Numerical simulation of snow deposition around structural snow fences
The results of numerical modeling of the influence of geometric characteristics of snow-protecting fences on the intensity of snow deposition at the initial stage of formation, that is, without taking into account the influence of the dynamics of the shape of the snow cover surface, are presented. I...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | Russian |
Published: |
IGRAS
2023
|
Subjects: | |
Online Access: | https://ice-snow.igras.ru/jour/article/view/1086 https://doi.org/10.31857/S2076673422040150 |
id |
ftjias:oai:oai.ice.elpub.ru:article/1086 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Ice and Snow (E-Journal) |
op_collection_id |
ftjias |
language |
Russian |
topic |
blowing snow;snow deposition;numerical simulation;snow fences вычислительная гидродинамика;снегоперенос;снегозащитные устройства |
spellingShingle |
blowing snow;snow deposition;numerical simulation;snow fences вычислительная гидродинамика;снегоперенос;снегозащитные устройства K. Litvintsev Yu. A. Gavrilov A. A. Dekterev A. Yu. Zaharinsky N. A. Minakov A. S. Filimonov A. K. Finnikov A. К. Литвинцев Ю. А. Гаврилов А. А. Дектерев А. Ю. Захаринский Н. А. Минаков В. С. Филимонов А. К. Финников А. Numerical simulation of snow deposition around structural snow fences |
topic_facet |
blowing snow;snow deposition;numerical simulation;snow fences вычислительная гидродинамика;снегоперенос;снегозащитные устройства |
description |
The results of numerical modeling of the influence of geometric characteristics of snow-protecting fences on the intensity of snow deposition at the initial stage of formation, that is, without taking into account the influence of the dynamics of the shape of the snow cover surface, are presented. In the most industrialized and densely populated region on the Arctic Krasnoyarsk Territory - the industrial City of Norilsk, daily snowfall can exceed 50 mm, the snow depth reaches, on the average, 47 cm (the largest is 70 cm), while the wind speed - 25-30 m/s. This promotes formation of snow deposition on roads, in residential areas as well as in industrial sites and infrastructure facilities, which hampers and sometimes completely stops operation of them. As part of the solution of these problems, a software package has been developed aimed at numerical modeling of snow transport processes and implementing the snow protection measures. To simulate the dynamics of the windinduced snow drift, a microscale model of the atmospheric boundary layer was used together with a diffusion-inertial description of the transport of the snow dispersed phase. Analysis of the calculation results shows that the width of the plates, as well as their spatial orientation, have insignificant effect on the snow-holding capacity of fences. The size of the gaps between the rails and the height of the lower gap exerts the greatest influence on the distribution of the intensity of snow deposition, both on the leeward and windward sides of the fence. In general, we can talk about the relationship between the wind speed field formed during the drift around the fence and the distribution of the snow deposition intensity. Thus, a relative decrease in the average wind speed from the leeward side of the fence increases the precipitation intensity. The presented results of numerical modeling do not contradict data of field observations previously obtained by other authors, and, thus, the developed software package allows comparing effectiveness of ... |
format |
Article in Journal/Newspaper |
author |
K. Litvintsev Yu. A. Gavrilov A. A. Dekterev A. Yu. Zaharinsky N. A. Minakov A. S. Filimonov A. K. Finnikov A. К. Литвинцев Ю. А. Гаврилов А. А. Дектерев А. Ю. Захаринский Н. А. Минаков В. С. Филимонов А. К. Финников А. |
author_facet |
K. Litvintsev Yu. A. Gavrilov A. A. Dekterev A. Yu. Zaharinsky N. A. Minakov A. S. Filimonov A. K. Finnikov A. К. Литвинцев Ю. А. Гаврилов А. А. Дектерев А. Ю. Захаринский Н. А. Минаков В. С. Филимонов А. К. Финников А. |
author_sort |
K. Litvintsev Yu. |
title |
Numerical simulation of snow deposition around structural snow fences |
title_short |
Numerical simulation of snow deposition around structural snow fences |
title_full |
Numerical simulation of snow deposition around structural snow fences |
title_fullStr |
Numerical simulation of snow deposition around structural snow fences |
title_full_unstemmed |
Numerical simulation of snow deposition around structural snow fences |
title_sort |
numerical simulation of snow deposition around structural snow fences |
publisher |
IGRAS |
publishDate |
2023 |
url |
https://ice-snow.igras.ru/jour/article/view/1086 https://doi.org/10.31857/S2076673422040150 |
long_lat |
ENVELOPE(88.203,88.203,69.354,69.354) |
geographic |
Arctic Norilsk |
geographic_facet |
Arctic Norilsk |
genre |
Arctic norilsk The Cryosphere |
genre_facet |
Arctic norilsk The Cryosphere |
op_source |
Ice and Snow; Том 62, № 4 (2022); 539-550 Лёд и Снег; Том 62, № 4 (2022); 539-550 2412-3765 2076-6734 |
op_relation |
https://ice-snow.igras.ru/jour/article/view/1086/636 Beyersa J.H.M., Sundsbøb P.A., Harms T.M. Numerical simulation of three-dimensional, Transient snow drifting around a cube Journ of Wind Engineer and Industr Aerodynamic 2004, 92: 725–747 Byalobzhesky G.V., Dyunin A.K., Plaksa L.N., Rudakov L.M., Utkin B.V. Zimnee soderzhanie avtomobil'nyh dorog Winter maintenance of highways Moscow: Transport, 1983: 197 p [In Russian] Cao Z., Liu M., Wu P. Experiment Investigation and Numerical Simulation of Snowdrift on a Typical LargeSpan Retractable Roof Complexity 2019, 2019: 1–14 doi:10.1155/2019/5984804 Constantinescu G., Muste M , Basnet K. Optimization of snow drifting mitigation and control methods for Iowa conditions Final Report Iowa City: Iowa State University Iowa 2015: 123 p doi:10.13140/RG.2.2.29517.28642 Dekteryev A.A., Litvintsev K.Yu., Gavrilov A.A., Kharlamov E.B. The development of free engineering software package for numerical simulation of hydrodynamics, heat transfer, and chemical reaction processes Bull of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software 2017, 10 (4): 105–112 Dyunin A.K. Mehanika metelej. The mechanic of blowing snow Novosibirsk: Russian Academy of Sciences, 1963: 378 p [In Russian] Filimonov S.A., Meshkova V.D., Dekterev A.A., Gavrilov A.A., Litvintsev K.Yu., Shebelev A.V. Analysis of vortex structures formed in the winter in the atmosphere of Krasnoyarsk city Journ of Physics: Conference Series 2021, 2088 (1): 1–8 doi:10.1088/1742-6596/2088/1/012014 Gao G., Zhang Y., Xie F., Zhang J., He K., Wang J., Zhang Y. Numerical study on the anti-snow performance of deflectors in the bogie region of a high-speed train using the discrete phase model Proceedings of the Institution of Mechanical Engineers Part F: Journ of Rail and Rapid Transit 2018, 233 (2): 141–159 doi:10.1177/0954409718785290 Giangreco S. Validation of a Lattice Boltzmann model for snow transport and deposition by wind Dr .-ing Germany: Braunschweig – Institute of Technology, 2010: 116 p Giudice A.L., Nuca R., Preziosi L., Coste N. Wind-blown particulate transport: A review of computational fluid dynamics models Mathematics in Engineering 2019, 1 (3): 508–547 doi:10.3934/mine.2019.3.508 Kang L., Zhou X., van Hooff T., Blocken B., Gu M. CFD simulation of snow transport over flat, uniformly rough, open terrain: impact of physical and computational parameters Journ of Wind Engineer and Industr Aerodynamic 2018, 177: 213–226 doi:10.1016/J.JWEIA.2018.04.014 Louis J.F. A parametric model of vertical eddy fluxes in the atmosphere Boundary Layer Meteorol 1979, 17: 187–202 Masselot A., Chopard B. A lattice Boltzmann model for particle transport and deposition // EPL 1998, 42 (3): 259–264 doi:10.1209/epl/i1998-00239-3 Marsh C.B., Pomeroy J.W., Spiteri R.J., Wheater H.S. A finite volume blowing snow model for use with variable resolution meshes Water Resour Res 2020, 56: 1–28 doi:10.1029/2019wr025307 McClurea S., Kimb J.J., Leeb S.J., Zhang W. Shelter effects of porous multi-scale fractal fences Journ of Wind Engineering and Industrial Aerodynamics 2017, 163: 6–14 doi:10.1016/j.jweia.2017.01.007 Meshkova V.D., Dekterev A.A., Litvintsev K.Y., Filimonov S.A., Gavrilov A.A. The role of urban development in the formation of a heat island Vychislitel'nye tekhnologii. Computational Technologies, 2021, 26 (5): 4–14 doi:10.25743/ICT.2021.26.5.002 [In Russian] Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications AIAA Journ 1994, 32 (8): 1598–1605 Naaim M., Naaim-Bouvet F., Martinez H. Numerical simulation of drifting snow: erosion and deposition models Annal of Glaciology 1998, 26: 191–196 Petrie J., Zhang K., Shehata M. Numerical Simulation of Snow Deposition around Living Snow Fences Technical Report Fairbanks: University of Alaska 2019: 46 p Pomeroy J.W., Gray D.M. Saltation of Snow Water Resour Res 1990, 26 (7): 1583–1594 doi:10.1029/WR026i007p01583 Sanudo-Fontaneda L.A., Castro-Fresno D., del Coz-Diaz J.J., Rodriguez-Hernandez J. Classification and Comparison of Snow Fences for the Protection of Transport Infrastructures Journ of Cold Reg Eng 2011, 25 (4): 162–181 Sharma V., Braud L., Lehning M. Understanding Snow Bedform Formation by Adding Sintering to a Cellular Automata Model The Cryosphere 2019, 13: 3239– 3260 doi:10.5194/tc-13-3239-2019 Sundsbo P.A. Drift-Flux Modelling and Numerical Simulation of Snow-Accumulation Proceedings of the 1996 International Snow Science Workshop, Banff, Canada 1996: 135–139 Tabler R.D. Controlling blowing and drifting snow fences and road design Final Report for NCHRP 2003: 307 p Thiis T.K., Ramberg J.F. Measurements and numerical simulations of development of snow drifts of curved roofs Proceedings of the 6th International Conference on Snow Engineering (Snow Engineering VI), Whistler, Canada, 2008: 1–5 Tominaga Y., Stathopoulos T. CFD simulations can be adequate for the evaluation of snow effects on structures Building Simulation 2020, 13 (4): 729–737 doi:10.1007/s12273-020-0643-0 Tominaga Y. Computational fluid dynamics simulation of snowdrift around buildings: Past achievements and future perspectives Cold Regions Science and Technology 2018, 150: 2–14 doi:10.1016/j.coldregions.2017.05.004 Wang Z., Huang N. Numerical simulation of the falling snow deposition over complex terrain Journ of Geophys Research: Atmos 2017, 122: 980–1000 doi:10.1002/2016JD025316 Zaichik L.I., Drobyshevsky N.I., Filippov A.S., Mukin R.V., Strizhov V.F. A diffusion-inertia model for predicting dispersion and deposition of low-inertia particles in turbulent flows International Intern Journ of Heat and Mass Transfer 2010, 53: 154–162 doi:10.1016/J.IJHEATMASSTRANSFER.2009.09.044 https://ice-snow.igras.ru/jour/article/view/1086 doi:10.31857/S2076673422040150 |
op_rights |
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
op_doi |
https://doi.org/10.31857/S207667342204015010.1155/2019/598480410.13140/RG.2.2.29517.2864210.1088/1742-6596/2088/1/01201410.1177/095440971878529010.3934/mine.2019.3.50810.1016/J.JWEIA.2018.04.01410.1209/epl/i1998-00239-310.1029/2019wr02530710.1016/j.jweia. |
container_start_page |
305 |
op_container_end_page |
363 |
_version_ |
1771543748522541056 |
spelling |
ftjias:oai:oai.ice.elpub.ru:article/1086 2023-07-16T03:57:14+02:00 Numerical simulation of snow deposition around structural snow fences Численное моделирование осаждения снега вблизи снегозадерживающих заборов K. Litvintsev Yu. A. Gavrilov A. A. Dekterev A. Yu. Zaharinsky N. A. Minakov A. S. Filimonov A. K. Finnikov A. К. Литвинцев Ю. А. Гаврилов А. А. Дектерев А. Ю. Захаринский Н. А. Минаков В. С. Филимонов А. К. Финников А. 2023-01-03 application/pdf https://ice-snow.igras.ru/jour/article/view/1086 https://doi.org/10.31857/S2076673422040150 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/1086/636 Beyersa J.H.M., Sundsbøb P.A., Harms T.M. Numerical simulation of three-dimensional, Transient snow drifting around a cube Journ of Wind Engineer and Industr Aerodynamic 2004, 92: 725–747 Byalobzhesky G.V., Dyunin A.K., Plaksa L.N., Rudakov L.M., Utkin B.V. Zimnee soderzhanie avtomobil'nyh dorog Winter maintenance of highways Moscow: Transport, 1983: 197 p [In Russian] Cao Z., Liu M., Wu P. Experiment Investigation and Numerical Simulation of Snowdrift on a Typical LargeSpan Retractable Roof Complexity 2019, 2019: 1–14 doi:10.1155/2019/5984804 Constantinescu G., Muste M , Basnet K. Optimization of snow drifting mitigation and control methods for Iowa conditions Final Report Iowa City: Iowa State University Iowa 2015: 123 p doi:10.13140/RG.2.2.29517.28642 Dekteryev A.A., Litvintsev K.Yu., Gavrilov A.A., Kharlamov E.B. The development of free engineering software package for numerical simulation of hydrodynamics, heat transfer, and chemical reaction processes Bull of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software 2017, 10 (4): 105–112 Dyunin A.K. Mehanika metelej. The mechanic of blowing snow Novosibirsk: Russian Academy of Sciences, 1963: 378 p [In Russian] Filimonov S.A., Meshkova V.D., Dekterev A.A., Gavrilov A.A., Litvintsev K.Yu., Shebelev A.V. Analysis of vortex structures formed in the winter in the atmosphere of Krasnoyarsk city Journ of Physics: Conference Series 2021, 2088 (1): 1–8 doi:10.1088/1742-6596/2088/1/012014 Gao G., Zhang Y., Xie F., Zhang J., He K., Wang J., Zhang Y. Numerical study on the anti-snow performance of deflectors in the bogie region of a high-speed train using the discrete phase model Proceedings of the Institution of Mechanical Engineers Part F: Journ of Rail and Rapid Transit 2018, 233 (2): 141–159 doi:10.1177/0954409718785290 Giangreco S. Validation of a Lattice Boltzmann model for snow transport and deposition by wind Dr .-ing Germany: Braunschweig – Institute of Technology, 2010: 116 p Giudice A.L., Nuca R., Preziosi L., Coste N. Wind-blown particulate transport: A review of computational fluid dynamics models Mathematics in Engineering 2019, 1 (3): 508–547 doi:10.3934/mine.2019.3.508 Kang L., Zhou X., van Hooff T., Blocken B., Gu M. CFD simulation of snow transport over flat, uniformly rough, open terrain: impact of physical and computational parameters Journ of Wind Engineer and Industr Aerodynamic 2018, 177: 213–226 doi:10.1016/J.JWEIA.2018.04.014 Louis J.F. A parametric model of vertical eddy fluxes in the atmosphere Boundary Layer Meteorol 1979, 17: 187–202 Masselot A., Chopard B. A lattice Boltzmann model for particle transport and deposition // EPL 1998, 42 (3): 259–264 doi:10.1209/epl/i1998-00239-3 Marsh C.B., Pomeroy J.W., Spiteri R.J., Wheater H.S. A finite volume blowing snow model for use with variable resolution meshes Water Resour Res 2020, 56: 1–28 doi:10.1029/2019wr025307 McClurea S., Kimb J.J., Leeb S.J., Zhang W. Shelter effects of porous multi-scale fractal fences Journ of Wind Engineering and Industrial Aerodynamics 2017, 163: 6–14 doi:10.1016/j.jweia.2017.01.007 Meshkova V.D., Dekterev A.A., Litvintsev K.Y., Filimonov S.A., Gavrilov A.A. The role of urban development in the formation of a heat island Vychislitel'nye tekhnologii. Computational Technologies, 2021, 26 (5): 4–14 doi:10.25743/ICT.2021.26.5.002 [In Russian] Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications AIAA Journ 1994, 32 (8): 1598–1605 Naaim M., Naaim-Bouvet F., Martinez H. Numerical simulation of drifting snow: erosion and deposition models Annal of Glaciology 1998, 26: 191–196 Petrie J., Zhang K., Shehata M. Numerical Simulation of Snow Deposition around Living Snow Fences Technical Report Fairbanks: University of Alaska 2019: 46 p Pomeroy J.W., Gray D.M. Saltation of Snow Water Resour Res 1990, 26 (7): 1583–1594 doi:10.1029/WR026i007p01583 Sanudo-Fontaneda L.A., Castro-Fresno D., del Coz-Diaz J.J., Rodriguez-Hernandez J. Classification and Comparison of Snow Fences for the Protection of Transport Infrastructures Journ of Cold Reg Eng 2011, 25 (4): 162–181 Sharma V., Braud L., Lehning M. Understanding Snow Bedform Formation by Adding Sintering to a Cellular Automata Model The Cryosphere 2019, 13: 3239– 3260 doi:10.5194/tc-13-3239-2019 Sundsbo P.A. Drift-Flux Modelling and Numerical Simulation of Snow-Accumulation Proceedings of the 1996 International Snow Science Workshop, Banff, Canada 1996: 135–139 Tabler R.D. Controlling blowing and drifting snow fences and road design Final Report for NCHRP 2003: 307 p Thiis T.K., Ramberg J.F. Measurements and numerical simulations of development of snow drifts of curved roofs Proceedings of the 6th International Conference on Snow Engineering (Snow Engineering VI), Whistler, Canada, 2008: 1–5 Tominaga Y., Stathopoulos T. CFD simulations can be adequate for the evaluation of snow effects on structures Building Simulation 2020, 13 (4): 729–737 doi:10.1007/s12273-020-0643-0 Tominaga Y. Computational fluid dynamics simulation of snowdrift around buildings: Past achievements and future perspectives Cold Regions Science and Technology 2018, 150: 2–14 doi:10.1016/j.coldregions.2017.05.004 Wang Z., Huang N. Numerical simulation of the falling snow deposition over complex terrain Journ of Geophys Research: Atmos 2017, 122: 980–1000 doi:10.1002/2016JD025316 Zaichik L.I., Drobyshevsky N.I., Filippov A.S., Mukin R.V., Strizhov V.F. A diffusion-inertia model for predicting dispersion and deposition of low-inertia particles in turbulent flows International Intern Journ of Heat and Mass Transfer 2010, 53: 154–162 doi:10.1016/J.IJHEATMASSTRANSFER.2009.09.044 https://ice-snow.igras.ru/jour/article/view/1086 doi:10.31857/S2076673422040150 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 62, № 4 (2022); 539-550 Лёд и Снег; Том 62, № 4 (2022); 539-550 2412-3765 2076-6734 blowing snow;snow deposition;numerical simulation;snow fences вычислительная гидродинамика;снегоперенос;снегозащитные устройства info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjias https://doi.org/10.31857/S207667342204015010.1155/2019/598480410.13140/RG.2.2.29517.2864210.1088/1742-6596/2088/1/01201410.1177/095440971878529010.3934/mine.2019.3.50810.1016/J.JWEIA.2018.04.01410.1209/epl/i1998-00239-310.1029/2019wr02530710.1016/j.jweia. 2023-06-25T17:53:38Z The results of numerical modeling of the influence of geometric characteristics of snow-protecting fences on the intensity of snow deposition at the initial stage of formation, that is, without taking into account the influence of the dynamics of the shape of the snow cover surface, are presented. In the most industrialized and densely populated region on the Arctic Krasnoyarsk Territory - the industrial City of Norilsk, daily snowfall can exceed 50 mm, the snow depth reaches, on the average, 47 cm (the largest is 70 cm), while the wind speed - 25-30 m/s. This promotes formation of snow deposition on roads, in residential areas as well as in industrial sites and infrastructure facilities, which hampers and sometimes completely stops operation of them. As part of the solution of these problems, a software package has been developed aimed at numerical modeling of snow transport processes and implementing the snow protection measures. To simulate the dynamics of the windinduced snow drift, a microscale model of the atmospheric boundary layer was used together with a diffusion-inertial description of the transport of the snow dispersed phase. Analysis of the calculation results shows that the width of the plates, as well as their spatial orientation, have insignificant effect on the snow-holding capacity of fences. The size of the gaps between the rails and the height of the lower gap exerts the greatest influence on the distribution of the intensity of snow deposition, both on the leeward and windward sides of the fence. In general, we can talk about the relationship between the wind speed field formed during the drift around the fence and the distribution of the snow deposition intensity. Thus, a relative decrease in the average wind speed from the leeward side of the fence increases the precipitation intensity. The presented results of numerical modeling do not contradict data of field observations previously obtained by other authors, and, thus, the developed software package allows comparing effectiveness of ... Article in Journal/Newspaper Arctic norilsk The Cryosphere Ice and Snow (E-Journal) Arctic Norilsk ENVELOPE(88.203,88.203,69.354,69.354) 305 363 |