Investigation of Brash Ice (Overview)

The urgency of brash ice study is growing in connection with intensive shipping in fast ice zone of freezing seas as well as inland waterways. In addition, an important incentive for such studies is the design and construction of port infrastructure in these water areas. The review shows that the ma...

Full description

Bibliographic Details
Main Authors: K. Sazonov E., К. Сазонов Е.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2023
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/1228
https://doi.org/10.31857/S207667342302014X
id ftjias:oai:oai.ice.elpub.ru:article/1228
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic brash ice;consolidated layer;porosity;strength;channel
тёртый лёд;консолидированный слой;пористость;прочность;канал
spellingShingle brash ice;consolidated layer;porosity;strength;channel
тёртый лёд;консолидированный слой;пористость;прочность;канал
K. Sazonov E.
К. Сазонов Е.
Investigation of Brash Ice (Overview)
topic_facet brash ice;consolidated layer;porosity;strength;channel
тёртый лёд;консолидированный слой;пористость;прочность;канал
description The urgency of brash ice study is growing in connection with intensive shipping in fast ice zone of freezing seas as well as inland waterways. In addition, an important incentive for such studies is the design and construction of port infrastructure in these water areas. The review shows that the main directions of research refer to three main topics. 1) Investigation of morphometrical brash ice characteristics in navigable channels and harbors, their variability under ambient factors. The most well-studied morphometrical parameters of brash ice are relative channel thickness and its distribution over channel width. Size distribution details about brash ice floes are of great interest for researchers. 2) Investigation of porosity and mechanical properties of brash ice as a granular material taking account of freezing between individual ice blocks. In many respects, these parameters determine the pattern of brash ice interaction with ships and the possibility of their movement. 3) Description of consolidated layer formation in brash ice and refinement of predictions for brash ice growth in the water area under consideration depending on the intensity of ship traffic and the number of degree-days with negative temperatures over the time interval between ship passages. Large attention is given to new methods of studies including full-scale and laboratory experiments, as well as the use of ice basins for this purpose, with a brief review of thermal methods for brash ice management. The paper formulates some of the problems yet to solved, which require extra studies. В обзоре рассмотрены основные направления исследований тёртого льда. Основное внимание уделено морфометрическим особенностям тёртого льда в каналах, изучению пористости и прочностных свойств тёртого льда как сыпучей среды, а также процессам формирования консолидированного слоя. Описаны эксперименты по определению свойств тёртого льда в ледовых бассейнах – это новое направление в исследованиях. Сформулированы некоторые не решенные проблемы.
format Article in Journal/Newspaper
author K. Sazonov E.
К. Сазонов Е.
author_facet K. Sazonov E.
К. Сазонов Е.
author_sort K. Sazonov E.
title Investigation of Brash Ice (Overview)
title_short Investigation of Brash Ice (Overview)
title_full Investigation of Brash Ice (Overview)
title_fullStr Investigation of Brash Ice (Overview)
title_full_unstemmed Investigation of Brash Ice (Overview)
title_sort investigation of brash ice (overview)
publisher IGRAS
publishDate 2023
url https://ice-snow.igras.ru/jour/article/view/1228
https://doi.org/10.31857/S207667342302014X
genre Arctic
genre_facet Arctic
op_source Ice and Snow; Том 63, № 2 (2023); 302-312
Лёд и Снег; Том 63, № 2 (2023); 302-312
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/1228/668
Андреев О.М., Гудошников Ю.П., Виноградов Р.А., Клячкин С.В. Ледовые каналы как лимитирующий фактор при проектировании терминалов отгрузки углеводородов в прибрежной зоне арктических морей // Науч.-технич. сб. “Вести газовой науки”. 2019. № 2 (39). С. 46–52.
Астафьев В.Н., Сурков Г.А., Трусков П.А. Торосы и стамухи Охотского моря. СПб: “Прогресс-Погода”, 1997. 197 с.
Сазонов К.Е. К вопросу о пористости киля тороса (по поводу статьи В.В. Харитонова) // Проблемы Арктики и Антарктики. 2021. Т. 67. № 1. С. 60–66. https://doi.org/10.30758/0555-2648-2021-67-1-60-66
Сазонов К.Е. Движение судов в тёртых льдах: результаты исследований // Проблемы Арктики и Антарктики. 2021. Т. 67. № 4. С. 406–424. https://doi.org/10.30758/0555-2648-2021-67-4-406-424
Сазонов К.Е. Тёртый лёд – рукотворная проблема морской ледотехники. // Природа. 2022. № 3. С. 15–26.
Смирнов А.П., Майнагашев Б.С., Голохвастов В.А., Соколов Б.М. Безопасность плавания во льдах. М.: Транспорт, 1993. 335 с
Харитонов В.В. Распределение пористости неконсолидированной части киля торосов // Проблемы Арктики и Антарктики. 2021. Т. 67. № 1. С. 44–59. https://doi.org/10.30758/0555-2648-2021-67-1-44-59
Цытович Н.А. Механика грунтов. М.: Высшая школа, 1973. 280 с.
Astrup O.S. Experimental Investigations of Ice Rubble: Shear Box and Pile Testing. Master Thesis. Norwegian University of Science and Technology. 2012. 145 p.
Astrup O.S., Helgøy H., Høyland K.V. Laboratory work on freeze-bonds in ice rubble, part III: shear box experiments // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_090.pdf. Дата обращения: 01 03 2023
Bonath V., Zhaka V., Sand B. Field measurements on the behavior of brash ice // Электронный ресурс. https://www.poac.com/Papers/2019/pdf/POAC19-106.pdf. Дата обращения: 01 03 2023
Boroojerdi M.T., Bailey E., Taylor R.S. Experimental study of the effect of submersion time on the strength development of freeze bonds // Cold Regions Science and Technology. 2020. V. 172. 102986. https://doi.org/10.1016/j.coldregions.2020.103120
Bridges R. Geometric Model on the Evolution of Brash Ice Channels // Proc. of the Thirtieth (2020) Intern. Ocean and Polar Engineering Conf. Shanghai, China, 2020. P. 617–621.
Bridges R., Riska K., Haase A. Experimental Tests on the Consolidation of Broken and Brash Ice // Электронный ресурс. https://www.poac.com/Papers/2019/pdf/POAC19-144.pdf. Дата обращения: 01 03 2023
Bridges R., Riska K., Suominen M., Haase A. Experimental Tests on Brash Ice Channel Development // Proc. of the Thirtieth Intern. Ocean and Polar Engineering Conf. Shanghai, China, 2020. P. 639–643.
Carstens T. Maintaining an Ice-Free Harbor by Pumping of Warm Water // Proc. of the Fourth Intern. Conf. on Port and Ocean Engineering under Arctic Conditions, Delft, St. Johns, Canada. 1977. V. 1. P. 347–357.
Chomatas K. Development of Brash Ice Growth Models and Estimation of the Energy Needs to Manage Ice in the Yamal LNG port in Sabetta. Master of Science Case Study. Delft University of Technology. 2015. 202 p.
Coche E., Kalinin A. Yamal LNG: Challenges of an LNG port in Arctic // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_172.pdf. Дата обращения: 01 03 2023
Eranti E. Penttinen M., Rekonen T. Extending the Ice Navigation Season in the Saimaa Canal // Proc. 7th Int. POAC Conf. Helsinki, Finland. 1983. P. 494–504.
Ettema R., Huang H.P. Ice Formation in Frequently Transited Navigation Channels. CRREL Special Report 90–40. 1990. 120 p.
Ettema R., Urroz-Aguirre G.E. Friction and cohesion in ice rubble reviewed // Cold Regions Engineering. 1991. V. 12. P. 317–326.
Helgøy H., Astrup O.S., Høyland K.V. Laboratory work on freeze-bonds in ice rubble, part I: experimental set-up, ice-properties and freeze-bond texture // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_125.pdf. Дата обращения: 01 03 2023
Helgøy H., Astrup O.S., Høyland K.V. Laboratory work on freeze-bonds in ice rubble, part II: results from individual freeze-bond experiments // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_126.pdf. Дата обращения: 01 03 2023
Kannari P. Measurements of characteristics and propulsion performance of a ship in old ice-clogged channels // Proc. of the 7nd Intern. Conf. on Port and Ocean Engineering in Arctic Conditions, POAC–83, Espoo, Fin-land. 1983. V. 2. P. 600–619.
Karulin E.B., Karulina M.M., Tarovik O.V. Analytical Investigation of Navigation Channel Evolution in Severe Ice Conditions // Электронный ресурс. https://www.researchgate.net/publication/326190461_Analytical_Investigation_of_Navigation_Channel_Evolution_in_Severe_Ice_Conditions. Дата обращения 01.03.2023
Krupina N., Chernov A., Likhomanov V., Maksimova P., Savitskaya A. The ice tank study of ice performance of a large LNGC in the old channel // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_023.pdf. Дата обращения: 01 03 2023
Liferov P., Bonnemaire B. Ice rubble behaviour and strength: Part I. Review of testing and interpretation of results // Cold Regions Science Technology. 2005. 41 (2). P. 135–151. https://doi.org/10.1016/j.coldregions.2004.10.001
Loset S., Shkhinek K.N., Gudmestad O.T., Hoyland K.V. Actions from Ice on Arctic Offshore and Coastal Structures. St. Petersburg: Publusher “Lan”, 2006. 272 p.
Marchenko A., Chenot C. Regelation of ice blocks in the water and the air // Proc. of the 20th Intern. Conf. on Port and Ocean Engineering under Arctic Conditions. Lulea. Sweden. 2009. V. 1. P. 543–554.
Matala R. Investigation of model-scale brash ice properties // Ocean Engineering. 2021. V. 225. 108539. https://doi.org/10.1016/j.oceaneng.2020.108539
Matala R., Skogström T. Soil mechanics measurement methods applied in model brash ice // Proc. of the 25th Intern. Conf. on Port and Ocean Engineering under Arctic Conditions. Delft, The Netherlands, 2019. P. 53–65.
Mellor M. Ship resistance in thick brash ice // Cold Regions Science Technology. 1980. V. 3 № 4. P. 305–321. Montenegro Cabrera I. Smoothed particle hydrodynamics modeling of brash ice. Master Thesis. University of Rostock. 2017. 94 p.
Nortala-Hoikkanen A. Development of brash ice in channels navigated by ship // Proc. of the 15th Intern. Conf. on Port and Ocean Engineering in Arctic Conditions, POAC-99, Espoo, Finland. 1999. V. 2. P. 620–630.
Palmer A., Croasdale K. Arctic Offshore Engineering. World Scientific Publ. 2013. 357 p.
Pan H., Eranti E. Applicability of Air Bubbler Lines for Ice Control in Harbours // China Ocean Engineering. 2007. V. 21. №. 2. P. 215–224.
Pan H., Eranti E. Flow and heat transfer simulations for the design of the Helsinki Vuosaari harbour ice control system // Cold Regions Science and Technology. 2009. № 55 P. 304–310. https://doi.org/10.1016/j.coldregions.2008.09.001
Patil A., Sand B., Fransson L., Bonath V., Cwirzen A. Simulation of brash ice behavior in the gulf of Bothnia using smoothed particle hydrodynamics formulation // Journ. of Cold Regions Engineering – ASCE. 2021. V. 35. № 2. 04021003. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000245
Prasanna M. Numerical Simulation of Brash Ice. Master Thesis. University of Rostock. 2018. 92 p.
Prasanna M., Wei M., Polojärvi А., Cole D.M. Breakage of saline ice blocks in ice-to-ice contact // Электронный ресурс. https://www.poac.com/Papers/2021/POAC21-065.pdf. Дата обращения: 01 03 2023
Prasanna M., Wei M., Polojärvi A., Cole D.M. Laboratory experiments on floating saline ice block breakage in ice-to-ice contact // Cold Regions Science and Technology 2021. V. 189. 103315. https://doi.org/10.1016/j.coldregions.2021b.103315
Riska K., Wilhelmson M., Englund K., Leiviska T. Performance of Merchant Vessels in the Baltic. Winter Navigation Research Board, Res. Rpt .1997. V. 52. 72 p.
Riska K., Bridges R., Shumovskiy S., Thomas C., Coche E., Bonath V., Tobie A., Chomatas K., Caloba Duarte de Oliveira R. Brash ice growth model – development and validation. // Cold Regions Science and Technology. 2019. V. 157. P. 30–41. https://doi.org/10.1016/j.coldregions.2018.09.004
Sandkvist J. Brash Ice Behavior in Frequented Ship Channels // University of Luleå. 1986. №. 139. 132 p.
Sorsimo A., Nyman T., Heinonen J. Ship-ice interaction in a channel. Winter navigation research board. Helsinki, Finland. Research Report. 2016. №. 93. 22 p.
Tuovinen P. The Size Distribution of Ice Blocks in a Broken Channel. Ship hydrodynamics laboratory, Helsinki University of Technology. Otaniemi, Espoo, 1979. 19 p.
Zhaka V., Bonath V., Sand B., Cwirzen A. Physical and mechanical properties of ice from a refrozen ship channel ice in Bay of Bothnia // Электронный ресурс. https://sintef.brage.unit.no/sintefxmlui/bit-stream/handle/11250/2716075/IAHR_2020_BS_-Physical%2band%2bmechanical%2bproperties%2bof%2bice%2bfrom%2ba%2brefrozen%2bship%2bchannel%2bice%2bin%2bBay%2bof%2bBothnia.pdf?sequence=1&isAllowed=y. Дата обращения: 01 03 2023
Zhaka V., Bridges R., Riska K., Cwirzen A. Brash ice formation on a laboratory scale // Электронный ресурс. https://www.poac.com/Papers/2021/POAC21-086.pdf. Дата обращения: 01 03 2023
https://ice-snow.igras.ru/jour/article/view/1228
doi:10.31857/S207667342302014X
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.31857/S207667342302014X10.30758/0555-2648-2021-67-1-60-6610.30758/0555-2648-2021-67-4-406-42410.30758/0555-2648-2021-67-1-44-5910.1016/j.coldregions.2020.10312010.1016/j.coldregions.2004.10.00110.1016/j.oceaneng.2020.10853910.1016/j.col
_version_ 1778518801368743936
spelling ftjias:oai:oai.ice.elpub.ru:article/1228 2023-10-01T03:52:39+02:00 Investigation of Brash Ice (Overview) Исследования тёртого льда (обзор) K. Sazonov E. К. Сазонов Е. 2023-09-01 application/pdf https://ice-snow.igras.ru/jour/article/view/1228 https://doi.org/10.31857/S207667342302014X rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/1228/668 Андреев О.М., Гудошников Ю.П., Виноградов Р.А., Клячкин С.В. Ледовые каналы как лимитирующий фактор при проектировании терминалов отгрузки углеводородов в прибрежной зоне арктических морей // Науч.-технич. сб. “Вести газовой науки”. 2019. № 2 (39). С. 46–52. Астафьев В.Н., Сурков Г.А., Трусков П.А. Торосы и стамухи Охотского моря. СПб: “Прогресс-Погода”, 1997. 197 с. Сазонов К.Е. К вопросу о пористости киля тороса (по поводу статьи В.В. Харитонова) // Проблемы Арктики и Антарктики. 2021. Т. 67. № 1. С. 60–66. https://doi.org/10.30758/0555-2648-2021-67-1-60-66 Сазонов К.Е. Движение судов в тёртых льдах: результаты исследований // Проблемы Арктики и Антарктики. 2021. Т. 67. № 4. С. 406–424. https://doi.org/10.30758/0555-2648-2021-67-4-406-424 Сазонов К.Е. Тёртый лёд – рукотворная проблема морской ледотехники. // Природа. 2022. № 3. С. 15–26. Смирнов А.П., Майнагашев Б.С., Голохвастов В.А., Соколов Б.М. Безопасность плавания во льдах. М.: Транспорт, 1993. 335 с Харитонов В.В. Распределение пористости неконсолидированной части киля торосов // Проблемы Арктики и Антарктики. 2021. Т. 67. № 1. С. 44–59. https://doi.org/10.30758/0555-2648-2021-67-1-44-59 Цытович Н.А. Механика грунтов. М.: Высшая школа, 1973. 280 с. Astrup O.S. Experimental Investigations of Ice Rubble: Shear Box and Pile Testing. Master Thesis. Norwegian University of Science and Technology. 2012. 145 p. Astrup O.S., Helgøy H., Høyland K.V. Laboratory work on freeze-bonds in ice rubble, part III: shear box experiments // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_090.pdf. Дата обращения: 01 03 2023 Bonath V., Zhaka V., Sand B. Field measurements on the behavior of brash ice // Электронный ресурс. https://www.poac.com/Papers/2019/pdf/POAC19-106.pdf. Дата обращения: 01 03 2023 Boroojerdi M.T., Bailey E., Taylor R.S. Experimental study of the effect of submersion time on the strength development of freeze bonds // Cold Regions Science and Technology. 2020. V. 172. 102986. https://doi.org/10.1016/j.coldregions.2020.103120 Bridges R. Geometric Model on the Evolution of Brash Ice Channels // Proc. of the Thirtieth (2020) Intern. Ocean and Polar Engineering Conf. Shanghai, China, 2020. P. 617–621. Bridges R., Riska K., Haase A. Experimental Tests on the Consolidation of Broken and Brash Ice // Электронный ресурс. https://www.poac.com/Papers/2019/pdf/POAC19-144.pdf. Дата обращения: 01 03 2023 Bridges R., Riska K., Suominen M., Haase A. Experimental Tests on Brash Ice Channel Development // Proc. of the Thirtieth Intern. Ocean and Polar Engineering Conf. Shanghai, China, 2020. P. 639–643. Carstens T. Maintaining an Ice-Free Harbor by Pumping of Warm Water // Proc. of the Fourth Intern. Conf. on Port and Ocean Engineering under Arctic Conditions, Delft, St. Johns, Canada. 1977. V. 1. P. 347–357. Chomatas K. Development of Brash Ice Growth Models and Estimation of the Energy Needs to Manage Ice in the Yamal LNG port in Sabetta. Master of Science Case Study. Delft University of Technology. 2015. 202 p. Coche E., Kalinin A. Yamal LNG: Challenges of an LNG port in Arctic // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_172.pdf. Дата обращения: 01 03 2023 Eranti E. Penttinen M., Rekonen T. Extending the Ice Navigation Season in the Saimaa Canal // Proc. 7th Int. POAC Conf. Helsinki, Finland. 1983. P. 494–504. Ettema R., Huang H.P. Ice Formation in Frequently Transited Navigation Channels. CRREL Special Report 90–40. 1990. 120 p. Ettema R., Urroz-Aguirre G.E. Friction and cohesion in ice rubble reviewed // Cold Regions Engineering. 1991. V. 12. P. 317–326. Helgøy H., Astrup O.S., Høyland K.V. Laboratory work on freeze-bonds in ice rubble, part I: experimental set-up, ice-properties and freeze-bond texture // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_125.pdf. Дата обращения: 01 03 2023 Helgøy H., Astrup O.S., Høyland K.V. Laboratory work on freeze-bonds in ice rubble, part II: results from individual freeze-bond experiments // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_126.pdf. Дата обращения: 01 03 2023 Kannari P. Measurements of characteristics and propulsion performance of a ship in old ice-clogged channels // Proc. of the 7nd Intern. Conf. on Port and Ocean Engineering in Arctic Conditions, POAC–83, Espoo, Fin-land. 1983. V. 2. P. 600–619. Karulin E.B., Karulina M.M., Tarovik O.V. Analytical Investigation of Navigation Channel Evolution in Severe Ice Conditions // Электронный ресурс. https://www.researchgate.net/publication/326190461_Analytical_Investigation_of_Navigation_Channel_Evolution_in_Severe_Ice_Conditions. Дата обращения 01.03.2023 Krupina N., Chernov A., Likhomanov V., Maksimova P., Savitskaya A. The ice tank study of ice performance of a large LNGC in the old channel // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_023.pdf. Дата обращения: 01 03 2023 Liferov P., Bonnemaire B. Ice rubble behaviour and strength: Part I. Review of testing and interpretation of results // Cold Regions Science Technology. 2005. 41 (2). P. 135–151. https://doi.org/10.1016/j.coldregions.2004.10.001 Loset S., Shkhinek K.N., Gudmestad O.T., Hoyland K.V. Actions from Ice on Arctic Offshore and Coastal Structures. St. Petersburg: Publusher “Lan”, 2006. 272 p. Marchenko A., Chenot C. Regelation of ice blocks in the water and the air // Proc. of the 20th Intern. Conf. on Port and Ocean Engineering under Arctic Conditions. Lulea. Sweden. 2009. V. 1. P. 543–554. Matala R. Investigation of model-scale brash ice properties // Ocean Engineering. 2021. V. 225. 108539. https://doi.org/10.1016/j.oceaneng.2020.108539 Matala R., Skogström T. Soil mechanics measurement methods applied in model brash ice // Proc. of the 25th Intern. Conf. on Port and Ocean Engineering under Arctic Conditions. Delft, The Netherlands, 2019. P. 53–65. Mellor M. Ship resistance in thick brash ice // Cold Regions Science Technology. 1980. V. 3 № 4. P. 305–321. Montenegro Cabrera I. Smoothed particle hydrodynamics modeling of brash ice. Master Thesis. University of Rostock. 2017. 94 p. Nortala-Hoikkanen A. Development of brash ice in channels navigated by ship // Proc. of the 15th Intern. Conf. on Port and Ocean Engineering in Arctic Conditions, POAC-99, Espoo, Finland. 1999. V. 2. P. 620–630. Palmer A., Croasdale K. Arctic Offshore Engineering. World Scientific Publ. 2013. 357 p. Pan H., Eranti E. Applicability of Air Bubbler Lines for Ice Control in Harbours // China Ocean Engineering. 2007. V. 21. №. 2. P. 215–224. Pan H., Eranti E. Flow and heat transfer simulations for the design of the Helsinki Vuosaari harbour ice control system // Cold Regions Science and Technology. 2009. № 55 P. 304–310. https://doi.org/10.1016/j.coldregions.2008.09.001 Patil A., Sand B., Fransson L., Bonath V., Cwirzen A. Simulation of brash ice behavior in the gulf of Bothnia using smoothed particle hydrodynamics formulation // Journ. of Cold Regions Engineering – ASCE. 2021. V. 35. № 2. 04021003. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000245 Prasanna M. Numerical Simulation of Brash Ice. Master Thesis. University of Rostock. 2018. 92 p. Prasanna M., Wei M., Polojärvi А., Cole D.M. Breakage of saline ice blocks in ice-to-ice contact // Электронный ресурс. https://www.poac.com/Papers/2021/POAC21-065.pdf. Дата обращения: 01 03 2023 Prasanna M., Wei M., Polojärvi A., Cole D.M. Laboratory experiments on floating saline ice block breakage in ice-to-ice contact // Cold Regions Science and Technology 2021. V. 189. 103315. https://doi.org/10.1016/j.coldregions.2021b.103315 Riska K., Wilhelmson M., Englund K., Leiviska T. Performance of Merchant Vessels in the Baltic. Winter Navigation Research Board, Res. Rpt .1997. V. 52. 72 p. Riska K., Bridges R., Shumovskiy S., Thomas C., Coche E., Bonath V., Tobie A., Chomatas K., Caloba Duarte de Oliveira R. Brash ice growth model – development and validation. // Cold Regions Science and Technology. 2019. V. 157. P. 30–41. https://doi.org/10.1016/j.coldregions.2018.09.004 Sandkvist J. Brash Ice Behavior in Frequented Ship Channels // University of Luleå. 1986. №. 139. 132 p. Sorsimo A., Nyman T., Heinonen J. Ship-ice interaction in a channel. Winter navigation research board. Helsinki, Finland. Research Report. 2016. №. 93. 22 p. Tuovinen P. The Size Distribution of Ice Blocks in a Broken Channel. Ship hydrodynamics laboratory, Helsinki University of Technology. Otaniemi, Espoo, 1979. 19 p. Zhaka V., Bonath V., Sand B., Cwirzen A. Physical and mechanical properties of ice from a refrozen ship channel ice in Bay of Bothnia // Электронный ресурс. https://sintef.brage.unit.no/sintefxmlui/bit-stream/handle/11250/2716075/IAHR_2020_BS_-Physical%2band%2bmechanical%2bproperties%2bof%2bice%2bfrom%2ba%2brefrozen%2bship%2bchannel%2bice%2bin%2bBay%2bof%2bBothnia.pdf?sequence=1&isAllowed=y. Дата обращения: 01 03 2023 Zhaka V., Bridges R., Riska K., Cwirzen A. Brash ice formation on a laboratory scale // Электронный ресурс. https://www.poac.com/Papers/2021/POAC21-086.pdf. Дата обращения: 01 03 2023 https://ice-snow.igras.ru/jour/article/view/1228 doi:10.31857/S207667342302014X Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 63, № 2 (2023); 302-312 Лёд и Снег; Том 63, № 2 (2023); 302-312 2412-3765 2076-6734 brash ice;consolidated layer;porosity;strength;channel тёртый лёд;консолидированный слой;пористость;прочность;канал info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjias https://doi.org/10.31857/S207667342302014X10.30758/0555-2648-2021-67-1-60-6610.30758/0555-2648-2021-67-4-406-42410.30758/0555-2648-2021-67-1-44-5910.1016/j.coldregions.2020.10312010.1016/j.coldregions.2004.10.00110.1016/j.oceaneng.2020.10853910.1016/j.col 2023-09-03T17:53:59Z The urgency of brash ice study is growing in connection with intensive shipping in fast ice zone of freezing seas as well as inland waterways. In addition, an important incentive for such studies is the design and construction of port infrastructure in these water areas. The review shows that the main directions of research refer to three main topics. 1) Investigation of morphometrical brash ice characteristics in navigable channels and harbors, their variability under ambient factors. The most well-studied morphometrical parameters of brash ice are relative channel thickness and its distribution over channel width. Size distribution details about brash ice floes are of great interest for researchers. 2) Investigation of porosity and mechanical properties of brash ice as a granular material taking account of freezing between individual ice blocks. In many respects, these parameters determine the pattern of brash ice interaction with ships and the possibility of their movement. 3) Description of consolidated layer formation in brash ice and refinement of predictions for brash ice growth in the water area under consideration depending on the intensity of ship traffic and the number of degree-days with negative temperatures over the time interval between ship passages. Large attention is given to new methods of studies including full-scale and laboratory experiments, as well as the use of ice basins for this purpose, with a brief review of thermal methods for brash ice management. The paper formulates some of the problems yet to solved, which require extra studies. В обзоре рассмотрены основные направления исследований тёртого льда. Основное внимание уделено морфометрическим особенностям тёртого льда в каналах, изучению пористости и прочностных свойств тёртого льда как сыпучей среды, а также процессам формирования консолидированного слоя. Описаны эксперименты по определению свойств тёртого льда в ледовых бассейнах – это новое направление в исследованиях. Сформулированы некоторые не решенные проблемы. Article in Journal/Newspaper Arctic Ice and Snow (E-Journal)