Reconstruction of mean January air temperature of Holocene in the lower Kolyma River region

The object of study is ice wedges at 10 sites in the lower Kolyma River. The Holocene age of ice wedges is determined on the basis of radiocarbon dating of the enclosing sediments and location of ice wedges in alases, floodplains and lacustrine-paludal basins. The analysis of radiocarbon dates has sh...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: N. Budantseva A., Yu. Vasil’chuk K., Н. Буданцева А., Ю. Васильчук К.
Other Authors: This work was supported by the Russian Foundation for Basic Research (grant № 20–05– 00782, stable isotope analysis), the Development program of the Interdisciplinary Scientific and Educational School of M.V. Lomonosov Moscow State University «Future Planet and Global Environmental Change» and state budget theme 1.4. «Anthropogenic geochemical transformation of the components of landscapes»., Работа выполнена при поддержке РФФИ (грант № 20–05–00782, изотопные определения) в рамках Программы развития Междисциплинарной научно-образовательной школы Московского государственного университета имени М.В. Ломоносова «Будущее планеты и глобальные изменения окружающей среды» и госбюджетной темы 1.4. «Антропогенная геохимическая трансформация компонентов ландшафтов».
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2022
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/1035
https://doi.org/10.31857/S2076673422030141
id ftjias:oai:oai.ice.elpub.ru:article/1035
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic lower Kolyma River;ice wedges;alas;floodplain;oxygen isotopes;hydrogen isotopes;Holocene;paleotemperature reconstructions;radiocarbon age
нижнее течение р. Колыма;повторно-жильный лёд;алас;пойма;изотопы кислорода;изотопы водорода;голоцен
палеотемпературные реконструкции;радиоуглеродный возраст
spellingShingle lower Kolyma River;ice wedges;alas;floodplain;oxygen isotopes;hydrogen isotopes;Holocene;paleotemperature reconstructions;radiocarbon age
нижнее течение р. Колыма;повторно-жильный лёд;алас;пойма;изотопы кислорода;изотопы водорода;голоцен
палеотемпературные реконструкции;радиоуглеродный возраст
N. Budantseva A.
Yu. Vasil’chuk K.
Н. Буданцева А.
Ю. Васильчук К.
Reconstruction of mean January air temperature of Holocene in the lower Kolyma River region
topic_facet lower Kolyma River;ice wedges;alas;floodplain;oxygen isotopes;hydrogen isotopes;Holocene;paleotemperature reconstructions;radiocarbon age
нижнее течение р. Колыма;повторно-жильный лёд;алас;пойма;изотопы кислорода;изотопы водорода;голоцен
палеотемпературные реконструкции;радиоуглеродный возраст
description The object of study is ice wedges at 10 sites in the lower Kolyma River. The Holocene age of ice wedges is determined on the basis of radiocarbon dating of the enclosing sediments and location of ice wedges in alases, floodplains and lacustrine-paludal basins. The analysis of radiocarbon dates has shown that formation of alases with ice wedges began in early Greenlandian stage of Holocene (the oldest dates are 11 and 10.8 cal ka BP). The most active alas development and syngenetic ice wedge growth occurred since the second half of the Greenlandian stage till the middle-late Northgrippian stage of the Holocene, most of the available 14C dates fall in the range from 9.5 to 4.2 cal ka BP. Accumulation of the floodplain deposits of the Kolyma River occurred mainly during the Meghalayan stage, according to obtained 14C dates from 2.5 to 1.9 cal ka BP. Oxygen isotope data of studied ice wedges show that for the Holocene ice wedges the range of δ18O is about 4 ‰ (from –28 to –23.7 ‰) and for the modern ice veinlets– about 5 ‰ (from –28.1 to –23 ‰). Water of meteoric origin was the main source for ice wedge formation, however, for ice wedges on the floodplains some participation of surface (river) water is not excluded. Based on the refined equation of the ratio between ice wedge isotope composition and mean January air temperature, paleotemperatures for three key periods of the Holocene were calculated. It was established that mean January air temperature during the Holocene varied in the approximately same range: from –40.7 to –33.8 °С during the Greenlandian stage, from –38.6 to –33.3 °С during the Northgrippian stage and from –41.5 to –33 °С during the Meghalayan stage. This most likely indicates the stability of winter climatic conditions in the north of Yakutia during the Holocene, determined by the influence of Siberian anticyclone. Реконструкция среднеянварской температуры в низовьях р. Колыма для трёх ключевых периодов голоцена, выполненная на основе данных изотопного состава повторно-жильных льдов, показала, что ...
author2 This work was supported by the Russian Foundation for Basic Research (grant № 20–05– 00782, stable isotope analysis), the Development program of the Interdisciplinary Scientific and Educational School of M.V. Lomonosov Moscow State University «Future Planet and Global Environmental Change» and state budget theme 1.4. «Anthropogenic geochemical transformation of the components of landscapes».
Работа выполнена при поддержке РФФИ (грант № 20–05–00782, изотопные определения) в рамках Программы развития Междисциплинарной научно-образовательной школы Московского государственного университета имени М.В. Ломоносова «Будущее планеты и глобальные изменения окружающей среды» и госбюджетной темы 1.4. «Антропогенная геохимическая трансформация компонентов ландшафтов».
format Article in Journal/Newspaper
author N. Budantseva A.
Yu. Vasil’chuk K.
Н. Буданцева А.
Ю. Васильчук К.
author_facet N. Budantseva A.
Yu. Vasil’chuk K.
Н. Буданцева А.
Ю. Васильчук К.
author_sort N. Budantseva A.
title Reconstruction of mean January air temperature of Holocene in the lower Kolyma River region
title_short Reconstruction of mean January air temperature of Holocene in the lower Kolyma River region
title_full Reconstruction of mean January air temperature of Holocene in the lower Kolyma River region
title_fullStr Reconstruction of mean January air temperature of Holocene in the lower Kolyma River region
title_full_unstemmed Reconstruction of mean January air temperature of Holocene in the lower Kolyma River region
title_sort reconstruction of mean january air temperature of holocene in the lower kolyma river region
publisher IGRAS
publishDate 2022
url https://ice-snow.igras.ru/jour/article/view/1035
https://doi.org/10.31857/S2076673422030141
long_lat ENVELOPE(161.000,161.000,69.500,69.500)
geographic Kolyma
geographic_facet Kolyma
genre Antarctic and Alpine Research
Arctic
kolyma river
Permafrost and Periglacial Processes
Polarforschung
Yakutia
genre_facet Antarctic and Alpine Research
Arctic
kolyma river
Permafrost and Periglacial Processes
Polarforschung
Yakutia
op_source Ice and Snow; Том 62, № 3 (2022); 410-426
Лёд и Снег; Том 62, № 3 (2022); 410-426
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/1035/626
Васильчук Ю.К. Изотопно-кислородный состав подземных льдов (опыт палеогеокриологических реконструкций) . В 2 т . Т . 1 . М .: Изд . Отдела теоретических проблем РАН–МГУ, 1992 . 420 с .
Васильчук Ю.К. Повторно-жильные льды: гетероцикличность, гетерохронность, гетерогенность . М .: Изд-во Моск . ун-та, 2006 . 392 с.
Васильчук Ю.К., Котляков В.М. Основы изотопной геокриологии и гляциологии . М .: Изд-во Моск . ун-та, 2000 . 616 с.
Веремеева А.А. Формирование и современная динамика озерно-термокарстового рельефа тундровой зоны Колымской низменности по данным космической съемки: Дис . на соиск . уч . степ . канд . геогр . наук . Пущино: Институт физико-химических и биологических проблем почвоведения РАН, 2017 . 134 с.
Горбатов Е.С., Колесников С.Ф., Кузьмина С.А. Разновозрастные древние аласы на северо-востоке России // Геоморфология . 2021 . № 1 . С . 33–43 . https://doi.org/10.31857/S0435428121010041.
Каплина Т.Н. Аласные комплексы Северной Якутии // Криосфера Земли . 2009 . Т . ХIII . № 4 . С . 3–17.
Каплина Т.Н., Ложкин А.В. Возраст аласных отложений приморской низменности Якутии // Изв . АН СССР . Серия геол. 1979 . № 2 . С . 69–76.
Коняхин М.А. Изотопно-кислородный состав полигонально-жильных льдов как показатель условий их формирования и генезиса: Автореф . на соиск . уч . cтеп . канд . геогр . наук . Москва: МГУ имени М .В . Ломоносова, 1988 . 24 с.
Коняхин М.А., Карташова Г.Г., Шубина Л.А., Недешева Г.Н. Криолитологическое строение субаквальных дельтовых отложений р . Колымы (по результатам колонкового бурения) // Вестн . МГУ . Сер . 5 . География . 1989 . № 3 . С . 48–53.
Коротаев В.Н. Рельеф и история развития дельты Колымы // Вестн . МГУ . Сер . 5 . География . 2010 . № 4 . С . 40–46.
Михалёв Д.В., Николаев В.И., Романенко Ф.А . Реконструкция условий формирования подземных льдов Колымской низменности в позднем плейстоцене-голоцене по результатам изотопных исследований // Вестн . МГУ . Сер . 5 . География . 2012 . № 5 . С . 35–43.
Михалёв Д.В., Николаев В.И., Романенко Ф.А., Архипов В.В., Брилли М. Предварительные результаты изучения опорных разрезов многолетнемерзлых пород в нижнем течении р . Малый Анюй // Стабильные изотопы в палеоэкологических исследованиях / Ред . В .И . Николаев . М .: Институт географии РАН, 2006 . С . 100–124.
Соломатин В.И. Физика и география подземного оледенения . Новосибирск: Академическое изд-во «ГЕО» . 2013 . 346 с.
Bronk Ramsey C. Bayesian Analysis of Radiocarbon Dates // Radiocarbon . 2009 . V . 51 . Is . 1 . Р . 337–360.
Dansgaard W . Stable isotopes in precipitation . Tellus . 1964 . № 16 . P . 436–468 . doi:10.1111/j.2153-3490.1964.tb00181.x.
Davydov S.P., Fyodorov-Davydov D.G., Neff J.C., Shiklomanov N.I., Davydova A.E. Changes in active layer thickness and seasonal fluxes of dissolved organic carbon as a possible baseline for permafrost monitoring // Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, 2008 / Eds .: Kane D .L ., Hinkel K .M . Fairbanks, AK: Institute of Northern Engineering, University of Alaska Fair banks, 2008 . № 1 . P . 333–336.
Fukuda M., Nagaoka D., Saijyo K., Nakamura T., Kunitsky V. Radiocarbon dating results of organic materials obtained from Siberian permafrost areas // Reports of Institute of Low Temperature Science . Sapporo: Hokkaido University, 1997 . P . 17–28.
Grinter M., Lacelle D., Baranova N., Murseli S., Clark ID . Late Pleistocene and Holocene ice-wedge activity on the Blackstone Plateau, central Yukon, Canada // Quaternary Research . 2019 . V . 90 . № 1 . P . 179–193 . doi:10.1017/qua.2018.65.
Holland K.M., Porter T.J., Froese D.G., Kokelj S.V., Buchanan C.A. Ice-wedge evidence of Holocene winter warming in the Canadian Arctic // Geophys . Research Letters . 2020 . № 47 . P . e2020GL087942 . https://doi.org/10.1029/2020GL087942.
Meyer H., Dereviagin A.Y., Siegert C., Hubberten H.W. Paleoclimate studies on Bykovsky Peninsula, North Siberia – hydrogen and oxygen isotopes in ground ice // Polarforschung . 2002a . № 70 . P . 37–51.
Meyer H., Siegert C., Schirrmeister L., Hubberten H.-W. Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia – hydrogen and oxygen isotopes in ice wedges // Permafrost and Periglacial Processes . 2002b . № 13 . P . 91–105.
Opel T., Wetterich S., Meyer H., Dereviagin A.Y., Fuchs M.C., Schirrmeister L. Ground-ice stable isotopes and cryostratigraphy reflect late Quaternary palaeoclimate in the Northeast Siberian Arctic (Oyogos Yar coast, Dmitry Laptev Strait) // Climate of the Past . 2017 . № 13 . P . 587–611 . https://doi.org/10.5194/cp-13-587-2017.
Porter T.J., Opel T. Recent advances in paleoclimatological studies of Arctic wedge and pore-ice stable-water isotope records // Permafrost and Periglacial Processes. 2020 . V . 31 . № 3 . P . 429–441 . doi:10.1002/ppp.2052.
Reimer P.J., Bard E., Bayliss A., Beck J.W., Black-well P.G., Bronk Ramsey C., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilder-son T.P.,Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F.,Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M., van der Plicht J. IntCal13 and marine13 radiocarbon age calibration curves 0–50 000 years cal BP // Radiocarbon . 2013 . V . 55 . Р . 1869–1887.
Schirrmeister L., Bobrov A., Raschke E., Herzschuh U., Strauss J., Pestryakova L.A., Wetterich S. Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands // Arctic, Antarctic, and Alpine Research. 2018 . V . 50 . № 1 . P . e1462595 . doi:10.1080/15230430.2018.1462595.
Vasil'chuk Y.K. Reconstruction of the palaeoclimate of the Late Pleistocene and Holocene of the basis of isotope studies of subsurface ice and waters of the permafrost zone // Water Resources . 1991 . V . 17 . № 60 . P . 640–647.
Vasil'chuk Y.K., Budantseva N.A., Farquharson L., Maslakov A.A., Vasil'chuk A.C., Chizhova J.N. Isotopic evidence for Holocene January air temperature variability on the East Chukotka Peninsula // Permafrost and Periglacial Processes . 2018 . V . 29 . № 4 . P . 283–297 . doi:10.1002/ppp.1991.
Vasil'chuk Y.K., Vasil'chuk A.C. Ice wedges in the Mayn River valley and winter air paleotemperatures in the Southern Chukchi Peninsula at 38–12 kyr BP // Earth's Cryosphere . 2017 . V . XXI . № 5 . P . 27–41 . doi:10.21782/KZ1560-7496-2017-5(27–41).
Vasil'chuk Y.K., Vasil'chuk A.C. The oxygen isotope composition of ice wedges of Ayon Island and paleotemperature reconstructions of the Late Pleistocene and Holocene of the North of Chukotka // Moscow University Bulletin . Series 5 . Geology . 2018a . V . 73 . № 1 . P . 87–99 . https://doi.org/10.3103/S0145875218010131.
Vasil’chuk Y.K., Vasil’chuk A.C. Winter Air Paleotemperatures at 30-12 kyr BP in the Lower Kolyma River, Plakhinskii Yar yedoma: evidence from stable isotopes // Earth's Cryosphere . 2018b . V . XXII . № 5 . P . 3–16 . doi:10.21782/EC2541-9994-2018-5(3-16).
Meteo Publications // Электронный ресурс . URL: www.meteo.ru/data/156-temperature (дата обращения: 28 .04 .2022).
www.pogodaiklimat.ru // Электронный ресурс.
Walker M., Head M.J., Lowe J., Berkelhammer M., Björck S., Cheng H., Cwynar L.S., Fisher D., Gkinis V., Long A., Newnham R., Rasmussen S.O., Weiss H. Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes // Journ . of Quaternary Science. 2019 . V . 34 . № 3 . P . 173–186 . doi:10.1002/jqs.3097.
Wetterich S., Schirrmeister L., Nazarova L., Palagushkina O., Bobrov A., Pogosyan L., Savelieva L., Syrykh L., Matthes H., Fritz M., Günther F., Opel T., Meyer H. Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia) // Permafrost and Periglacial Processes . 2018 . V . 29 . № 3 . P . 182–198 . doi:10.1002/ppp.1979.
https://ice-snow.igras.ru/jour/article/view/1035
doi:10.31857/S2076673422030141
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.31857/S207667342203014110.31857/S043542812101004110.1111/j.2153-3490.1964.tb00181.x10.1017/qua.2018.6510.1029/2020GL08794210.5194/cp-13-587-201710.1002/ppp.205210.1080/15230430.2018.146259510.1002/ppp.199110.21782/KZ1560-7496-2017-5(27–
container_title Antarctic Science
container_volume 18
container_issue 2
container_start_page 199
op_container_end_page 204
_version_ 1771541266469748736
spelling ftjias:oai:oai.ice.elpub.ru:article/1035 2023-07-16T03:54:51+02:00 Reconstruction of mean January air temperature of Holocene in the lower Kolyma River region Реконструкция среднеянварской температуры воздуха в голоцене в низовьях реки Колымы N. Budantseva A. Yu. Vasil’chuk K. Н. Буданцева А. Ю. Васильчук К. This work was supported by the Russian Foundation for Basic Research (grant № 20–05– 00782, stable isotope analysis), the Development program of the Interdisciplinary Scientific and Educational School of M.V. Lomonosov Moscow State University «Future Planet and Global Environmental Change» and state budget theme 1.4. «Anthropogenic geochemical transformation of the components of landscapes». Работа выполнена при поддержке РФФИ (грант № 20–05–00782, изотопные определения) в рамках Программы развития Междисциплинарной научно-образовательной школы Московского государственного университета имени М.В. Ломоносова «Будущее планеты и глобальные изменения окружающей среды» и госбюджетной темы 1.4. «Антропогенная геохимическая трансформация компонентов ландшафтов». 2022-09-16 application/pdf https://ice-snow.igras.ru/jour/article/view/1035 https://doi.org/10.31857/S2076673422030141 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/1035/626 Васильчук Ю.К. Изотопно-кислородный состав подземных льдов (опыт палеогеокриологических реконструкций) . В 2 т . Т . 1 . М .: Изд . Отдела теоретических проблем РАН–МГУ, 1992 . 420 с . Васильчук Ю.К. Повторно-жильные льды: гетероцикличность, гетерохронность, гетерогенность . М .: Изд-во Моск . ун-та, 2006 . 392 с. Васильчук Ю.К., Котляков В.М. Основы изотопной геокриологии и гляциологии . М .: Изд-во Моск . ун-та, 2000 . 616 с. Веремеева А.А. Формирование и современная динамика озерно-термокарстового рельефа тундровой зоны Колымской низменности по данным космической съемки: Дис . на соиск . уч . степ . канд . геогр . наук . Пущино: Институт физико-химических и биологических проблем почвоведения РАН, 2017 . 134 с. Горбатов Е.С., Колесников С.Ф., Кузьмина С.А. Разновозрастные древние аласы на северо-востоке России // Геоморфология . 2021 . № 1 . С . 33–43 . https://doi.org/10.31857/S0435428121010041. Каплина Т.Н. Аласные комплексы Северной Якутии // Криосфера Земли . 2009 . Т . ХIII . № 4 . С . 3–17. Каплина Т.Н., Ложкин А.В. Возраст аласных отложений приморской низменности Якутии // Изв . АН СССР . Серия геол. 1979 . № 2 . С . 69–76. Коняхин М.А. Изотопно-кислородный состав полигонально-жильных льдов как показатель условий их формирования и генезиса: Автореф . на соиск . уч . cтеп . канд . геогр . наук . Москва: МГУ имени М .В . Ломоносова, 1988 . 24 с. Коняхин М.А., Карташова Г.Г., Шубина Л.А., Недешева Г.Н. Криолитологическое строение субаквальных дельтовых отложений р . Колымы (по результатам колонкового бурения) // Вестн . МГУ . Сер . 5 . География . 1989 . № 3 . С . 48–53. Коротаев В.Н. Рельеф и история развития дельты Колымы // Вестн . МГУ . Сер . 5 . География . 2010 . № 4 . С . 40–46. Михалёв Д.В., Николаев В.И., Романенко Ф.А . Реконструкция условий формирования подземных льдов Колымской низменности в позднем плейстоцене-голоцене по результатам изотопных исследований // Вестн . МГУ . Сер . 5 . География . 2012 . № 5 . С . 35–43. Михалёв Д.В., Николаев В.И., Романенко Ф.А., Архипов В.В., Брилли М. Предварительные результаты изучения опорных разрезов многолетнемерзлых пород в нижнем течении р . Малый Анюй // Стабильные изотопы в палеоэкологических исследованиях / Ред . В .И . Николаев . М .: Институт географии РАН, 2006 . С . 100–124. Соломатин В.И. Физика и география подземного оледенения . Новосибирск: Академическое изд-во «ГЕО» . 2013 . 346 с. Bronk Ramsey C. Bayesian Analysis of Radiocarbon Dates // Radiocarbon . 2009 . V . 51 . Is . 1 . Р . 337–360. Dansgaard W . Stable isotopes in precipitation . Tellus . 1964 . № 16 . P . 436–468 . doi:10.1111/j.2153-3490.1964.tb00181.x. Davydov S.P., Fyodorov-Davydov D.G., Neff J.C., Shiklomanov N.I., Davydova A.E. Changes in active layer thickness and seasonal fluxes of dissolved organic carbon as a possible baseline for permafrost monitoring // Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, 2008 / Eds .: Kane D .L ., Hinkel K .M . Fairbanks, AK: Institute of Northern Engineering, University of Alaska Fair banks, 2008 . № 1 . P . 333–336. Fukuda M., Nagaoka D., Saijyo K., Nakamura T., Kunitsky V. Radiocarbon dating results of organic materials obtained from Siberian permafrost areas // Reports of Institute of Low Temperature Science . Sapporo: Hokkaido University, 1997 . P . 17–28. Grinter M., Lacelle D., Baranova N., Murseli S., Clark ID . Late Pleistocene and Holocene ice-wedge activity on the Blackstone Plateau, central Yukon, Canada // Quaternary Research . 2019 . V . 90 . № 1 . P . 179–193 . doi:10.1017/qua.2018.65. Holland K.M., Porter T.J., Froese D.G., Kokelj S.V., Buchanan C.A. Ice-wedge evidence of Holocene winter warming in the Canadian Arctic // Geophys . Research Letters . 2020 . № 47 . P . e2020GL087942 . https://doi.org/10.1029/2020GL087942. Meyer H., Dereviagin A.Y., Siegert C., Hubberten H.W. Paleoclimate studies on Bykovsky Peninsula, North Siberia – hydrogen and oxygen isotopes in ground ice // Polarforschung . 2002a . № 70 . P . 37–51. Meyer H., Siegert C., Schirrmeister L., Hubberten H.-W. Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia – hydrogen and oxygen isotopes in ice wedges // Permafrost and Periglacial Processes . 2002b . № 13 . P . 91–105. Opel T., Wetterich S., Meyer H., Dereviagin A.Y., Fuchs M.C., Schirrmeister L. Ground-ice stable isotopes and cryostratigraphy reflect late Quaternary palaeoclimate in the Northeast Siberian Arctic (Oyogos Yar coast, Dmitry Laptev Strait) // Climate of the Past . 2017 . № 13 . P . 587–611 . https://doi.org/10.5194/cp-13-587-2017. Porter T.J., Opel T. Recent advances in paleoclimatological studies of Arctic wedge and pore-ice stable-water isotope records // Permafrost and Periglacial Processes. 2020 . V . 31 . № 3 . P . 429–441 . doi:10.1002/ppp.2052. Reimer P.J., Bard E., Bayliss A., Beck J.W., Black-well P.G., Bronk Ramsey C., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilder-son T.P.,Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F.,Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M., van der Plicht J. IntCal13 and marine13 radiocarbon age calibration curves 0–50 000 years cal BP // Radiocarbon . 2013 . V . 55 . Р . 1869–1887. Schirrmeister L., Bobrov A., Raschke E., Herzschuh U., Strauss J., Pestryakova L.A., Wetterich S. Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands // Arctic, Antarctic, and Alpine Research. 2018 . V . 50 . № 1 . P . e1462595 . doi:10.1080/15230430.2018.1462595. Vasil'chuk Y.K. Reconstruction of the palaeoclimate of the Late Pleistocene and Holocene of the basis of isotope studies of subsurface ice and waters of the permafrost zone // Water Resources . 1991 . V . 17 . № 60 . P . 640–647. Vasil'chuk Y.K., Budantseva N.A., Farquharson L., Maslakov A.A., Vasil'chuk A.C., Chizhova J.N. Isotopic evidence for Holocene January air temperature variability on the East Chukotka Peninsula // Permafrost and Periglacial Processes . 2018 . V . 29 . № 4 . P . 283–297 . doi:10.1002/ppp.1991. Vasil'chuk Y.K., Vasil'chuk A.C. Ice wedges in the Mayn River valley and winter air paleotemperatures in the Southern Chukchi Peninsula at 38–12 kyr BP // Earth's Cryosphere . 2017 . V . XXI . № 5 . P . 27–41 . doi:10.21782/KZ1560-7496-2017-5(27–41). Vasil'chuk Y.K., Vasil'chuk A.C. The oxygen isotope composition of ice wedges of Ayon Island and paleotemperature reconstructions of the Late Pleistocene and Holocene of the North of Chukotka // Moscow University Bulletin . Series 5 . Geology . 2018a . V . 73 . № 1 . P . 87–99 . https://doi.org/10.3103/S0145875218010131. Vasil’chuk Y.K., Vasil’chuk A.C. Winter Air Paleotemperatures at 30-12 kyr BP in the Lower Kolyma River, Plakhinskii Yar yedoma: evidence from stable isotopes // Earth's Cryosphere . 2018b . V . XXII . № 5 . P . 3–16 . doi:10.21782/EC2541-9994-2018-5(3-16). Meteo Publications // Электронный ресурс . URL: www.meteo.ru/data/156-temperature (дата обращения: 28 .04 .2022). www.pogodaiklimat.ru // Электронный ресурс. Walker M., Head M.J., Lowe J., Berkelhammer M., Björck S., Cheng H., Cwynar L.S., Fisher D., Gkinis V., Long A., Newnham R., Rasmussen S.O., Weiss H. Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes // Journ . of Quaternary Science. 2019 . V . 34 . № 3 . P . 173–186 . doi:10.1002/jqs.3097. Wetterich S., Schirrmeister L., Nazarova L., Palagushkina O., Bobrov A., Pogosyan L., Savelieva L., Syrykh L., Matthes H., Fritz M., Günther F., Opel T., Meyer H. Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia) // Permafrost and Periglacial Processes . 2018 . V . 29 . № 3 . P . 182–198 . doi:10.1002/ppp.1979. https://ice-snow.igras.ru/jour/article/view/1035 doi:10.31857/S2076673422030141 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 62, № 3 (2022); 410-426 Лёд и Снег; Том 62, № 3 (2022); 410-426 2412-3765 2076-6734 lower Kolyma River;ice wedges;alas;floodplain;oxygen isotopes;hydrogen isotopes;Holocene;paleotemperature reconstructions;radiocarbon age нижнее течение р. Колыма;повторно-жильный лёд;алас;пойма;изотопы кислорода;изотопы водорода;голоцен палеотемпературные реконструкции;радиоуглеродный возраст info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftjias https://doi.org/10.31857/S207667342203014110.31857/S043542812101004110.1111/j.2153-3490.1964.tb00181.x10.1017/qua.2018.6510.1029/2020GL08794210.5194/cp-13-587-201710.1002/ppp.205210.1080/15230430.2018.146259510.1002/ppp.199110.21782/KZ1560-7496-2017-5(27– 2023-06-25T17:53:38Z The object of study is ice wedges at 10 sites in the lower Kolyma River. The Holocene age of ice wedges is determined on the basis of radiocarbon dating of the enclosing sediments and location of ice wedges in alases, floodplains and lacustrine-paludal basins. The analysis of radiocarbon dates has shown that formation of alases with ice wedges began in early Greenlandian stage of Holocene (the oldest dates are 11 and 10.8 cal ka BP). The most active alas development and syngenetic ice wedge growth occurred since the second half of the Greenlandian stage till the middle-late Northgrippian stage of the Holocene, most of the available 14C dates fall in the range from 9.5 to 4.2 cal ka BP. Accumulation of the floodplain deposits of the Kolyma River occurred mainly during the Meghalayan stage, according to obtained 14C dates from 2.5 to 1.9 cal ka BP. Oxygen isotope data of studied ice wedges show that for the Holocene ice wedges the range of δ18O is about 4 ‰ (from –28 to –23.7 ‰) and for the modern ice veinlets– about 5 ‰ (from –28.1 to –23 ‰). Water of meteoric origin was the main source for ice wedge formation, however, for ice wedges on the floodplains some participation of surface (river) water is not excluded. Based on the refined equation of the ratio between ice wedge isotope composition and mean January air temperature, paleotemperatures for three key periods of the Holocene were calculated. It was established that mean January air temperature during the Holocene varied in the approximately same range: from –40.7 to –33.8 °С during the Greenlandian stage, from –38.6 to –33.3 °С during the Northgrippian stage and from –41.5 to –33 °С during the Meghalayan stage. This most likely indicates the stability of winter climatic conditions in the north of Yakutia during the Holocene, determined by the influence of Siberian anticyclone. Реконструкция среднеянварской температуры в низовьях р. Колыма для трёх ключевых периодов голоцена, выполненная на основе данных изотопного состава повторно-жильных льдов, показала, что ... Article in Journal/Newspaper Antarctic and Alpine Research Arctic kolyma river Permafrost and Periglacial Processes Polarforschung Yakutia Ice and Snow (E-Journal) Kolyma ENVELOPE(161.000,161.000,69.500,69.500) Antarctic Science 18 2 199 204