju., Frolova N., Budantseva N., Kireeva M., Oleynikov A., Tokarev I., Rets E., Vasil’- chuk A. A variation of stable isotope composition of snow with altitude on the Elbrus Mountain, Central Caucasus // Geography, Environment, Sustainability. 2020. V. 13. № 1. P. 172–182. https://doi.org/10.24057/2071-9388-2018-22 Vasil’chuk Yu.K., Vasil’chuk A.C., Budantseva N.A. Holocene January paleotemperature of northwestern Siberia reconstructed based on stable isotope ratio of ice wedges // Permafrost and Periglacial Processes. 2023. V. 34. № 1. P. 142–165. https://doi.org/10.1002/ppp.2177 Wahl S., Steen-Larsen H.C., Hughes A.G., Dietrich L.J., Zuhr A., Behrens M., Faber A.-K., Hörhold M. Atmosphere-snow exchange explains surface snow isotope variability // Geophysical Research Letters. 2022. V. 49. № 20. e2022GL099529. https://doi.org/10.1029/2022GL099529 https://ice-snow.igras.ru/jour/article/view/1285 doi:10.31857/S2076673423040154 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 63, № 4 (2023); 569-582 Лёд и Снег; Том 63, № 4 (2023); 569-582 2412-3765 2076-6734 snow cover stable water isotopes snow stratigraphy spatial variability winter precipitations temporal variability снежный покров стабильные изотопы воды стратиграфия снежного покрова пространственная неоднородность зимние осадки изменение во времени info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2024 ftjias https://doi.org/10.31857/S207667342304015410.31857/S207667342104010510.7256/2453-8922.2017.3.2440210.30758/0555-2648-2019-65-1-46-6210.21638/spbu07.2021.40510.7256/2453-8922.2017.2.2334210.15356/2076-6734-2019-3-42610.1002/2017WR02065010.5194/hess-23-3423 2024-01-21T18:57:02Z The isotopic composition (δ18O values) of snow layers, constructing snow cover to the time of reaching maximum snow water equivalent (SWE), was compared with the isotopic content of snow precipitated over the whole the winter season 2018/19 on the territory of the Meteorological Observatory of the Lomonosov Moscow State University (Moscow, Russia). Snow-sampling was carried out in a trench 20 m long simultaneously with detailed measurements of spatial variability of the structural characteristics of snow depth. Sampling was conducted for each precipitation event over the winter season, with the amount of precipitation also documented. It was found that the spatially-distributed enrichment with heavy oxygen isotopes along the trench fell within the range of 0–3.5‰, with average values for the four main formed snow layers changing from 1.3 to 2.5‰. The enrichment was not much dependent on the age of snow layer in the snowpack, and it was even more pronounced in the upper layers. This suggests that the post-precipitated change in the isotopic composition of snow cover for the conditions of the investigated site mainly took place when the snow was exposed to the atmosphere (due to sublimation and evaporation), while the processes of dry and wet metamorphism were either less important or even led to leveling the effects of isotopic fractionation. A positive correlation was found between the isotope composition of snow and the spatially varying snow density in each layer. This is most probably related to involvement of wind influence into the snow accumulation resulting in more dense snow. The spatial variability of the isotope composition of snow in each layer was smaller than changes in snow density and snow water equivalent. Представлены результаты сравнения изотопного состава (значений δ18O) разновозрастных слоёв снега, слагающих снежную толщу к моменту максимального водозапаса, с изотопным составом осадков, сформировавших эти слои в течение зимнего сезона 2018/19 г. на территории метеообсерватории МГУ. ... Article in Journal/Newspaper Permafrost and Periglacial Processes The Cryosphere Ice and Snow (E-Journal)