Isotopic signature of precipitation in the Elbrus region

The aim of the work was to study the isotopic characteristics of precipitation to establish the dependence of δ18O values on temperature at the time of precipitation and to get closer to understanding the processes that form the isotopic signature of the Elbrus snow cover and glacial ice. The sampli...

Full description

Bibliographic Details
Main Authors: Ju. Chizhova N., V. Mikhalenko N., S. Kutuzov S., K. Shukurov A., A. Kozachek V., Ю. Чижова Н., В. Михаленко Н., С. Кутузов С., К. Шукуров А., А. Козачек В.
Other Authors: Study supported by the Megagrant project (agreement № 075-15-202-599, 8.06.2021) “Paleoecological Reconstructions as a Key to Understanding Past, Current, and Future Climate and Environmental Changes in Russia.” The review of the work on precipitation isotopic composition in mountain regions was supported within the framework of State Assignment № FMGE-2019-0004 for the RAS Institute of Geography. The trajectory analysis was carried out within the framework of the State Assignments of the RAS Obukhov Institute of Atmospheric Physics., Работа выполнена в рамках мегагранта (Соглашение № 075-15-2021-599 от 08.06.2021) “Палеоэкологические реконструкции как ключ к пониманию прошлых, текущих и будущих изменений климата и окружающей среды в России”. Обзор работ по изотопному составу осадков в горных районах выполнен в рамках государственного задания Института географии РАН № FMGE-2019-0004. Траекторный анализ выполнялся в рамках Госзаданий ИФА им. А.М. Обухова РАН.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2023
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/1149
https://doi.org/10.31857/S2076673423010052
id ftjias:oai:oai.ice.elpub.ru:article/1149
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic oxygen isotope composition;hydrogen isotope composition;precipitation;Caucasus;Elbrus;temperature reconstruction
изотопный состав кислорода;изотопный состав водорода;атмосферные осадки;Кавказ;Эльбрус;реконструкция температур
spellingShingle oxygen isotope composition;hydrogen isotope composition;precipitation;Caucasus;Elbrus;temperature reconstruction
изотопный состав кислорода;изотопный состав водорода;атмосферные осадки;Кавказ;Эльбрус;реконструкция температур
Ju. Chizhova N.
V. Mikhalenko N.
S. Kutuzov S.
K. Shukurov A.
A. Kozachek V.
Ю. Чижова Н.
В. Михаленко Н.
С. Кутузов С.
К. Шукуров А.
А. Козачек В.
Isotopic signature of precipitation in the Elbrus region
topic_facet oxygen isotope composition;hydrogen isotope composition;precipitation;Caucasus;Elbrus;temperature reconstruction
изотопный состав кислорода;изотопный состав водорода;атмосферные осадки;Кавказ;Эльбрус;реконструкция температур
description The aim of the work was to study the isotopic characteristics of precipitation to establish the dependence of δ18O values on temperature at the time of precipitation and to get closer to understanding the processes that form the isotopic signature of the Elbrus snow cover and glacial ice. The sampling of precipitation was organized at Azau station, located at the foot of Elbrus at an altitude of 2300 m for the period from May 01.2019 to September 27.2021. The sampling was carried out once a day at 9:00 Moscow time. The air temperature was recorded at the meteorological station in the Terskol village (Roshydromet station No. 4334250). To study the main features of long-range air transport and possible sources of moisture, 5-day back trajectories were reconstructed using the NOAA HYSPLIT_4 trajectory model. The results showed that precipitation in the Elbrus region in winter was associated with the prevailing transfer from the Atlantic, in summer – with the predominance of transfer from the regions of Central Europe, the Mediterranean and Black Seas. The Mediterranean Sea in all seasons was the area from which the air and moisture were transferred to Elbrus. The values of δ18О and δ2 Н of precipitation varied from 0.52 to −28.22‰ and from 16.3 to −224.1‰, respectively, revealing regular seasonality with high values of δ18О and δ2 Н in summer and low in winter. The deuterium excess varied over a wide range from 24.8 to −14.6‰. All obtained values of δ18О and δ2 Н were approximated by the equation δ2 Н = 8δ18О + 7.06 (R2 = 0.98), which was close to the global meteoric water line. In general, for 2 years of observations, the relationship between the δ18О values of precipitation and the temperature of the surface air layer was expressed as 0.85‰/°С. Total mean absolute error in the reconstruction of air temperatures from the δ18О value of precipitation was 3.2°С due to objective reasons and also differences in meteorological conditions of two years of observations. Приведены результаты изучения изотопных ...
author2 Study supported by the Megagrant project (agreement № 075-15-202-599, 8.06.2021) “Paleoecological Reconstructions as a Key to Understanding Past, Current, and Future Climate and Environmental Changes in Russia.” The review of the work on precipitation isotopic composition in mountain regions was supported within the framework of State Assignment № FMGE-2019-0004 for the RAS Institute of Geography. The trajectory analysis was carried out within the framework of the State Assignments of the RAS Obukhov Institute of Atmospheric Physics.
Работа выполнена в рамках мегагранта (Соглашение № 075-15-2021-599 от 08.06.2021) “Палеоэкологические реконструкции как ключ к пониманию прошлых, текущих и будущих изменений климата и окружающей среды в России”. Обзор работ по изотопному составу осадков в горных районах выполнен в рамках государственного задания Института географии РАН № FMGE-2019-0004. Траекторный анализ выполнялся в рамках Госзаданий ИФА им. А.М. Обухова РАН.
format Article in Journal/Newspaper
author Ju. Chizhova N.
V. Mikhalenko N.
S. Kutuzov S.
K. Shukurov A.
A. Kozachek V.
Ю. Чижова Н.
В. Михаленко Н.
С. Кутузов С.
К. Шукуров А.
А. Козачек В.
author_facet Ju. Chizhova N.
V. Mikhalenko N.
S. Kutuzov S.
K. Shukurov A.
A. Kozachek V.
Ю. Чижова Н.
В. Михаленко Н.
С. Кутузов С.
К. Шукуров А.
А. Козачек В.
author_sort Ju. Chizhova N.
title Isotopic signature of precipitation in the Elbrus region
title_short Isotopic signature of precipitation in the Elbrus region
title_full Isotopic signature of precipitation in the Elbrus region
title_fullStr Isotopic signature of precipitation in the Elbrus region
title_full_unstemmed Isotopic signature of precipitation in the Elbrus region
title_sort isotopic signature of precipitation in the elbrus region
publisher IGRAS
publishDate 2023
url https://ice-snow.igras.ru/jour/article/view/1149
https://doi.org/10.31857/S2076673423010052
genre The Cryosphere
genre_facet The Cryosphere
op_source Ice and Snow; Том 63, № 1 (2023); 33-47
Лёд и Снег; Том 63, № 1 (2023); 33-47
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/1149/646
Васильчук Ю.К., Чижова Ю.Н., Папеш В., Буданцева Н.А. Высотный изотопный эффект в снеге на леднике Гарабаши в Приэльбрусье // Криосфера Земли. 2005. Т. 9 (4). С. 72–81.
Козачек А.В., Екайкин А.А., Михаленко В.Н., Липенков В.Я., Кутузов С.С. Изотопный состав ледяных кернов, полученных на Западном плато г. Эльбрус // Лёд и Снег. 2015. Т. 55. № 4. С. 35–49.
Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Кунахович М.Г., Томпсон Л.Г. Исследования западного ледникового плато Эльбруса: результаты и перспективы // МГИ. 2005. Т. 99. С. 185–190.
Торопов П.А., Михаленко В.Н., Кутузов С.С., Морозова П.А., Шестакова А.А. Температурный и радиационный режим ледников на склонах Эльбруса в период абляции за последние 65 лет // Лёд и Снег. 2016. Т. 56. № 1. С. 5–19.
Чижова Ю.Н., Михаленко В.Н., Васильчук Ю.К., Буданцева Н.А., Козачек А.В., Кутузов С.С., Лаврентьев И.И. Изотопный состав кислорода снежно-фирновой толщи на Восточной вершине Эльбруса // Лёд и Снег. 2019. Т. 59. № 3. С. 293–305. https://doi.org/10.15356/2076-6734-2019-3-426
Bohleber P., Erhardt T., Spaulding N., Hoffmann H., Fischer H., Mayewski P. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium // Climate of the Past. 2018. V. 14. P. 21–37. https://doi.org/10.5194/cp-14-21-2018
Ciais P., Jouzel J. Deuterium and oxygen 18 in precipitation: An isotopic model including mixed cloud processes // Geophys. Research Letters. 1994. V. 99. P. 16793–16803.
Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. № 4. P. 436–468.
Draxler R.R., Hess G.D. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition // Austral. Meteorol. Magasin. 1998. V. 47. P. 295–308.
Gat J.R. Atmospheric water balance – the isotopic perspective // Hydrological Processes. 2000. V. 14. P. 1357–1369.
Gat J., Carmi I. Evolution of the Isotopic Composition of Atmospheric Waters in the Mediterranean Sea Area // Geophys. Research Letters. 1970. V. 75. P. 3039–3048. https://doi.org/10.1029/JC075i015p03039
Jing Z., Yu W., Lewis S., Thompson L.G., Xu J., Zhang J., Xu B., Wu G., Ma Y., Wang Y., Guo R. Inverse altitude effect disputes the theoretical foundation of stable isotope paleoaltimetry // Nature Communication. 2022. V. 13. P. 4371. https://doi.org/10.1038/s41467-022-32172-9
Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woolen J., Zhu Y., Leetmaa A., Reynolds R. The NCEP/NCAR 40-year reanalysis project // Bull. Amer. Meteorol. Society. 1996. V. 77. P. 437–471.
Keck L. Climate significance of stable isotope records from Alpine ice cores: Combined Faculties for the Natural Sciences and for Mathematics. Dissertation for the degree of Doctor of Natural Sciences. Heidelberg, 2001. 141 p.
Kistler R., Kalnay E., Collins W., Saha S., White G., Woollen J., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., Van den Dool H., Jenne R., Fiorino M. The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation // Bull. Amer. Meteorol. Society. 2001. V. 82 №. 2. P. 247–268.
Kutuzov S., Legrand M., Preunkert S., Ginot P., Mikhalenko V., Shukurov K., Polyukhov A., Toropov P. The Elbrus (Caucasus, Russia) ice core record – Part 2: history of desert dust deposition // Atmospheric Chemistry and Physics. 2019. V. 19. P. 14133–14148. https://doi.org/10.5194/acp-19-14133-2019
Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A, Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere. 2015. V. 9. P. 2253–2270. https://doi.org/10.5194/tc-9-2253-2015
Pfahl S., Sodemann H. What controls deuterium excess in global precipitation? // Climate of the Past. 2014. V. 10. P. 771–781. https://doi.org/10.5194/cp-10-771-2014
Rozanski K., Arguas-Arguas L., Gonfiantini R. Relation between long-term trends of Oxygen-18 isotope composition of precipitation and climate // Science. 1992. V. 258. № 5084. P. 981–985. https://doi.org/10.1126/science.258.5084.981
Rozanski K., Johnsen S.J., Schotterer U. Thompson, L.G. Reconstruction of past climates from stable isotope records of palaeo-precipitation preserved in continental archives // Journ. of the Hydrological Sciences. 1997. V. 42. P. 725745. https://doi.org/10.1080/02626669709492069
Salmon O.E., Welp L.R., Baldwin M.E., Hajny K.D., Stirm B.H., Shepson P.B. Vertical profile observations of water vapor deuterium excess in the lower troposphere // Atmospheric Chemistry and Physics. 2019. V. 19. P. 11525–11543. https://doi.org/10.5194/acp-19-11525-2019
Schotterer U., Fröhlich K., Gäggeler H.W., Sandjordj S., Stichler W. Isotope Records from Mongolian and Alpine Ice Cores as Climate Indicators // Climatic Change. 1997. V. 36. P. 519–530.
Shukurov K.A., Chkhetiani O.G. Probability of transport of air parcels from the arid lands in the Southern Russia to Moscow region // Proc. SPIE. 2017. V. 10466. P. 104663V. https://doi.org/10.1117/12.2287932
Sodemann H., Aemisegger F., Pfahl S., Bitter M., Corsmeier U., Feuerle T., Graf P., Hankers R., Hsiao G., Schulz H., Wieser A., Wernli H. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: Insight into vertical mixing processes from lower-tropospheric survey flights // Atmospheric Chemistry and Physics. 2017. V. 17. P. 6125–6151. https://doi.org/10.5194/acp-17-6125-2017
Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system // Bull. Amer. Meteorol. Society. 2015. V. 96. P. 2059–2077.
Stenni B., Masson-Delmotte V., Selmo E., Oerter H., Meyer H., Röthlisberger R., Jouzel J., Cattani O., Falourd S., Fischer H., Hoffmann G., Iacumin P., Johnsen S., Minster B., Udisti R. The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica) // Quaternary Science Rev. 2010. V. 29. P. 146–159.
Tian L., Yao T., Li Z., MacClune K., Wu G., Xu B. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs // Journ. of Geophys. Research. 2006. V. 111. P. D13103. https://doi.org/10.1029/200JD006249
Vasil’chuk Yu., Chizhova Ju., Frolova N., Budantseva N., Kireeva M., Oleynikov A., Tokarev I., Rets E., Vasil’chuk A. A variation of stable isotope composition of snow with altitude on the Elbrus Mountain, Central Caucasus // Geography, Environment, Sustainability. 2020. V. 13. № 1. P. 172–182. https://doi.org/10.24057/2071-9388-2018-22
Vimeux F., Masson V., Delaygue G., Jouzel J., Petit J.R., Stievenard M. A 420,000 year deuterium excess record from East Antarctica: Information on past changes in the origin of precipitation at Vostok // Journ. of Geophys. Research. Atmosphere. 2001. V. 106. № D23. P. 31863–31873.
Wallace J., Hobbs P. Atmospheric Science: An Introductory Survey. Academic, San Diego, California. 2006. 488 p.
https://ice-snow.igras.ru/jour/article/view/1149
doi:10.31857/S2076673423010052
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.31857/S207667342301005210.15356/2076-6734-2019-3-42610.5194/cp-14-21-201810.1029/JC075i015p0303910.1038/s41467-022-32172-910.5194/acp-19-14133-201910.5194/tc-9-2253-201510.1126/science.258.5084.98110.1080/0262666970949206910.5194/acp-19
_version_ 1771550631914373120
spelling ftjias:oai:oai.ice.elpub.ru:article/1149 2023-07-16T04:01:08+02:00 Isotopic signature of precipitation in the Elbrus region Изотопные характеристики атмосферных осадков в Приэльбрусье Ju. Chizhova N. V. Mikhalenko N. S. Kutuzov S. K. Shukurov A. A. Kozachek V. Ю. Чижова Н. В. Михаленко Н. С. Кутузов С. К. Шукуров А. А. Козачек В. Study supported by the Megagrant project (agreement № 075-15-202-599, 8.06.2021) “Paleoecological Reconstructions as a Key to Understanding Past, Current, and Future Climate and Environmental Changes in Russia.” The review of the work on precipitation isotopic composition in mountain regions was supported within the framework of State Assignment № FMGE-2019-0004 for the RAS Institute of Geography. The trajectory analysis was carried out within the framework of the State Assignments of the RAS Obukhov Institute of Atmospheric Physics. Работа выполнена в рамках мегагранта (Соглашение № 075-15-2021-599 от 08.06.2021) “Палеоэкологические реконструкции как ключ к пониманию прошлых, текущих и будущих изменений климата и окружающей среды в России”. Обзор работ по изотопному составу осадков в горных районах выполнен в рамках государственного задания Института географии РАН № FMGE-2019-0004. Траекторный анализ выполнялся в рамках Госзаданий ИФА им. А.М. Обухова РАН. 2023-04-13 application/pdf https://ice-snow.igras.ru/jour/article/view/1149 https://doi.org/10.31857/S2076673423010052 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/1149/646 Васильчук Ю.К., Чижова Ю.Н., Папеш В., Буданцева Н.А. Высотный изотопный эффект в снеге на леднике Гарабаши в Приэльбрусье // Криосфера Земли. 2005. Т. 9 (4). С. 72–81. Козачек А.В., Екайкин А.А., Михаленко В.Н., Липенков В.Я., Кутузов С.С. Изотопный состав ледяных кернов, полученных на Западном плато г. Эльбрус // Лёд и Снег. 2015. Т. 55. № 4. С. 35–49. Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Кунахович М.Г., Томпсон Л.Г. Исследования западного ледникового плато Эльбруса: результаты и перспективы // МГИ. 2005. Т. 99. С. 185–190. Торопов П.А., Михаленко В.Н., Кутузов С.С., Морозова П.А., Шестакова А.А. Температурный и радиационный режим ледников на склонах Эльбруса в период абляции за последние 65 лет // Лёд и Снег. 2016. Т. 56. № 1. С. 5–19. Чижова Ю.Н., Михаленко В.Н., Васильчук Ю.К., Буданцева Н.А., Козачек А.В., Кутузов С.С., Лаврентьев И.И. Изотопный состав кислорода снежно-фирновой толщи на Восточной вершине Эльбруса // Лёд и Снег. 2019. Т. 59. № 3. С. 293–305. https://doi.org/10.15356/2076-6734-2019-3-426 Bohleber P., Erhardt T., Spaulding N., Hoffmann H., Fischer H., Mayewski P. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium // Climate of the Past. 2018. V. 14. P. 21–37. https://doi.org/10.5194/cp-14-21-2018 Ciais P., Jouzel J. Deuterium and oxygen 18 in precipitation: An isotopic model including mixed cloud processes // Geophys. Research Letters. 1994. V. 99. P. 16793–16803. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. № 4. P. 436–468. Draxler R.R., Hess G.D. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition // Austral. Meteorol. Magasin. 1998. V. 47. P. 295–308. Gat J.R. Atmospheric water balance – the isotopic perspective // Hydrological Processes. 2000. V. 14. P. 1357–1369. Gat J., Carmi I. Evolution of the Isotopic Composition of Atmospheric Waters in the Mediterranean Sea Area // Geophys. Research Letters. 1970. V. 75. P. 3039–3048. https://doi.org/10.1029/JC075i015p03039 Jing Z., Yu W., Lewis S., Thompson L.G., Xu J., Zhang J., Xu B., Wu G., Ma Y., Wang Y., Guo R. Inverse altitude effect disputes the theoretical foundation of stable isotope paleoaltimetry // Nature Communication. 2022. V. 13. P. 4371. https://doi.org/10.1038/s41467-022-32172-9 Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woolen J., Zhu Y., Leetmaa A., Reynolds R. The NCEP/NCAR 40-year reanalysis project // Bull. Amer. Meteorol. Society. 1996. V. 77. P. 437–471. Keck L. Climate significance of stable isotope records from Alpine ice cores: Combined Faculties for the Natural Sciences and for Mathematics. Dissertation for the degree of Doctor of Natural Sciences. Heidelberg, 2001. 141 p. Kistler R., Kalnay E., Collins W., Saha S., White G., Woollen J., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., Van den Dool H., Jenne R., Fiorino M. The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation // Bull. Amer. Meteorol. Society. 2001. V. 82 №. 2. P. 247–268. Kutuzov S., Legrand M., Preunkert S., Ginot P., Mikhalenko V., Shukurov K., Polyukhov A., Toropov P. The Elbrus (Caucasus, Russia) ice core record – Part 2: history of desert dust deposition // Atmospheric Chemistry and Physics. 2019. V. 19. P. 14133–14148. https://doi.org/10.5194/acp-19-14133-2019 Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A, Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere. 2015. V. 9. P. 2253–2270. https://doi.org/10.5194/tc-9-2253-2015 Pfahl S., Sodemann H. What controls deuterium excess in global precipitation? // Climate of the Past. 2014. V. 10. P. 771–781. https://doi.org/10.5194/cp-10-771-2014 Rozanski K., Arguas-Arguas L., Gonfiantini R. Relation between long-term trends of Oxygen-18 isotope composition of precipitation and climate // Science. 1992. V. 258. № 5084. P. 981–985. https://doi.org/10.1126/science.258.5084.981 Rozanski K., Johnsen S.J., Schotterer U. Thompson, L.G. Reconstruction of past climates from stable isotope records of palaeo-precipitation preserved in continental archives // Journ. of the Hydrological Sciences. 1997. V. 42. P. 725745. https://doi.org/10.1080/02626669709492069 Salmon O.E., Welp L.R., Baldwin M.E., Hajny K.D., Stirm B.H., Shepson P.B. Vertical profile observations of water vapor deuterium excess in the lower troposphere // Atmospheric Chemistry and Physics. 2019. V. 19. P. 11525–11543. https://doi.org/10.5194/acp-19-11525-2019 Schotterer U., Fröhlich K., Gäggeler H.W., Sandjordj S., Stichler W. Isotope Records from Mongolian and Alpine Ice Cores as Climate Indicators // Climatic Change. 1997. V. 36. P. 519–530. Shukurov K.A., Chkhetiani O.G. Probability of transport of air parcels from the arid lands in the Southern Russia to Moscow region // Proc. SPIE. 2017. V. 10466. P. 104663V. https://doi.org/10.1117/12.2287932 Sodemann H., Aemisegger F., Pfahl S., Bitter M., Corsmeier U., Feuerle T., Graf P., Hankers R., Hsiao G., Schulz H., Wieser A., Wernli H. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: Insight into vertical mixing processes from lower-tropospheric survey flights // Atmospheric Chemistry and Physics. 2017. V. 17. P. 6125–6151. https://doi.org/10.5194/acp-17-6125-2017 Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system // Bull. Amer. Meteorol. Society. 2015. V. 96. P. 2059–2077. Stenni B., Masson-Delmotte V., Selmo E., Oerter H., Meyer H., Röthlisberger R., Jouzel J., Cattani O., Falourd S., Fischer H., Hoffmann G., Iacumin P., Johnsen S., Minster B., Udisti R. The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica) // Quaternary Science Rev. 2010. V. 29. P. 146–159. Tian L., Yao T., Li Z., MacClune K., Wu G., Xu B. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs // Journ. of Geophys. Research. 2006. V. 111. P. D13103. https://doi.org/10.1029/200JD006249 Vasil’chuk Yu., Chizhova Ju., Frolova N., Budantseva N., Kireeva M., Oleynikov A., Tokarev I., Rets E., Vasil’chuk A. A variation of stable isotope composition of snow with altitude on the Elbrus Mountain, Central Caucasus // Geography, Environment, Sustainability. 2020. V. 13. № 1. P. 172–182. https://doi.org/10.24057/2071-9388-2018-22 Vimeux F., Masson V., Delaygue G., Jouzel J., Petit J.R., Stievenard M. A 420,000 year deuterium excess record from East Antarctica: Information on past changes in the origin of precipitation at Vostok // Journ. of Geophys. Research. Atmosphere. 2001. V. 106. № D23. P. 31863–31873. Wallace J., Hobbs P. Atmospheric Science: An Introductory Survey. Academic, San Diego, California. 2006. 488 p. https://ice-snow.igras.ru/jour/article/view/1149 doi:10.31857/S2076673423010052 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 63, № 1 (2023); 33-47 Лёд и Снег; Том 63, № 1 (2023); 33-47 2412-3765 2076-6734 oxygen isotope composition;hydrogen isotope composition;precipitation;Caucasus;Elbrus;temperature reconstruction изотопный состав кислорода;изотопный состав водорода;атмосферные осадки;Кавказ;Эльбрус;реконструкция температур info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjias https://doi.org/10.31857/S207667342301005210.15356/2076-6734-2019-3-42610.5194/cp-14-21-201810.1029/JC075i015p0303910.1038/s41467-022-32172-910.5194/acp-19-14133-201910.5194/tc-9-2253-201510.1126/science.258.5084.98110.1080/0262666970949206910.5194/acp-19 2023-06-25T17:53:38Z The aim of the work was to study the isotopic characteristics of precipitation to establish the dependence of δ18O values on temperature at the time of precipitation and to get closer to understanding the processes that form the isotopic signature of the Elbrus snow cover and glacial ice. The sampling of precipitation was organized at Azau station, located at the foot of Elbrus at an altitude of 2300 m for the period from May 01.2019 to September 27.2021. The sampling was carried out once a day at 9:00 Moscow time. The air temperature was recorded at the meteorological station in the Terskol village (Roshydromet station No. 4334250). To study the main features of long-range air transport and possible sources of moisture, 5-day back trajectories were reconstructed using the NOAA HYSPLIT_4 trajectory model. The results showed that precipitation in the Elbrus region in winter was associated with the prevailing transfer from the Atlantic, in summer – with the predominance of transfer from the regions of Central Europe, the Mediterranean and Black Seas. The Mediterranean Sea in all seasons was the area from which the air and moisture were transferred to Elbrus. The values of δ18О and δ2 Н of precipitation varied from 0.52 to −28.22‰ and from 16.3 to −224.1‰, respectively, revealing regular seasonality with high values of δ18О and δ2 Н in summer and low in winter. The deuterium excess varied over a wide range from 24.8 to −14.6‰. All obtained values of δ18О and δ2 Н were approximated by the equation δ2 Н = 8δ18О + 7.06 (R2 = 0.98), which was close to the global meteoric water line. In general, for 2 years of observations, the relationship between the δ18О values of precipitation and the temperature of the surface air layer was expressed as 0.85‰/°С. Total mean absolute error in the reconstruction of air temperatures from the δ18О value of precipitation was 3.2°С due to objective reasons and also differences in meteorological conditions of two years of observations. Приведены результаты изучения изотопных ... Article in Journal/Newspaper The Cryosphere Ice and Snow (E-Journal)