First 10Be dates of late holocene moraines of the Kashkatash and Irik glaciers, Northern Caucasus

We present 11 10Be ages of the moraines of the Irik and Kashkatash glaciers that allowed identifying and dating several Late Holocene glacier advances for the first time, including a prominent advance exceeding the Little Ice Age (LIA) maximum that occurred at 1.6–1.7 ka at еру Irik Glacier. The adv...

Full description

Bibliographic Details
Main Authors: O. Solomina N., V. Jomelli, I. Bushueva S., О. Соломина Н., В. Джомелли, И. Бушуева С.
Other Authors: We are grateful to our French colleagues of the Aix-Marseille University, CNRS, for the introduction of this method in the Caucasus. The ASTER AMS national facility (CEREGE, Aixen Provence) is supported by the INSU/CNRS, the ANR through the “Projets thematiques d’excel lence” program for the “Equipements d’excellence” ASTER-CEREGE action and IRD. We thank our colleagues Dr. Ekaterina Dolgova, Dr. Vladimir Mikhalenko, and Dr. Vladimir Matskovsky continuous efforts in sampling, processing the samples in the lab. and statistical analyses. The field works were supported by the framework (No 0148-2019-0004) of the State Assignment of Institute of Geography, Russian Academy of Sciences. The Megagrant project (agreement No 075-15-2021-599, 8.06.2021) of the Ministry of Highest Education of Russia “Natural and Anthropogenic Environmental Changes Inferred From Multi-Proxy Paleorecords. In Russia” supported the analyses of the data and writing of this paper., Мы благодарим наших французских коллег из Университета Экс-Марсель, Марсель, Франция за внедрение метода космогенных изотопов на Кавказе. Мы благодарны нашим коллегам Екатерине Долговой, Владимиру Михаленко и Владимиру Мацковскому за их усилия по отбору, подготовке и анализу образцов в лаборатории. Они также принимали участие в полевых работах и любезно предоставили данные по дендрохронологическому датированию и статистическому анализу. Полевые работы выполнены в рамках темы государственного задания Института географии No 0148-2019-0004. Анализ данных и написание статьи проведены в рамках Мегагранта № 075-15-2021-599 от 08.06.2021 г.
Format: Article in Journal/Newspaper
Language:English
Published: IGRAS 2023
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/1244
https://doi.org/10.31857/S2076673423030110
id ftjias:oai:oai.ice.elpub.ru:article/1244
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language English
topic Late Holocene;glacier fluctuations;moraines;CRE dates;tree rings;lichenometry
поздний поздний голоцен;колебания ледников;морены;космогенные изотопы;дендрохронология;лихенометрия
spellingShingle Late Holocene;glacier fluctuations;moraines;CRE dates;tree rings;lichenometry
поздний поздний голоцен;колебания ледников;морены;космогенные изотопы;дендрохронология;лихенометрия
O. Solomina N.
V. Jomelli
I. Bushueva S.
О. Соломина Н.
В. Джомелли
И. Бушуева С.
First 10Be dates of late holocene moraines of the Kashkatash and Irik glaciers, Northern Caucasus
topic_facet Late Holocene;glacier fluctuations;moraines;CRE dates;tree rings;lichenometry
поздний поздний голоцен;колебания ледников;морены;космогенные изотопы;дендрохронология;лихенометрия
description We present 11 10Be ages of the moraines of the Irik and Kashkatash glaciers that allowed identifying and dating several Late Holocene glacier advances for the first time, including a prominent advance exceeding the Little Ice Age (LIA) maximum that occurred at 1.6–1.7 ka at еру Irik Glacier. The advance is dated by the three very close 10Be ages of a moraine (1.57 ± 0.23 ka, 1.63 ± 0.23, and 1.68 ± 0.24 ka) located in the vicinity of the moraines of the Little Ice Age (LIA) maximum advance. The advance that occurred at 1.6–1.7 ka might be a possible analogue of the “Historical” stage described earlier in the Caucasus in literature basing at geomorphic evidence, speculations, and analogues with other mountain regions, but not dated. Another possibility is a potential correlation of this advance with the Late Antique Little Ice Age cooling in 536 to ~660 CE. The age of Irik Glacier advance is close to the humid period identified in the Garabashi (Baksan, Elbrus valley) lake sediments at 1500–1700 years BP. The magnitude of the identified glacier advances over the past two millennia was similar. Between the advance of 1.6–1.7 ka and the position of the glacier in 2022 CE the elevation of the Irik Glacier front increased by 520 m from 2490 to 3010 m asl. Four 10Be dates (0.7 + 0.11, 0.72 + 0.11, 0.77 + 0.11 and 0.82 + 0.18 ka) of the lateral moraine of the Kashkatash Glacier constrain the advance of the first stage of the LIA. The advance of the 13th century is also dated by 10Be at the DonguzOrun and Chalaati glaciers located at the Northern and Southern slopes of the Caucasus, respectively. The corresponding cooling in ca 1250–1400 CE is identified in the sedimentary paleoclimatic proxies of Lake Karakel (Teberda valley). A later advance at the Kashkatash Glacier is constrained by only one 10Be date (0.53 ± 0.13 ka) and needs further confirmation. Till deposited between the 1490s and 1640s at the Greater Azau Glacier is close to the date of this advance of the Kashkatash Glacier. A cooling at that time is recorded ...
author2 We are grateful to our French colleagues of the Aix-Marseille University, CNRS, for the introduction of this method in the Caucasus. The ASTER AMS national facility (CEREGE, Aixen Provence) is supported by the INSU/CNRS, the ANR through the “Projets thematiques d’excel lence” program for the “Equipements d’excellence” ASTER-CEREGE action and IRD. We thank our colleagues Dr. Ekaterina Dolgova, Dr. Vladimir Mikhalenko, and Dr. Vladimir Matskovsky continuous efforts in sampling, processing the samples in the lab. and statistical analyses. The field works were supported by the framework (No 0148-2019-0004) of the State Assignment of Institute of Geography, Russian Academy of Sciences. The Megagrant project (agreement No 075-15-2021-599, 8.06.2021) of the Ministry of Highest Education of Russia “Natural and Anthropogenic Environmental Changes Inferred From Multi-Proxy Paleorecords. In Russia” supported the analyses of the data and writing of this paper.
Мы благодарим наших французских коллег из Университета Экс-Марсель, Марсель, Франция за внедрение метода космогенных изотопов на Кавказе. Мы благодарны нашим коллегам Екатерине Долговой, Владимиру Михаленко и Владимиру Мацковскому за их усилия по отбору, подготовке и анализу образцов в лаборатории. Они также принимали участие в полевых работах и любезно предоставили данные по дендрохронологическому датированию и статистическому анализу. Полевые работы выполнены в рамках темы государственного задания Института географии No 0148-2019-0004. Анализ данных и написание статьи проведены в рамках Мегагранта № 075-15-2021-599 от 08.06.2021 г.
format Article in Journal/Newspaper
author O. Solomina N.
V. Jomelli
I. Bushueva S.
О. Соломина Н.
В. Джомелли
И. Бушуева С.
author_facet O. Solomina N.
V. Jomelli
I. Bushueva S.
О. Соломина Н.
В. Джомелли
И. Бушуева С.
author_sort O. Solomina N.
title First 10Be dates of late holocene moraines of the Kashkatash and Irik glaciers, Northern Caucasus
title_short First 10Be dates of late holocene moraines of the Kashkatash and Irik glaciers, Northern Caucasus
title_full First 10Be dates of late holocene moraines of the Kashkatash and Irik glaciers, Northern Caucasus
title_fullStr First 10Be dates of late holocene moraines of the Kashkatash and Irik glaciers, Northern Caucasus
title_full_unstemmed First 10Be dates of late holocene moraines of the Kashkatash and Irik glaciers, Northern Caucasus
title_sort first 10be dates of late holocene moraines of the kashkatash and irik glaciers, northern caucasus
publisher IGRAS
publishDate 2023
url https://ice-snow.igras.ru/jour/article/view/1244
https://doi.org/10.31857/S2076673423030110
genre The Cryosphere
genre_facet The Cryosphere
op_source Ice and Snow; Том 63, № 3 (2023); 410-425
Лёд и Снег; Том 63, № 3 (2023); 410-425
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/1244/679
Alexandrin M.Y., Solomina O.N., Darin A.V. Variations of heat availability in the Western Caucasus in the past 1500 years inferred from a high-resolution record of bromine in the sediment of Lake Karakel. Quatern. International. 2023. https://doi.org/10.1016/j.quaint.2023.05.020
Altberg V.J.O Sostoyanii lednikov Elbrusa i Glavnogo Kavkazskogo khrebta v basseine reki Baksan v period 1925– 1927 godov. About the state of glaciers of Elbrus and the Greater Caucasus mountain range in the basin of Baksan River during 1925–1927. Ottisk iz Izvestij GGI. Proc. of the State Hydrological Institute. 1928, 22:79 –89. [In Russian].
Arnold M., Merchel S., Bourlès D.L., Braucher R., Benedetti L., Finkel R.C., Aumaître G., Gottdang A., Klein M. The French accelerator mass spectrometry facility ASTER: improved performance and developments Nuclear Instrumentation Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010, 268: 1954–1959.
Balco G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quaternary Science Reviews. 2011, 30 :3–27.
Balco G. Glacier Change and Paleoclimate Applications of Cosmogenic-Nuclide Exposure Dating. Annual Review of Earth and Planetary Sciences 2020, 48 (1): 21– 48. https://doi.org/10.1146/annurev-earth-081619-05260
Balco G, Stone J.O, Lifton N.A, Dunai T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol. 2008, 3: 174–195.
Baume O., Marcinek J. Gletscher und Landschaften des Elbrusgebietes. Die Lawienentatigkeit. Verlag Gotha, Gotha. 1998 [In German].
Borchers Brian, Marrero S., Balco G., Caffee M., Goehring B., Lifton N., Nishiizumi K., Phillips F., Schaefer J., Stone J. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology. 2016, 31: 188–198.
Bush N.A.O Sostoyanii lednikov severnogo sklona Kavkaza v 1907, 1909, 1911 i 1913 godah. About state of glaciers of the Northern slope of the Caucasus in 1907, 1909, 1911 and 1913. Izvestiya Imperatorskogo geograficheskogo obschestva po obschey geografii. IRGO notes on general geography. 1914, 50 (5–9): 461–510 [In Russian].
Büntgen U., Myglan V.S., Ljungqvist F.C., McCormick M., Di Cosmo N., Sigl M., Kirdyanov A.V. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature geoscience. 2016, 9 (3): 231–236. https://doi.org/10.1038/ngeo2652
Bushueva I.S., Solomina O.N., Jomelli V. History of Alibek Glacier based on Earth remote sensing images, bioindication and cosmogenic (14C and 10Be). Led i Sneg. Snow and Ice. 2015, 55 (3): 97–106. [In Russian]. https://doi.org/10.15356/2076-6734-2015-3-97-106
Bushueva I.S., Solomina O.N. Kolebaniya lednika Kashkatash za poslednie chetire stoletiya po kartograficheskim, dendrohronologicheskim i lichenometricheskim dannim. Fluctuations of Kashkatash Glacier over last 400 years using cartographical, dendrochronological and lichonometrical data. Led i sneg. Ice and Snow. 2012, 2 (118): 121–130 [In Russian]. https://doi.org/10.15356/2076-6734-2012-2-121-130
Braucher R., Guillou V., Bourlès D.L., Arnold M., Aumaître G., Keddadouche K., Nottoli E. Preparation of Aster inhouse 10Be/9Be standard solutions. Nuclear Instruments and Methods in Physics Research. 2015, 361: 335–340.
Chmeleff J., von Blanckenburg F., Kossert K., Jakob D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. 2010, Sect. B 268 (2), 192– 199. https://doi.org/.09.012 https://doi.org/10.1016/j.nimb.2009
Deline P., Orombelli G. Glacier fluctuations in the western Alps during the Neoglacial, as indicated by the Miage morainic amphitheatre (Mont Blanc massif, Italy). Boreas. 2005, 34: 456–467. https://doi.org/10.1080/03009480500231369
Dolgova E. June–September temperature reconstruction in the Northern Caucasus based on blue intensity data. Dendrochronologia. 2016, 39: 17–23. https://doi.org/10.1016/j.dendro.2016.03.002
Grachev A.M., Novenko E.Y., Grabenko E.A., Alexandrin M.Y., Zazovskaya E.P., Konstantinov E.A., Solomina O.N. The Holocene paleoenvironmental history of Western Caucasus (Russia) reconstructed by multiproxy analysis of the continuous sediment sequence from Lake Khuko. The Holocene. 2021, 31 (3): 368– 379. https://doi.org/10.1177/0959683620972782
Grove J.M. Little Ice Ages: Ancient and Modern. 2004. Vol. 1 and 2, 2nd ed. London, New York: Routledge. https://doi.org/10.1017/S0016756805400771
Holzhauser H., Magny M., Zumbühl H.J. Glacier and lakelevel variations in west-central Europe over the last 3500 years. Holocene. 2005, 15 (6): 789–801. https://doi.org/10.1191/0959683605hl853ra
Hormes A., Müller B.U., Schlüchter C. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene. 2001: 255–265. https://doi.org/10.1191/095968301675275728
Jomelli V., Grancher D., Naveau P., Cooley D., Brunstein D. Assessment study of lichenometric methods for dating surfaces. Journ. of Geomorphology. 2007, 86 (1–2): 131–143. https://doi.org/10.1016/j.geomorph.2006.08.010
Jomelli V., Francou B. Comparing characteristics of rockfall talus and snow avalanche landforms in an alpine environment using a new methodological approach. Geomorphology. 2000, 35: 181–192.
Katalog lednikov SSSR. USSR Glacier Inventory. V. 8. North Caucasus. Pt. 5. Basins of Malka and Baksan rivers. Leningrad: Hydrometeoizdat, 1970: 145 p. [In Russian].
Korschinek Gunther, Bergmaier A., Faestermann T., Gerstmann U.C., Knie K., Rugel G., Wallner A. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010, 268 (2): 187–191.
Kovalev P.V. Sovremennoe oledenenie basseina reki Baksan. Modern glaciation of the Baksan River basin. Materiali kavkazskoi ekspedicii po programme MGG. Data of Caucasian expedition by the program of International Geophysical Year. 1961, 2: 3–106 [In Russian].
Le Roy M., Nicolussi K., Deline P., Astrade L., Edouard J.L., Miramont C., Arnaud F. Calendar-dated glacier variations in the Western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quaternary Science Reviews. 2015, 108: 1–22. https://doi.org/10.1016/j.quascirev.2014.10.033
Lifton N., Sato T., Dunai T.J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 2014, 386: 149–160. https://doi.org/10.1016/j.epsl.2013.10.052
Martin L.C.P., Blard P.H., Balco G., Lavé J., Delunel R., Lifton N., Laurent V. The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quaternary geochronology. 2017, 38: 25–49.
Merchel S., Arnold M., Aumaître G., Benedetti L., Bourlès D.L., Braucher R., Alfimov V., Freeman S.P.H.T., Steier P., Wallner A. Towards more precise 10Be and 36Cl data from measurements at the 10−14 level: Influence of sample preparation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2008, 266 (22): 4921–4926. https://doi.org/10.1016/j.nimb.2008.07.031
Military Topographers Map, 1887–1890. 1:42 000, Office of military topographers, 4th Cartographic Factory Geokartprom, Rostov-Don.
Murari M.K., Owen L.A., Dortch J.M., Caffee M.W., Dietsch C., Fuchs M., Haneberg W.C., Sharma M.C., TownsendSmall A. Timing and climatic drivers for glaciation across monsoon-influenced regions of the HimalayanTibetan orogen. Quaternary Science Reviews. 2014, 88C: 159–182. https://doi.org/10.1016/j.quascirev.2014.01.013
Nicolussi K., Roy M.L., Schlüchter C., Stoffel M., Wacker L. The glacier advance at the onset of the Little Ice Age in the Alps: New evidence from Mont Miné and Morteratsch glaciers. The Holocene. 2022, 32 (41): 09596836221088247. https://doi.org/10.1177/09596836221088247
Oledenenie El’brusa. Elbrus glaciations / Ed. G.K. Tushinskiy. Moscow: MSU, 1968: 345 p. [In Russian].
Uppala, Sakari M., Kållberg P.W., Adrian J., Simmons U. Andrae V., Bechtold Da Costa, Fiorino M., Gibson J.K. The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography. 2005, 131 (612): 2961–3012.
Prirodnye processy na territorii Kabardino-Balkarii. Environmental processes in the territory of KabardinoBalkaria. Moscow–Nal’chik: RAS, 2004: 438 p. [In Russian].
Schimmelpfennig I., Schaefer J.M., Akçar N., Koffman T., Ivy-Ochs S., Schwartz R., Schlüchter C. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth and Planetary Science Letters. 2014, 393: 220–230. https://doi.org/10.1016/j.epsl.2014.02.046
Shishkov V.A., Kuderina T.M., Mikhalenko V.N., Kuzmenkova N.V., Zazovskaya E.P., Solomina O.N. Garabashi lake as a paleoarchive (Elbrus area, Caucasus). Geophysical Research Abstracts. 2019, 21. EGU2019-15885-2. EGU General Assembly. CC Attribution 4.0 license.
Seinova I.B., Zolotarev E.V. Ledniki i seli Prielbrusiya. Glaciers and debris flows of vicinity of the Mt. Elbrus. Moscow: Nauchnyj mir. The scientific world. 2001 [In Russian].
Solomina O.N., Alexandrovskiy A.L., Zazovskaya E.P., Konstantinov E.A., Shishkov V.A., Kuderina T.M., Bushueva I.S. Late-Holocene advances of the Greater Azau Glacier (Elbrus area, Northern Caucasus) revealed by 14C dating of paleosols. The Holocene. 2022, 32 (5): 468– 481. https://doi.org/10.1177/09596836221074029
Solomina O.N., Bushueva I.S., Polumieva P.D., Dolgova E.A., Dokukin M.D. History of the Donguz-Orun Glacier from bioindication, historical, cartographic sources and remote sensing data. Led i Sneg. Ice and Snow. 2018, 58 (4): 448–461 [In Russian]. https://doi.org/10.15356/2076-6734-2018-4-448-461
Solomina O.N., Bushueva I.S., Dolgova E.A., Jomelli V., Alexandrin M.J., Mikhalenko V.N., Matskovsky V.V. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium. Glob. Planet change. 2016, 140: 28–58. https://doi.org/10.1016/j.gloplacha.2016.02.008
Solomina O.N., Bushueva I.S., Volodicheva N.A., Dolgova E.A. Age of moraines of the Bolshoy Azau Glacier in the upper course of the Baksan River valley according to dendrochronological data. Led i Sneg. Ice and Snow. 2021, 61 (2): 271–290 [In Russian]. https://doi.org/10.31857/S2076673421020088
Solovyev S.P. Izuchenie lednikov Severngo Kavkaza za 25 let (1907–1932 goda). Study of glaciers on the Northern Caucasus over 25 years (1907-1932). Izvestiya Gosudarstvennogo geograficheskogo obshchestva. Proc. of the State Geographical Society.1934, 66 (4): 525–555 [In Russian].
Tielidze L.G. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery. The Cryosphere, 2016, 10: 713–725. https://doi.org/, 2016 https://doi.org/10.5194/tc-10-713-2016
Tielidze L.G., Solomina O.N., Jomelli V., Dolgova E.A., Bushueva I.S., Mikhalenko V.N., Brauche R., ASTER Team. Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium-10 data. Led i Sneg. Ice and Snow. 2020, 60 (3): 453–470. https://doi.org/10.31857/S2076673420030052
Turmanina V.I. Perspektivy primenenija fitoindikacionnyh metodov v gljaciologii. Perspectives of applying phytoindicational methods in glaciology. In: Tushinskiy G.K. (Ed.), Fitoindikacionnye metody v gljacilogii. Phytoindication methods in glaciology. Moscow: MGU Press, 1971: 5–19 [In Russian].
Tushinsky G.K. Glyatsiologicheskie raboti na Elbruse. Glaciological studies on the Elbrus. Informatsionniy sbornik o rabotah po Mejdunarodnomu geofizicheskomu godu. Informational collection on the studies of the International Geophysical Year. Moscow: PUBLISHER, 1958: 3–28 [In Russian].
Tushinsky G.K., Turmanina V.A. Rhytms of the glacial processes of the past millennium. In Rhytms of the glacial processes. Moscow: MSU, 1979: 154–159.
Volodicheva N.A., Voitkovskiy K.F. Evolutsiya lednikovoi sistemi Elbrusa. Evolution of Elbrus glacial system. In: Konischev V.I., Saf’yanov G.A. (Eds.). Geografiya, obschestvo i okrujauschaya sreda. Struktura, dinamika i evolutsiya prirodnih geosystem. Geography, society and environment. Structure, dynamics and evolution of natural geosystems. Moscow: Gorodets, 2004: 44–50 [In Russian].
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.31857/S207667342303011010.1016/j.quaint.2023.05.02010.1146/annurev-earth-081619-0526010.1038/ngeo265210.15356/2076-6734-2015-3-97-10610.15356/2076-6734-2012-2-121-13010.1016/j.nimb.200910.1080/0300948050023136910.1016/j.dendro.2016.03.0
_version_ 1781069078545301504
spelling ftjias:oai:oai.ice.elpub.ru:article/1244 2023-10-29T02:40:41+01:00 First 10Be dates of late holocene moraines of the Kashkatash and Irik glaciers, Northern Caucasus Первые 10Be датировки позднеголоценовых морен ледников Кашкаташ и Ирик, Северный Кавказ O. Solomina N. V. Jomelli I. Bushueva S. О. Соломина Н. В. Джомелли И. Бушуева С. We are grateful to our French colleagues of the Aix-Marseille University, CNRS, for the introduction of this method in the Caucasus. The ASTER AMS national facility (CEREGE, Aixen Provence) is supported by the INSU/CNRS, the ANR through the “Projets thematiques d’excel lence” program for the “Equipements d’excellence” ASTER-CEREGE action and IRD. We thank our colleagues Dr. Ekaterina Dolgova, Dr. Vladimir Mikhalenko, and Dr. Vladimir Matskovsky continuous efforts in sampling, processing the samples in the lab. and statistical analyses. The field works were supported by the framework (No 0148-2019-0004) of the State Assignment of Institute of Geography, Russian Academy of Sciences. The Megagrant project (agreement No 075-15-2021-599, 8.06.2021) of the Ministry of Highest Education of Russia “Natural and Anthropogenic Environmental Changes Inferred From Multi-Proxy Paleorecords. In Russia” supported the analyses of the data and writing of this paper. Мы благодарим наших французских коллег из Университета Экс-Марсель, Марсель, Франция за внедрение метода космогенных изотопов на Кавказе. Мы благодарны нашим коллегам Екатерине Долговой, Владимиру Михаленко и Владимиру Мацковскому за их усилия по отбору, подготовке и анализу образцов в лаборатории. Они также принимали участие в полевых работах и любезно предоставили данные по дендрохронологическому датированию и статистическому анализу. Полевые работы выполнены в рамках темы государственного задания Института географии No 0148-2019-0004. Анализ данных и написание статьи проведены в рамках Мегагранта № 075-15-2021-599 от 08.06.2021 г. 2023-09-23 application/pdf https://ice-snow.igras.ru/jour/article/view/1244 https://doi.org/10.31857/S2076673423030110 eng eng IGRAS https://ice-snow.igras.ru/jour/article/view/1244/679 Alexandrin M.Y., Solomina O.N., Darin A.V. Variations of heat availability in the Western Caucasus in the past 1500 years inferred from a high-resolution record of bromine in the sediment of Lake Karakel. Quatern. International. 2023. https://doi.org/10.1016/j.quaint.2023.05.020 Altberg V.J.O Sostoyanii lednikov Elbrusa i Glavnogo Kavkazskogo khrebta v basseine reki Baksan v period 1925– 1927 godov. About the state of glaciers of Elbrus and the Greater Caucasus mountain range in the basin of Baksan River during 1925–1927. Ottisk iz Izvestij GGI. Proc. of the State Hydrological Institute. 1928, 22:79 –89. [In Russian]. Arnold M., Merchel S., Bourlès D.L., Braucher R., Benedetti L., Finkel R.C., Aumaître G., Gottdang A., Klein M. The French accelerator mass spectrometry facility ASTER: improved performance and developments Nuclear Instrumentation Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010, 268: 1954–1959. Balco G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quaternary Science Reviews. 2011, 30 :3–27. Balco G. Glacier Change and Paleoclimate Applications of Cosmogenic-Nuclide Exposure Dating. Annual Review of Earth and Planetary Sciences 2020, 48 (1): 21– 48. https://doi.org/10.1146/annurev-earth-081619-05260 Balco G, Stone J.O, Lifton N.A, Dunai T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol. 2008, 3: 174–195. Baume O., Marcinek J. Gletscher und Landschaften des Elbrusgebietes. Die Lawienentatigkeit. Verlag Gotha, Gotha. 1998 [In German]. Borchers Brian, Marrero S., Balco G., Caffee M., Goehring B., Lifton N., Nishiizumi K., Phillips F., Schaefer J., Stone J. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology. 2016, 31: 188–198. Bush N.A.O Sostoyanii lednikov severnogo sklona Kavkaza v 1907, 1909, 1911 i 1913 godah. About state of glaciers of the Northern slope of the Caucasus in 1907, 1909, 1911 and 1913. Izvestiya Imperatorskogo geograficheskogo obschestva po obschey geografii. IRGO notes on general geography. 1914, 50 (5–9): 461–510 [In Russian]. Büntgen U., Myglan V.S., Ljungqvist F.C., McCormick M., Di Cosmo N., Sigl M., Kirdyanov A.V. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature geoscience. 2016, 9 (3): 231–236. https://doi.org/10.1038/ngeo2652 Bushueva I.S., Solomina O.N., Jomelli V. History of Alibek Glacier based on Earth remote sensing images, bioindication and cosmogenic (14C and 10Be). Led i Sneg. Snow and Ice. 2015, 55 (3): 97–106. [In Russian]. https://doi.org/10.15356/2076-6734-2015-3-97-106 Bushueva I.S., Solomina O.N. Kolebaniya lednika Kashkatash za poslednie chetire stoletiya po kartograficheskim, dendrohronologicheskim i lichenometricheskim dannim. Fluctuations of Kashkatash Glacier over last 400 years using cartographical, dendrochronological and lichonometrical data. Led i sneg. Ice and Snow. 2012, 2 (118): 121–130 [In Russian]. https://doi.org/10.15356/2076-6734-2012-2-121-130 Braucher R., Guillou V., Bourlès D.L., Arnold M., Aumaître G., Keddadouche K., Nottoli E. Preparation of Aster inhouse 10Be/9Be standard solutions. Nuclear Instruments and Methods in Physics Research. 2015, 361: 335–340. Chmeleff J., von Blanckenburg F., Kossert K., Jakob D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. 2010, Sect. B 268 (2), 192– 199. https://doi.org/.09.012 https://doi.org/10.1016/j.nimb.2009 Deline P., Orombelli G. Glacier fluctuations in the western Alps during the Neoglacial, as indicated by the Miage morainic amphitheatre (Mont Blanc massif, Italy). Boreas. 2005, 34: 456–467. https://doi.org/10.1080/03009480500231369 Dolgova E. June–September temperature reconstruction in the Northern Caucasus based on blue intensity data. Dendrochronologia. 2016, 39: 17–23. https://doi.org/10.1016/j.dendro.2016.03.002 Grachev A.M., Novenko E.Y., Grabenko E.A., Alexandrin M.Y., Zazovskaya E.P., Konstantinov E.A., Solomina O.N. The Holocene paleoenvironmental history of Western Caucasus (Russia) reconstructed by multiproxy analysis of the continuous sediment sequence from Lake Khuko. The Holocene. 2021, 31 (3): 368– 379. https://doi.org/10.1177/0959683620972782 Grove J.M. Little Ice Ages: Ancient and Modern. 2004. Vol. 1 and 2, 2nd ed. London, New York: Routledge. https://doi.org/10.1017/S0016756805400771 Holzhauser H., Magny M., Zumbühl H.J. Glacier and lakelevel variations in west-central Europe over the last 3500 years. Holocene. 2005, 15 (6): 789–801. https://doi.org/10.1191/0959683605hl853ra Hormes A., Müller B.U., Schlüchter C. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene. 2001: 255–265. https://doi.org/10.1191/095968301675275728 Jomelli V., Grancher D., Naveau P., Cooley D., Brunstein D. Assessment study of lichenometric methods for dating surfaces. Journ. of Geomorphology. 2007, 86 (1–2): 131–143. https://doi.org/10.1016/j.geomorph.2006.08.010 Jomelli V., Francou B. Comparing characteristics of rockfall talus and snow avalanche landforms in an alpine environment using a new methodological approach. Geomorphology. 2000, 35: 181–192. Katalog lednikov SSSR. USSR Glacier Inventory. V. 8. North Caucasus. Pt. 5. Basins of Malka and Baksan rivers. Leningrad: Hydrometeoizdat, 1970: 145 p. [In Russian]. Korschinek Gunther, Bergmaier A., Faestermann T., Gerstmann U.C., Knie K., Rugel G., Wallner A. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010, 268 (2): 187–191. Kovalev P.V. Sovremennoe oledenenie basseina reki Baksan. Modern glaciation of the Baksan River basin. Materiali kavkazskoi ekspedicii po programme MGG. Data of Caucasian expedition by the program of International Geophysical Year. 1961, 2: 3–106 [In Russian]. Le Roy M., Nicolussi K., Deline P., Astrade L., Edouard J.L., Miramont C., Arnaud F. Calendar-dated glacier variations in the Western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quaternary Science Reviews. 2015, 108: 1–22. https://doi.org/10.1016/j.quascirev.2014.10.033 Lifton N., Sato T., Dunai T.J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 2014, 386: 149–160. https://doi.org/10.1016/j.epsl.2013.10.052 Martin L.C.P., Blard P.H., Balco G., Lavé J., Delunel R., Lifton N., Laurent V. The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quaternary geochronology. 2017, 38: 25–49. Merchel S., Arnold M., Aumaître G., Benedetti L., Bourlès D.L., Braucher R., Alfimov V., Freeman S.P.H.T., Steier P., Wallner A. Towards more precise 10Be and 36Cl data from measurements at the 10−14 level: Influence of sample preparation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2008, 266 (22): 4921–4926. https://doi.org/10.1016/j.nimb.2008.07.031 Military Topographers Map, 1887–1890. 1:42 000, Office of military topographers, 4th Cartographic Factory Geokartprom, Rostov-Don. Murari M.K., Owen L.A., Dortch J.M., Caffee M.W., Dietsch C., Fuchs M., Haneberg W.C., Sharma M.C., TownsendSmall A. Timing and climatic drivers for glaciation across monsoon-influenced regions of the HimalayanTibetan orogen. Quaternary Science Reviews. 2014, 88C: 159–182. https://doi.org/10.1016/j.quascirev.2014.01.013 Nicolussi K., Roy M.L., Schlüchter C., Stoffel M., Wacker L. The glacier advance at the onset of the Little Ice Age in the Alps: New evidence from Mont Miné and Morteratsch glaciers. The Holocene. 2022, 32 (41): 09596836221088247. https://doi.org/10.1177/09596836221088247 Oledenenie El’brusa. Elbrus glaciations / Ed. G.K. Tushinskiy. Moscow: MSU, 1968: 345 p. [In Russian]. Uppala, Sakari M., Kållberg P.W., Adrian J., Simmons U. Andrae V., Bechtold Da Costa, Fiorino M., Gibson J.K. The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography. 2005, 131 (612): 2961–3012. Prirodnye processy na territorii Kabardino-Balkarii. Environmental processes in the territory of KabardinoBalkaria. Moscow–Nal’chik: RAS, 2004: 438 p. [In Russian]. Schimmelpfennig I., Schaefer J.M., Akçar N., Koffman T., Ivy-Ochs S., Schwartz R., Schlüchter C. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth and Planetary Science Letters. 2014, 393: 220–230. https://doi.org/10.1016/j.epsl.2014.02.046 Shishkov V.A., Kuderina T.M., Mikhalenko V.N., Kuzmenkova N.V., Zazovskaya E.P., Solomina O.N. Garabashi lake as a paleoarchive (Elbrus area, Caucasus). Geophysical Research Abstracts. 2019, 21. EGU2019-15885-2. EGU General Assembly. CC Attribution 4.0 license. Seinova I.B., Zolotarev E.V. Ledniki i seli Prielbrusiya. Glaciers and debris flows of vicinity of the Mt. Elbrus. Moscow: Nauchnyj mir. The scientific world. 2001 [In Russian]. Solomina O.N., Alexandrovskiy A.L., Zazovskaya E.P., Konstantinov E.A., Shishkov V.A., Kuderina T.M., Bushueva I.S. Late-Holocene advances of the Greater Azau Glacier (Elbrus area, Northern Caucasus) revealed by 14C dating of paleosols. The Holocene. 2022, 32 (5): 468– 481. https://doi.org/10.1177/09596836221074029 Solomina O.N., Bushueva I.S., Polumieva P.D., Dolgova E.A., Dokukin M.D. History of the Donguz-Orun Glacier from bioindication, historical, cartographic sources and remote sensing data. Led i Sneg. Ice and Snow. 2018, 58 (4): 448–461 [In Russian]. https://doi.org/10.15356/2076-6734-2018-4-448-461 Solomina O.N., Bushueva I.S., Dolgova E.A., Jomelli V., Alexandrin M.J., Mikhalenko V.N., Matskovsky V.V. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium. Glob. Planet change. 2016, 140: 28–58. https://doi.org/10.1016/j.gloplacha.2016.02.008 Solomina O.N., Bushueva I.S., Volodicheva N.A., Dolgova E.A. Age of moraines of the Bolshoy Azau Glacier in the upper course of the Baksan River valley according to dendrochronological data. Led i Sneg. Ice and Snow. 2021, 61 (2): 271–290 [In Russian]. https://doi.org/10.31857/S2076673421020088 Solovyev S.P. Izuchenie lednikov Severngo Kavkaza za 25 let (1907–1932 goda). Study of glaciers on the Northern Caucasus over 25 years (1907-1932). Izvestiya Gosudarstvennogo geograficheskogo obshchestva. Proc. of the State Geographical Society.1934, 66 (4): 525–555 [In Russian]. Tielidze L.G. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery. The Cryosphere, 2016, 10: 713–725. https://doi.org/, 2016 https://doi.org/10.5194/tc-10-713-2016 Tielidze L.G., Solomina O.N., Jomelli V., Dolgova E.A., Bushueva I.S., Mikhalenko V.N., Brauche R., ASTER Team. Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium-10 data. Led i Sneg. Ice and Snow. 2020, 60 (3): 453–470. https://doi.org/10.31857/S2076673420030052 Turmanina V.I. Perspektivy primenenija fitoindikacionnyh metodov v gljaciologii. Perspectives of applying phytoindicational methods in glaciology. In: Tushinskiy G.K. (Ed.), Fitoindikacionnye metody v gljacilogii. Phytoindication methods in glaciology. Moscow: MGU Press, 1971: 5–19 [In Russian]. Tushinsky G.K. Glyatsiologicheskie raboti na Elbruse. Glaciological studies on the Elbrus. Informatsionniy sbornik o rabotah po Mejdunarodnomu geofizicheskomu godu. Informational collection on the studies of the International Geophysical Year. Moscow: PUBLISHER, 1958: 3–28 [In Russian]. Tushinsky G.K., Turmanina V.A. Rhytms of the glacial processes of the past millennium. In Rhytms of the glacial processes. Moscow: MSU, 1979: 154–159. Volodicheva N.A., Voitkovskiy K.F. Evolutsiya lednikovoi sistemi Elbrusa. Evolution of Elbrus glacial system. In: Konischev V.I., Saf’yanov G.A. (Eds.). Geografiya, obschestvo i okrujauschaya sreda. Struktura, dinamika i evolutsiya prirodnih geosystem. Geography, society and environment. Structure, dynamics and evolution of natural geosystems. Moscow: Gorodets, 2004: 44–50 [In Russian]. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 63, № 3 (2023); 410-425 Лёд и Снег; Том 63, № 3 (2023); 410-425 2412-3765 2076-6734 Late Holocene;glacier fluctuations;moraines;CRE dates;tree rings;lichenometry поздний поздний голоцен;колебания ледников;морены;космогенные изотопы;дендрохронология;лихенометрия info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjias https://doi.org/10.31857/S207667342303011010.1016/j.quaint.2023.05.02010.1146/annurev-earth-081619-0526010.1038/ngeo265210.15356/2076-6734-2015-3-97-10610.15356/2076-6734-2012-2-121-13010.1016/j.nimb.200910.1080/0300948050023136910.1016/j.dendro.2016.03.0 2023-10-01T17:55:18Z We present 11 10Be ages of the moraines of the Irik and Kashkatash glaciers that allowed identifying and dating several Late Holocene glacier advances for the first time, including a prominent advance exceeding the Little Ice Age (LIA) maximum that occurred at 1.6–1.7 ka at еру Irik Glacier. The advance is dated by the three very close 10Be ages of a moraine (1.57 ± 0.23 ka, 1.63 ± 0.23, and 1.68 ± 0.24 ka) located in the vicinity of the moraines of the Little Ice Age (LIA) maximum advance. The advance that occurred at 1.6–1.7 ka might be a possible analogue of the “Historical” stage described earlier in the Caucasus in literature basing at geomorphic evidence, speculations, and analogues with other mountain regions, but not dated. Another possibility is a potential correlation of this advance with the Late Antique Little Ice Age cooling in 536 to ~660 CE. The age of Irik Glacier advance is close to the humid period identified in the Garabashi (Baksan, Elbrus valley) lake sediments at 1500–1700 years BP. The magnitude of the identified glacier advances over the past two millennia was similar. Between the advance of 1.6–1.7 ka and the position of the glacier in 2022 CE the elevation of the Irik Glacier front increased by 520 m from 2490 to 3010 m asl. Four 10Be dates (0.7 + 0.11, 0.72 + 0.11, 0.77 + 0.11 and 0.82 + 0.18 ka) of the lateral moraine of the Kashkatash Glacier constrain the advance of the first stage of the LIA. The advance of the 13th century is also dated by 10Be at the DonguzOrun and Chalaati glaciers located at the Northern and Southern slopes of the Caucasus, respectively. The corresponding cooling in ca 1250–1400 CE is identified in the sedimentary paleoclimatic proxies of Lake Karakel (Teberda valley). A later advance at the Kashkatash Glacier is constrained by only one 10Be date (0.53 ± 0.13 ka) and needs further confirmation. Till deposited between the 1490s and 1640s at the Greater Azau Glacier is close to the date of this advance of the Kashkatash Glacier. A cooling at that time is recorded ... Article in Journal/Newspaper The Cryosphere Ice and Snow (E-Journal)