Causes of Uncertainties in Paleoclimatic Reconstructions Based on the Oxygen Isotope Composition of Glacier Ice on Elbrus (Western Plateau)

A study of the isotope signature of glacial ice in the Western Elbrus Plateau (the Caucasus) was made on the basis of five ice cores obtained in different years with high resolution. It was shown that the isotopic characteristics of ice are associated with the processes of accumulation and wind scou...

Full description

Bibliographic Details
Main Authors: Ju. Chizhova N., V. Mikhalenko N., S. Kutuzov S., I. Lavrentiev I., V. Lipenkov Ya., A. Kozachek V., Ю. Чижова Н., В. Михаленко Н., С. Кутузов С., И. Лаврентьев И., В. Липенков Я., А. Козачек В.
Other Authors: The study was supported by the Megagrant project (agreement № 075-15-2021-599, 8.06.2021) “Paleoecological Reconstructions as a Key to Understanding Past, Current, and Future Climate and Environmental Changes in Russia”. Isotope analysis were done within the framework of State Assignment no. FMGE-2019-0004 for the RAS Institute of Geography, Работа выполнена в рамках Мегагранта (Соглашение № 075-15-2021-599 от 08.06.2021) “Палеоэкологические реконструкции как ключ к пониманию прошлых, текущих и будущих изменений климата и окружающей среды в России”. Изотопный анализ образцов льда выполнен в рамках Государственного задания Института географии РАН No FMGE-2019-0004
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2024
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/1277
https://doi.org/10.31857/S2076673423040051
_version_ 1828686910001774592
author Ju. Chizhova N.
V. Mikhalenko N.
S. Kutuzov S.
I. Lavrentiev I.
V. Lipenkov Ya.
A. Kozachek V.
Ю. Чижова Н.
В. Михаленко Н.
С. Кутузов С.
И. Лаврентьев И.
В. Липенков Я.
А. Козачек В.
author2 The study was supported by the Megagrant project (agreement № 075-15-2021-599, 8.06.2021) “Paleoecological Reconstructions as a Key to Understanding Past, Current, and Future Climate and Environmental Changes in Russia”. Isotope analysis were done within the framework of State Assignment no. FMGE-2019-0004 for the RAS Institute of Geography
Работа выполнена в рамках Мегагранта (Соглашение № 075-15-2021-599 от 08.06.2021) “Палеоэкологические реконструкции как ключ к пониманию прошлых, текущих и будущих изменений климата и окружающей среды в России”. Изотопный анализ образцов льда выполнен в рамках Государственного задания Института географии РАН No FMGE-2019-0004
author_facet Ju. Chizhova N.
V. Mikhalenko N.
S. Kutuzov S.
I. Lavrentiev I.
V. Lipenkov Ya.
A. Kozachek V.
Ю. Чижова Н.
В. Михаленко Н.
С. Кутузов С.
И. Лаврентьев И.
В. Липенков Я.
А. Козачек В.
author_sort Ju. Chizhova N.
collection Ice and Snow
description A study of the isotope signature of glacial ice in the Western Elbrus Plateau (the Caucasus) was made on the basis of five ice cores obtained in different years with high resolution. It was shown that the isotopic characteristics of ice are associated with the processes of accumulation and wind scouring of snow. Three ice cores were obtained in 2013 (C–1, C–2 and C–3), one in 2017 (C–4) and one more in 2018 (C–5). Core sampling was performed with a resolution of 5 cm. Isotopic analysis was done at the CERL laboratory (AARI) using a Picarro L2130-i isotope analyzer, the accuracy was 0.06‰ for δ18O and 0.30‰ for δ2Н. The values of d18О and δ2Н of the ice of the Western Plateau generally vary from –5 to –30‰ and from –18.7 to –225.8‰, respectively, with well-defined seasonality. Comparison of the isotope record for all cores showed that the differences in accumulation for individual seasons reach 0.3 m w. eq., differences in accumulation for individual seasons averaged over 5 years is approximately 0.2 m w.eq. The absolute differences in the average seasonal values of d associated with wind scouring and spatial redistribution of snow (deposition noise), averaged over 5 years, reached 1.38‰. The irregularity of precipitation amount within the season and errors in core dating are an additional contribution to non-climate variance (noise of definition). The absolute difference in the average seasonal values of δ18O associated with this type of noise averaged over 5 years is 1.7‰. Thus, the total uncertainty for two different types of noise can be estimated at 2.2‰, which is about 20% of the annual seasonal amplitude of δ18O values of the glacier ice in the Western Plateau (the average difference between the δ18O values of warm and cold seasons is ~10–11‰). One of the problems of linking the isotope record to the annual temperature record at the weather station was solved by using ammonium concentrations for dating the C-1 ice core and calculating the “ide+al” annual variation of δ18O values by a cosine function of the ...
format Article in Journal/Newspaper
genre Annals of Glaciology
ice core
The Cryosphere
genre_facet Annals of Glaciology
ice core
The Cryosphere
id ftjias:oai:oai.ice.elpub.ru:article/1277
institution Open Polar
language Russian
op_collection_id ftjias
op_relation https://ice-snow.igras.ru/jour/article/view/1277/684
Екайкин А.А., Козачек А.В., Михаленко В.Н. Способ восстановления рядов метеорологических характеристик по данным исследования ледяных кернов горных районов. Патент 2643706. Дата регистрации: 05.02.2018.
Козачек A.B., Екайкин А.А., Михаленко В.Н., Липенков В.Я., Кутузов С.С. Изотопный состав ледяных кернов, полученных на Западном плато Эльбруса // Лёд и Снег. 2015. Т. 55. № 4. С. 35–49.
Ледники и климат Эльбруса / Отв. ред. В.Н. Михаленко. М.–СПб.: Нестор-История, 2020. 372 с
Лаврентьев И.И., Михаленко В.Н., Кутузов С.С. Толщина льда и подлёдный рельеф Западного ледникового плато Эльбруса // Лёд и Снег. 2010. № 2. С. 12–18.
Лаврентьев И.И., Кутузов С.С., Михаленко В.Н., Судакова М.С., Козачек А.В. Пространственно-временнaя изменчивость снегонакопления на Западном плато Эльбруса (Центральный Кавказ) // Лёд и Снег. 2022. Т. 62. № 2. С. 165–178.
Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Торопов П.А., Владимирова Д.О., Абрамов А.А., Мацковский В.В. Гляциоклиматические исследования Института географии РАН в кратере Восточной вершины Эльбруса в 2020 г. // Лёд и Снег. 2021. Т. 61. № 1. С. 149–160.
Михаленко В.Н. Бурение льда близ вершины Эльбруса // Лёд и Снег. 2010. № 1 (109). С. 123–126.
Рототаева О.В., Носенко Г.А., Керимов А.М., Кутузов С.С., Лаврентьев И.И., Никитин С.А., Керимов А.А., Тарасова Л.Н. Изменения баланса массы ледника Гарабаши (Эльбрус) на рубеже XX–XXI вв. // Лёд и Снег. 2019. Т. 59. № 1. С. 5–22.
Bohleber P., Wagenbach D., Schöner W., Böhm R. To what extent do water isotope records from low accumulation Alpine ice cores reproduce instrumental temperature series? // Tellus B: Chemical and Physical Meteorology. 2013. T. 65. № 1. P. 20148. https://doi.org/10.3402/tel-lusb.v65i0.20148
Craig H. Isotopic variations in meteoric waters // Science. 1961. V. 133. № 3465. P. 1702–1703.
Cuffey K.M., Steig E.J. Isotopic diffusion in polar firn: implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland // Journ. of Glaciology. 1998. V. 44. P. 273– 284.
Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. P. 436–468.
Dansgaard W., Johnsen S.J., Clausen H.B., Dahl-Jensen D., Gundestrup N.S., Hammer C.U., Hvidberg C.S., Steffensen J.P., Sveinbjörnsdottir A.E., Jouzel J., Bond G. Evidence for general instability of past climate from a 250- kyr ice-core record // Nature. 1993. V. 364. P. 218– 220. https://doi.org/10.1038/364218a0
Fisher D.A., Koerner R.M., Paterson W.S.B., Dansgaard W., Gundestrup N., Reeh N. Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles // Nature. 1983. V. 301. P. 205–209. https://doi.org/10.1038/301205a0
Fisher D.A., Reeh N., Clausen H.B. Stratigraphic noise in time series derived from ice cores // Annals of Glaciology. 1985. V. 7. P. 76–83.
Fisher D., Koerner R. The effects of wind on δ(18O) and accumulation give an inferred record of seasonal δ amplitude from the Agassiz Ice Cap, Ellesmere Island, Canada // Annals of Glaciology. 1988. V. 10. P. 34–37. https://doi.org/10.3189/S0260305500004122
Johnsen S.J. Stable isotope homogenization of polar firn and ice // Isotopes and Impurities in Snow and Ice. Proceedings of the Grenoble Symposium, IAHS Publ., Grenoble, France, 1977. No. 118. P. 210–219.
Johnsen S.J., Clausen H.B., Cuffey K.M., Hoffmann G., Schwander J., Creyts T. Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion / Physics of ice core records, edited by Hondoh T. Hokkaido Univ. Press, Sapporo, Japan, 2000. P. 121–140.
Jouzel J., Alley R.B., Cuffey K., Dansgaard W., Grootes P., Hoffmann G., Johnsen S.J., Koster R., Peel D., Shuman C., Stievenard M., Stuiver M., White J. Validity of the temperature reconstruction from water isotopes in ice cores // Journ. of Geophysical Research. Oceans. 1997. V. 102. P. 26471–26487.
Markle B., Steig E. Improving temperature reconstructions from ice-core water-isotope records // Climate of the Past. 2022. V. 18. P. 1321–1368.
Merlivat L., Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation // Journ. of Geophys. Research. Oceans. 1979. V. 84. P. 5029–5033.
Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Fain X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere. 2015. V. 9. P. 2253–2270. https://doi.org/10.5194/tc-9-2253-2015
Münch T., Kipfstuhl S., Freitag J., Meyer H., Laepple T. Regional climate signal vs. local noise: a two-dimensional view of water isotopes in Antarctic firn at Kohnen station, Dronning Maud Land // Climate of the Past Discussions. 2015. V. 11. P. 5605–5649.
Neumann T.A., Waddington E.D. Effects of firn ventilation on isotopic exchange // Journ. of Glaciology. 2004. V. 50. P. 183–194.
Sime L.C., Marshall G.J., Mulvaney R., Thomas E.R. Interpreting temperature information from ice cores along the Antarctic Peninsula: ERA40 analysis // Geophysical Research Letters. 2009. V. 36. L18801. https://doi.org/10.1029/2009GL038982
Sime L.C., Lang N., Thomas E.R., Benton A.K., Mulvaney R. On high-resolution sampling of short ice cores: dating and temperature information recovery from Antarctic Peninsula virtual cores // Journ. of Geophys. Research. 2011. V. 116. D20117. https://doi.org/10.1029/2011JD015894
Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century // Intern. Journ. of Climatology. 2019. V. 39. № 12. P. 4703–4720.
Persson A., Langen P.L., Ditlevsen P., Vinther B.M. The influence of precipitation weighting on interannual variability of stable water isotopes in Greenland // Journ. of Geophys. Research. 2011. V. 116. D20120. https://doi.org/10.1029/2010JD015517
Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420.000 years from the Vostok ice core, Antarctica // Nature. 1999. V. 399. P. 429–436.
Preunkert S., Legrand M., Kutuzov S., Ginot P., Mikhalenko V., Friedrich R. The Elbrus (Caucasus, Russia) ice core record – Part 1: reconstruction of past anthropogenic sulfur emissions in south-eastern Europe // Atmospheric Chemistry and Physics. 2019. V. 19. P. 14119–14132. https://doi.org/10.5194/acp-19-14119-2019
Steen-Larsen H.C., Masson-Delmotte V., Hirabayashi M., Winkler R., Satow K., Prié F., Bayou N., Brun E., Cuffey K.M., Dahl-Jensen D., Dumont M., Guillevic M., Kipfstuhl S., Landais A., Popp T., Risi C., Steffen K., Stenni B., Sveinbjörnsdottír A.E. What controls the isotopic composition of Greenland surface snow? // Climate of the Past. 2014. V. 10. P. 377–392. https://doi.org/10.5194/cp-10-377-2014
Town M.S., Warren S.G., von Walden P., Waddington E.D. Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets // Journ. of Geophys. Research. 2008. V. 113. D24303. https://doi.org/10.1029/2008JD009852
Waddington E.D., Steig E.J., Neumann T.A. Using characteristic times to assess whether stable isotopes in polar snow can be reversibly deposited // Annals of Glaciology. 2002. V. 35. P. 118–124.
Whillans I.M., Grootes P.M. Isotopic diffusion in cold snow and firn // Journ. of Geophysical Research. 1985. V. 90. P. 3910–3918. https://doi.org/10.1029/JD090iD02p03910
Yu W., Yao T., Thompson L.G., Jouzel J., Zhao H., Xu B., Jing Z., Wang N., Wu G., Ma Y., Gao J., Yang X., Zhang J., Qu D. Temperature signals of ice core and speleothem isotopic records from Asian monsoon region as indicated by precipitation δ18O // Earth and Planetary Science Letters. 2021. V. 554. 116665. https://doi.org/10.1016/j.epsl.2020.116665
doi:10.31857/S2076673423040051
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_source Ice and Snow; Том 63, № 4 (2023); 473-488
Лёд и Снег; Том 63, № 4 (2023); 473-488
2412-3765
2076-6734
publishDate 2024
publisher IGRAS
record_format openpolar
spelling ftjias:oai:oai.ice.elpub.ru:article/1277 2025-04-06T14:32:57+00:00 Causes of Uncertainties in Paleoclimatic Reconstructions Based on the Oxygen Isotope Composition of Glacier Ice on Elbrus (Western Plateau) Причины неопределённости в палеоклиматических реконструкциях по изотопному составу кислорода ледникового льда Эльбруса (Западное плато) Ju. Chizhova N. V. Mikhalenko N. S. Kutuzov S. I. Lavrentiev I. V. Lipenkov Ya. A. Kozachek V. Ю. Чижова Н. В. Михаленко Н. С. Кутузов С. И. Лаврентьев И. В. Липенков Я. А. Козачек В. The study was supported by the Megagrant project (agreement № 075-15-2021-599, 8.06.2021) “Paleoecological Reconstructions as a Key to Understanding Past, Current, and Future Climate and Environmental Changes in Russia”. Isotope analysis were done within the framework of State Assignment no. FMGE-2019-0004 for the RAS Institute of Geography Работа выполнена в рамках Мегагранта (Соглашение № 075-15-2021-599 от 08.06.2021) “Палеоэкологические реконструкции как ключ к пониманию прошлых, текущих и будущих изменений климата и окружающей среды в России”. Изотопный анализ образцов льда выполнен в рамках Государственного задания Института географии РАН No FMGE-2019-0004 2024-01-21 application/pdf https://ice-snow.igras.ru/jour/article/view/1277 https://doi.org/10.31857/S2076673423040051 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/1277/684 Екайкин А.А., Козачек А.В., Михаленко В.Н. Способ восстановления рядов метеорологических характеристик по данным исследования ледяных кернов горных районов. Патент 2643706. Дата регистрации: 05.02.2018. Козачек A.B., Екайкин А.А., Михаленко В.Н., Липенков В.Я., Кутузов С.С. Изотопный состав ледяных кернов, полученных на Западном плато Эльбруса // Лёд и Снег. 2015. Т. 55. № 4. С. 35–49. Ледники и климат Эльбруса / Отв. ред. В.Н. Михаленко. М.–СПб.: Нестор-История, 2020. 372 с Лаврентьев И.И., Михаленко В.Н., Кутузов С.С. Толщина льда и подлёдный рельеф Западного ледникового плато Эльбруса // Лёд и Снег. 2010. № 2. С. 12–18. Лаврентьев И.И., Кутузов С.С., Михаленко В.Н., Судакова М.С., Козачек А.В. Пространственно-временнaя изменчивость снегонакопления на Западном плато Эльбруса (Центральный Кавказ) // Лёд и Снег. 2022. Т. 62. № 2. С. 165–178. Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Торопов П.А., Владимирова Д.О., Абрамов А.А., Мацковский В.В. Гляциоклиматические исследования Института географии РАН в кратере Восточной вершины Эльбруса в 2020 г. // Лёд и Снег. 2021. Т. 61. № 1. С. 149–160. Михаленко В.Н. Бурение льда близ вершины Эльбруса // Лёд и Снег. 2010. № 1 (109). С. 123–126. Рототаева О.В., Носенко Г.А., Керимов А.М., Кутузов С.С., Лаврентьев И.И., Никитин С.А., Керимов А.А., Тарасова Л.Н. Изменения баланса массы ледника Гарабаши (Эльбрус) на рубеже XX–XXI вв. // Лёд и Снег. 2019. Т. 59. № 1. С. 5–22. Bohleber P., Wagenbach D., Schöner W., Böhm R. To what extent do water isotope records from low accumulation Alpine ice cores reproduce instrumental temperature series? // Tellus B: Chemical and Physical Meteorology. 2013. T. 65. № 1. P. 20148. https://doi.org/10.3402/tel-lusb.v65i0.20148 Craig H. Isotopic variations in meteoric waters // Science. 1961. V. 133. № 3465. P. 1702–1703. Cuffey K.M., Steig E.J. Isotopic diffusion in polar firn: implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland // Journ. of Glaciology. 1998. V. 44. P. 273– 284. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. P. 436–468. Dansgaard W., Johnsen S.J., Clausen H.B., Dahl-Jensen D., Gundestrup N.S., Hammer C.U., Hvidberg C.S., Steffensen J.P., Sveinbjörnsdottir A.E., Jouzel J., Bond G. Evidence for general instability of past climate from a 250- kyr ice-core record // Nature. 1993. V. 364. P. 218– 220. https://doi.org/10.1038/364218a0 Fisher D.A., Koerner R.M., Paterson W.S.B., Dansgaard W., Gundestrup N., Reeh N. Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles // Nature. 1983. V. 301. P. 205–209. https://doi.org/10.1038/301205a0 Fisher D.A., Reeh N., Clausen H.B. Stratigraphic noise in time series derived from ice cores // Annals of Glaciology. 1985. V. 7. P. 76–83. Fisher D., Koerner R. The effects of wind on δ(18O) and accumulation give an inferred record of seasonal δ amplitude from the Agassiz Ice Cap, Ellesmere Island, Canada // Annals of Glaciology. 1988. V. 10. P. 34–37. https://doi.org/10.3189/S0260305500004122 Johnsen S.J. Stable isotope homogenization of polar firn and ice // Isotopes and Impurities in Snow and Ice. Proceedings of the Grenoble Symposium, IAHS Publ., Grenoble, France, 1977. No. 118. P. 210–219. Johnsen S.J., Clausen H.B., Cuffey K.M., Hoffmann G., Schwander J., Creyts T. Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion / Physics of ice core records, edited by Hondoh T. Hokkaido Univ. Press, Sapporo, Japan, 2000. P. 121–140. Jouzel J., Alley R.B., Cuffey K., Dansgaard W., Grootes P., Hoffmann G., Johnsen S.J., Koster R., Peel D., Shuman C., Stievenard M., Stuiver M., White J. Validity of the temperature reconstruction from water isotopes in ice cores // Journ. of Geophysical Research. Oceans. 1997. V. 102. P. 26471–26487. Markle B., Steig E. Improving temperature reconstructions from ice-core water-isotope records // Climate of the Past. 2022. V. 18. P. 1321–1368. Merlivat L., Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation // Journ. of Geophys. Research. Oceans. 1979. V. 84. P. 5029–5033. Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Fain X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere. 2015. V. 9. P. 2253–2270. https://doi.org/10.5194/tc-9-2253-2015 Münch T., Kipfstuhl S., Freitag J., Meyer H., Laepple T. Regional climate signal vs. local noise: a two-dimensional view of water isotopes in Antarctic firn at Kohnen station, Dronning Maud Land // Climate of the Past Discussions. 2015. V. 11. P. 5605–5649. Neumann T.A., Waddington E.D. Effects of firn ventilation on isotopic exchange // Journ. of Glaciology. 2004. V. 50. P. 183–194. Sime L.C., Marshall G.J., Mulvaney R., Thomas E.R. Interpreting temperature information from ice cores along the Antarctic Peninsula: ERA40 analysis // Geophysical Research Letters. 2009. V. 36. L18801. https://doi.org/10.1029/2009GL038982 Sime L.C., Lang N., Thomas E.R., Benton A.K., Mulvaney R. On high-resolution sampling of short ice cores: dating and temperature information recovery from Antarctic Peninsula virtual cores // Journ. of Geophys. Research. 2011. V. 116. D20117. https://doi.org/10.1029/2011JD015894 Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century // Intern. Journ. of Climatology. 2019. V. 39. № 12. P. 4703–4720. Persson A., Langen P.L., Ditlevsen P., Vinther B.M. The influence of precipitation weighting on interannual variability of stable water isotopes in Greenland // Journ. of Geophys. Research. 2011. V. 116. D20120. https://doi.org/10.1029/2010JD015517 Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420.000 years from the Vostok ice core, Antarctica // Nature. 1999. V. 399. P. 429–436. Preunkert S., Legrand M., Kutuzov S., Ginot P., Mikhalenko V., Friedrich R. The Elbrus (Caucasus, Russia) ice core record – Part 1: reconstruction of past anthropogenic sulfur emissions in south-eastern Europe // Atmospheric Chemistry and Physics. 2019. V. 19. P. 14119–14132. https://doi.org/10.5194/acp-19-14119-2019 Steen-Larsen H.C., Masson-Delmotte V., Hirabayashi M., Winkler R., Satow K., Prié F., Bayou N., Brun E., Cuffey K.M., Dahl-Jensen D., Dumont M., Guillevic M., Kipfstuhl S., Landais A., Popp T., Risi C., Steffen K., Stenni B., Sveinbjörnsdottír A.E. What controls the isotopic composition of Greenland surface snow? // Climate of the Past. 2014. V. 10. P. 377–392. https://doi.org/10.5194/cp-10-377-2014 Town M.S., Warren S.G., von Walden P., Waddington E.D. Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets // Journ. of Geophys. Research. 2008. V. 113. D24303. https://doi.org/10.1029/2008JD009852 Waddington E.D., Steig E.J., Neumann T.A. Using characteristic times to assess whether stable isotopes in polar snow can be reversibly deposited // Annals of Glaciology. 2002. V. 35. P. 118–124. Whillans I.M., Grootes P.M. Isotopic diffusion in cold snow and firn // Journ. of Geophysical Research. 1985. V. 90. P. 3910–3918. https://doi.org/10.1029/JD090iD02p03910 Yu W., Yao T., Thompson L.G., Jouzel J., Zhao H., Xu B., Jing Z., Wang N., Wu G., Ma Y., Gao J., Yang X., Zhang J., Qu D. Temperature signals of ice core and speleothem isotopic records from Asian monsoon region as indicated by precipitation δ18O // Earth and Planetary Science Letters. 2021. V. 554. 116665. https://doi.org/10.1016/j.epsl.2020.116665 doi:10.31857/S2076673423040051 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 63, № 4 (2023); 473-488 Лёд и Снег; Том 63, № 4 (2023); 473-488 2412-3765 2076-6734 stable isotope of oxygen temperature reconstruction Caucasus Elbrus изотопный состав кислорода реконструкция температур Кавказ Эльбрус info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2024 ftjias 2025-03-10T11:00:05Z A study of the isotope signature of glacial ice in the Western Elbrus Plateau (the Caucasus) was made on the basis of five ice cores obtained in different years with high resolution. It was shown that the isotopic characteristics of ice are associated with the processes of accumulation and wind scouring of snow. Three ice cores were obtained in 2013 (C–1, C–2 and C–3), one in 2017 (C–4) and one more in 2018 (C–5). Core sampling was performed with a resolution of 5 cm. Isotopic analysis was done at the CERL laboratory (AARI) using a Picarro L2130-i isotope analyzer, the accuracy was 0.06‰ for δ18O and 0.30‰ for δ2Н. The values of d18О and δ2Н of the ice of the Western Plateau generally vary from –5 to –30‰ and from –18.7 to –225.8‰, respectively, with well-defined seasonality. Comparison of the isotope record for all cores showed that the differences in accumulation for individual seasons reach 0.3 m w. eq., differences in accumulation for individual seasons averaged over 5 years is approximately 0.2 m w.eq. The absolute differences in the average seasonal values of d associated with wind scouring and spatial redistribution of snow (deposition noise), averaged over 5 years, reached 1.38‰. The irregularity of precipitation amount within the season and errors in core dating are an additional contribution to non-climate variance (noise of definition). The absolute difference in the average seasonal values of δ18O associated with this type of noise averaged over 5 years is 1.7‰. Thus, the total uncertainty for two different types of noise can be estimated at 2.2‰, which is about 20% of the annual seasonal amplitude of δ18O values of the glacier ice in the Western Plateau (the average difference between the δ18O values of warm and cold seasons is ~10–11‰). One of the problems of linking the isotope record to the annual temperature record at the weather station was solved by using ammonium concentrations for dating the C-1 ice core and calculating the “ide+al” annual variation of δ18O values by a cosine function of the ... Article in Journal/Newspaper Annals of Glaciology ice core The Cryosphere Ice and Snow
spellingShingle stable isotope of oxygen
temperature reconstruction
Caucasus
Elbrus
изотопный состав кислорода
реконструкция температур
Кавказ
Эльбрус
Ju. Chizhova N.
V. Mikhalenko N.
S. Kutuzov S.
I. Lavrentiev I.
V. Lipenkov Ya.
A. Kozachek V.
Ю. Чижова Н.
В. Михаленко Н.
С. Кутузов С.
И. Лаврентьев И.
В. Липенков Я.
А. Козачек В.
Causes of Uncertainties in Paleoclimatic Reconstructions Based on the Oxygen Isotope Composition of Glacier Ice on Elbrus (Western Plateau)
title Causes of Uncertainties in Paleoclimatic Reconstructions Based on the Oxygen Isotope Composition of Glacier Ice on Elbrus (Western Plateau)
title_full Causes of Uncertainties in Paleoclimatic Reconstructions Based on the Oxygen Isotope Composition of Glacier Ice on Elbrus (Western Plateau)
title_fullStr Causes of Uncertainties in Paleoclimatic Reconstructions Based on the Oxygen Isotope Composition of Glacier Ice on Elbrus (Western Plateau)
title_full_unstemmed Causes of Uncertainties in Paleoclimatic Reconstructions Based on the Oxygen Isotope Composition of Glacier Ice on Elbrus (Western Plateau)
title_short Causes of Uncertainties in Paleoclimatic Reconstructions Based on the Oxygen Isotope Composition of Glacier Ice on Elbrus (Western Plateau)
title_sort causes of uncertainties in paleoclimatic reconstructions based on the oxygen isotope composition of glacier ice on elbrus (western plateau)
topic stable isotope of oxygen
temperature reconstruction
Caucasus
Elbrus
изотопный состав кислорода
реконструкция температур
Кавказ
Эльбрус
topic_facet stable isotope of oxygen
temperature reconstruction
Caucasus
Elbrus
изотопный состав кислорода
реконструкция температур
Кавказ
Эльбрус
url https://ice-snow.igras.ru/jour/article/view/1277
https://doi.org/10.31857/S2076673423040051