Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica

For the first time the summer mass balance of the Bellingshausen Ice Cap, the King George Island (Water-loo) in Antarctica, was estimated for the period of summer seasons 2007–2012 and 2014–2020. Measurements were carried out over a network of 29 ablation stakes. The contribution to the summer mass b...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: B. Mavlyudov R., Б. Мавлюдов Р.
Other Authors: The author expresses gratitude to Institute of geography of the Russian Academy of Sciences for the given possibility of work in Antarctic on King George (Waterloo) Island which has been provided by the Russian Antarctic Expedition. Work is executed within the limits of the state task № 0148–2019–0004 (АААА–А19–119022190172–5) «Glaciation and accompanying natural processes at climate changes» and at partial support of interregional project INT5153 of IAEA., Автор приносит благодарность Институту географии РАН за предоставленную возможность работы в Антарктике на острове Кинг-Джордж (Ватерлоо), которая была обеспечена Российской Антарктической экспедицией. Работа выполнена в рамках госзадания № 0148–2019–0004 (АААА–А19–119022190172–5) «Оледенение и сопутствующие природные процессы при изменениях климата» и при частичной поддержке межрегионального проекта МАГАТЭ INT5153.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2022
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/1028
https://doi.org/10.31857/S2076673422030135
id ftjias:oai:oai.ice.elpub.ru:article/1028
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic degree day factor;snow and ice melting;summer mass balance
летний баланс массы;таяние снега и льда;температурный коэффициент таяния
spellingShingle degree day factor;snow and ice melting;summer mass balance
летний баланс массы;таяние снега и льда;температурный коэффициент таяния
B. Mavlyudov R.
Б. Мавлюдов Р.
Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica
topic_facet degree day factor;snow and ice melting;summer mass balance
летний баланс массы;таяние снега и льда;температурный коэффициент таяния
description For the first time the summer mass balance of the Bellingshausen Ice Cap, the King George Island (Water-loo) in Antarctica, was estimated for the period of summer seasons 2007–2012 and 2014–2020. Measurements were carried out over a network of 29 ablation stakes. The contribution to the summer mass balance on the dome includes melting of snow (77%), glacial ice (15%), and superimposed ice (8%). Altitude gradients of snow and ice melting on slopes of different exposition were determined, which changed from –1.5 mm of water equivalent (w.e.) per 1 m on western slope in years with annual positive ice mass balance to –11 mm w.e. per 1 m on southern slope in years with negative ice mass balance. The summer mass balance on the cap was calculated using: 1) the average summer air temperature; 2) the sum of positive daily temperatures from data of the Bellingshausen weather station, 3) sum of average monthly air temperatures. Based on a comparison of colder (2009/10) and warmer (2019/20) years, the average melting coefficient for snow and ice for the glacier was calculated to be 9.5 mm/°C per day (Day Degree Factor – DDF). The high value of the DDF is probably due to intensive summer condensation during periods of frequent foggy weather on King George Island. A good correlation was found between the summer mass balance on the cap and the average summer air temperature at the Bellingshausen weather station for December–March (R2 = 0.9). This shows that the air temperature is the decisive factor of the change in the summer mass balance. Using this correlation, the dynamics of the summer mass balance on the cap was restored for the observation period (1969– 2020), which approximately corresponds to the trends in the annual mass balance on the cap. According to observations, it was found that positive deviation of the average summer air temperature by 0.5 °C from its climatic average value (~1 °C) increases the summer mass balance by 56%, while its negative deviation by 0.5 °C decreases the summer mass balance by 36%. This ...
author2 The author expresses gratitude to Institute of geography of the Russian Academy of Sciences for the given possibility of work in Antarctic on King George (Waterloo) Island which has been provided by the Russian Antarctic Expedition. Work is executed within the limits of the state task № 0148–2019–0004 (АААА–А19–119022190172–5) «Glaciation and accompanying natural processes at climate changes» and at partial support of interregional project INT5153 of IAEA.
Автор приносит благодарность Институту географии РАН за предоставленную возможность работы в Антарктике на острове Кинг-Джордж (Ватерлоо), которая была обеспечена Российской Антарктической экспедицией. Работа выполнена в рамках госзадания № 0148–2019–0004 (АААА–А19–119022190172–5) «Оледенение и сопутствующие природные процессы при изменениях климата» и при частичной поддержке межрегионального проекта МАГАТЭ INT5153.
format Article in Journal/Newspaper
author B. Mavlyudov R.
Б. Мавлюдов Р.
author_facet B. Mavlyudov R.
Б. Мавлюдов Р.
author_sort B. Mavlyudov R.
title Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica
title_short Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica
title_full Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica
title_fullStr Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica
title_full_unstemmed Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica
title_sort summer mass balance of the bellingshausen dome on king george island, antarctica
publisher IGRAS
publishDate 2022
url https://ice-snow.igras.ru/jour/article/view/1028
https://doi.org/10.31857/S2076673422030135
long_lat ENVELOPE(-58.888,-58.888,-62.165,-62.165)
geographic Bellingshausen Dome
King George Island
geographic_facet Bellingshausen Dome
King George Island
genre Annals of Glaciology
Antarc*
Antarctic Science
Antarctica
Ice cap
King George Island
The Cryosphere
Антарктика
genre_facet Annals of Glaciology
Antarc*
Antarctic Science
Antarctica
Ice cap
King George Island
The Cryosphere
Антарктика
op_source Ice and Snow; Том 62, № 3 (2022); 325-342
Лёд и Снег; Том 62, № 3 (2022); 325-342
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/1028/631
Втюрин Б.И. Полевые гляциологические и геокриологические исследования на острове Кинг-Джорж в 25 Советской Антарктической экспедиции // МГИ. 1980 . Вып . 39 . С . 30.
Говоруха Л.С., Симонов И.М. Географические исследования на острове Кинг-Джордж // Информ . бюлл . САЭ . 1973 . № 85 . С . 8–15.
Заморуев В.В. Результаты гляциологических наблюдений на станции Беллинсгаузен в 1968 г . // Тр . САЭ. 1972 . Т . 55 . С . 135–144.
Мавлюдов Б.Р. Баланс массы льда ледникового ку пола Беллинсгаузен в 2007–2012 гг . (о . Кинг-Джордж, Южные Шетландские острова, Антарктика) // Лёд и Снег . 2014 . № 1 (125) . С . 27–34.
Мавлюдов Б.Р. Купол Беллинсгаузен // Вопросы географии . Сб . 142 . География полярных регионов . М .: Изд . дом . «Кодекс» . 2016 . С . 629–648.
Орлов А.И. Географические исследования на полуострове Файлдс // Тр . САЭ . 1973 . Т . 58 . С . 184–207.
Электронный ресурс: www.aari.aq (дата обращения: 25 .02 .2022).
Bintanja R. The local surface energy-balance of the Ecology Glacier, King George Island, Antarctica: measurements and modelling // Antarctic Science . 1995 . V . 7 № 3 . P . 315–325 . doi:10.1017/S0954102095000435.
Braun M. Ablation on the ice cap of King George Island (Antarctica) — an approach from field measurements, modelling and remote sensing . Doctoral thesis at the Faculty of Earth Sciences . Albert-Ludwigs-Universität Freiburg i . Br ., Riedlingen/Württ . 2001 . 165 p.
Braun M., Rau F. Using a multi-year data archive of ERS SAR imagery for the monitoring of firn line positions and ablation patterns on the King George Island ice cap (Antarctica) // Proc . of EARSeL-SIG-Workshop Land Ice and Snow, Dresden/FRG, June 16–17, 2000 . № 1 . P . 281–291.
Braun M.H., Hock R. Spatially distributed surface energy balance and ablation modelling on the ice cap of King George Island (Antarctica) // Global and Planetary Change . 2004 . V . 42 . № 1 . P . 45–58 . doi:10.1016/j.gloplacha.2003.11.010.
Cogley J.G., Hock R., Rasmussen L.A., Arendt A.A., Bauder A., Braithwaite R.J., Jansson P., Kaser G., Mӧller M., Nicholson L., Zemp M. Glossary of Glacier Mass Balance and Related Terms . IHP–VII Technical Documents in Hydrology, No . 86; IACS Contribution No . 2 . UNESCO Working Series SC-2011/WS/4 . Paris: UNESCO-IHP . 2011 . 115 p.
Costi J., Arigony-Neto J., Braun M., Mavlyudov B., Bar-rand N.E., Da Silva A.B., Marques W.C., Simoes J.C. Estimating surface melt and runoff on the Antarctic Peninsula using ERA–Interim reanalysis data // Antarctic Science . 2018 . V . 30 . № 6 . P . 379–393 . doi:10.1017/S0954102018000391.
Falk U., López D.A., Silva–Busso A. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula // The Cryosphere . 2018 . V . 12 . № 4 . P . 1211–1232 . https://doi.org/10.5194/tc-12-1211-2018.
Jiahong W., Jiancheng K., Jiankang H., Zichu X., Leibao L., Dali W. Glaciological studies on the King George Island ice cap, South Shetland Islands, Antarctica // Annals of Glaciology . 1998 . V . 27 . P . 105– 109 . doi:10.3189/1998AoG27-1-105-109
Oliva M., Navarro F., Hrbáček F., Hernández A., Nývlt D., Pereira P., Ruiz-Fernández J. & Trigod R. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere // Science of the Total Environment . 2017 . V . 580 . P . 210–223.
Orheim O., Govorukha L.S . Present-day glaciation in the South Shetland Islands // Annals of Glaciology . 1982 . V . 3 . P . 233–238.
Pasik M., Bakuła K., Różycki S., Ostrowski W., Kowalska M.E., Fijałkowska A., Rajner M., Łapiński S., Sobota I., Kejna M., Osińska-Skotak K. Glacier Geometry Changes in the Western Shore of Admiralty Bay, King George Island over the Last Decades // Sensors . 2021 . V . 21 . № 4 . Р . 1532 . https://doi.org/10.3390/s21041532.
Perondi C. Análise da evolução do ambiente proglacial das geleiras Ecology, Sphinx, Baranowski, Tower e Windy, ilha Rei George . Dissertação (Mestrado) UFRGS, Porto Alegre, 2018 . 123 p . http://hdl.handle.net/10183/180993.
Pętlicki M., Sziło J., MacDonell S., Vivero S., Bialik R.J. Recent Deceleration of the Ice Elevation Change of Ecology Glacier (King George Island, Antarctica) // Remote Sens . 2017 . V . 9 . № 6 . Р . 520 . https://doi.org/10.3390/rs9060520.
Petsch C., Rosa K.K.d., Vieira R., Braun M.H., Costa R.M., Simões J.C. The effects of climatic change on glacial, proglacial and paraglacial systems at Collins Glacier, King George Island, Antarctica, from the end of the Little Ice Age to the 21st century // Investigaciones geográficas 2020 . № 103 . elocation e60153 . https://doi.org/10.14350/rig.60153.
Pudełko R., Angiel P.J., Potocki M., Jędrejek A., Kozak M. Fluctuation of Glacial Retreat Rates in the Eastern Part of Warszawa Icefield, King George Island, Antarctica, 1979–2018 // Remote Sensing . 2018 . V . 10 . № 6 . Р . 892 . https://doi.org/10.3390/rs10060892.
Rückamp M., Blindow N. King George Island ice cap geometry updated with airborne GPR measurements // Earth System Science Data . 2012 . V . 4 . № 1 . P . 23–30 . https://doi.org/10.5194/essd-4-23-2012.
Rückamp M., Braun M., Suckro S., Blindow N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade // Global and Planetary Change . 2011 . V . 79 . № 1-2 . P . 99–109 .
Simoes C.L., Rosa K.K.d., Czapela F.F., Vieira R., Simoes J.C. Collins Glacier Retreat Process and Regional Climatic Variations, King George Island, Antarctica // Geogr . Review . 2015 . V . 105 . № 4 . P . 462–471 . https://doi.org/10.1111/j.1931-0846.2015.12091.x.
Szilo J., Bialik R.J. Recession and ice surface elevation changes of Baranowski Glacier and its impact on proglacial relief (King George Island, West Antarctica) // Geosciences . 2018 . V . 8 . № 10 . Р . 355 . https://doi.org/10.3390/geosciences8100355.
https://ice-snow.igras.ru/jour/article/view/1028
doi:10.31857/S2076673422030135
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.31857/S207667342203013510.1017/S095410209500043510.1016/j.gloplacha.2003.11.01010.1017/S095410201800039110.5194/tc-12-1211-201810.3189/1998AoG27-1-105-10910.3390/s2104153210.3390/rs906052010.14350/rig.6015310.3390/rs1006089210.5194/essd
container_title Ice and Snow
container_volume 59
container_issue 1
_version_ 1771543814285033472
spelling ftjias:oai:oai.ice.elpub.ru:article/1028 2023-07-16T03:51:52+02:00 Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica Летний баланс массы ледникового купола Беллинсгаузен на острове Кинг-Джордж, Антарктика B. Mavlyudov R. Б. Мавлюдов Р. The author expresses gratitude to Institute of geography of the Russian Academy of Sciences for the given possibility of work in Antarctic on King George (Waterloo) Island which has been provided by the Russian Antarctic Expedition. Work is executed within the limits of the state task № 0148–2019–0004 (АААА–А19–119022190172–5) «Glaciation and accompanying natural processes at climate changes» and at partial support of interregional project INT5153 of IAEA. Автор приносит благодарность Институту географии РАН за предоставленную возможность работы в Антарктике на острове Кинг-Джордж (Ватерлоо), которая была обеспечена Российской Антарктической экспедицией. Работа выполнена в рамках госзадания № 0148–2019–0004 (АААА–А19–119022190172–5) «Оледенение и сопутствующие природные процессы при изменениях климата» и при частичной поддержке межрегионального проекта МАГАТЭ INT5153. 2022-09-16 application/pdf https://ice-snow.igras.ru/jour/article/view/1028 https://doi.org/10.31857/S2076673422030135 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/1028/631 Втюрин Б.И. Полевые гляциологические и геокриологические исследования на острове Кинг-Джорж в 25 Советской Антарктической экспедиции // МГИ. 1980 . Вып . 39 . С . 30. Говоруха Л.С., Симонов И.М. Географические исследования на острове Кинг-Джордж // Информ . бюлл . САЭ . 1973 . № 85 . С . 8–15. Заморуев В.В. Результаты гляциологических наблюдений на станции Беллинсгаузен в 1968 г . // Тр . САЭ. 1972 . Т . 55 . С . 135–144. Мавлюдов Б.Р. Баланс массы льда ледникового ку пола Беллинсгаузен в 2007–2012 гг . (о . Кинг-Джордж, Южные Шетландские острова, Антарктика) // Лёд и Снег . 2014 . № 1 (125) . С . 27–34. Мавлюдов Б.Р. Купол Беллинсгаузен // Вопросы географии . Сб . 142 . География полярных регионов . М .: Изд . дом . «Кодекс» . 2016 . С . 629–648. Орлов А.И. Географические исследования на полуострове Файлдс // Тр . САЭ . 1973 . Т . 58 . С . 184–207. Электронный ресурс: www.aari.aq (дата обращения: 25 .02 .2022). Bintanja R. The local surface energy-balance of the Ecology Glacier, King George Island, Antarctica: measurements and modelling // Antarctic Science . 1995 . V . 7 № 3 . P . 315–325 . doi:10.1017/S0954102095000435. Braun M. Ablation on the ice cap of King George Island (Antarctica) — an approach from field measurements, modelling and remote sensing . Doctoral thesis at the Faculty of Earth Sciences . Albert-Ludwigs-Universität Freiburg i . Br ., Riedlingen/Württ . 2001 . 165 p. Braun M., Rau F. Using a multi-year data archive of ERS SAR imagery for the monitoring of firn line positions and ablation patterns on the King George Island ice cap (Antarctica) // Proc . of EARSeL-SIG-Workshop Land Ice and Snow, Dresden/FRG, June 16–17, 2000 . № 1 . P . 281–291. Braun M.H., Hock R. Spatially distributed surface energy balance and ablation modelling on the ice cap of King George Island (Antarctica) // Global and Planetary Change . 2004 . V . 42 . № 1 . P . 45–58 . doi:10.1016/j.gloplacha.2003.11.010. Cogley J.G., Hock R., Rasmussen L.A., Arendt A.A., Bauder A., Braithwaite R.J., Jansson P., Kaser G., Mӧller M., Nicholson L., Zemp M. Glossary of Glacier Mass Balance and Related Terms . IHP–VII Technical Documents in Hydrology, No . 86; IACS Contribution No . 2 . UNESCO Working Series SC-2011/WS/4 . Paris: UNESCO-IHP . 2011 . 115 p. Costi J., Arigony-Neto J., Braun M., Mavlyudov B., Bar-rand N.E., Da Silva A.B., Marques W.C., Simoes J.C. Estimating surface melt and runoff on the Antarctic Peninsula using ERA–Interim reanalysis data // Antarctic Science . 2018 . V . 30 . № 6 . P . 379–393 . doi:10.1017/S0954102018000391. Falk U., López D.A., Silva–Busso A. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula // The Cryosphere . 2018 . V . 12 . № 4 . P . 1211–1232 . https://doi.org/10.5194/tc-12-1211-2018. Jiahong W., Jiancheng K., Jiankang H., Zichu X., Leibao L., Dali W. Glaciological studies on the King George Island ice cap, South Shetland Islands, Antarctica // Annals of Glaciology . 1998 . V . 27 . P . 105– 109 . doi:10.3189/1998AoG27-1-105-109 Oliva M., Navarro F., Hrbáček F., Hernández A., Nývlt D., Pereira P., Ruiz-Fernández J. & Trigod R. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere // Science of the Total Environment . 2017 . V . 580 . P . 210–223. Orheim O., Govorukha L.S . Present-day glaciation in the South Shetland Islands // Annals of Glaciology . 1982 . V . 3 . P . 233–238. Pasik M., Bakuła K., Różycki S., Ostrowski W., Kowalska M.E., Fijałkowska A., Rajner M., Łapiński S., Sobota I., Kejna M., Osińska-Skotak K. Glacier Geometry Changes in the Western Shore of Admiralty Bay, King George Island over the Last Decades // Sensors . 2021 . V . 21 . № 4 . Р . 1532 . https://doi.org/10.3390/s21041532. Perondi C. Análise da evolução do ambiente proglacial das geleiras Ecology, Sphinx, Baranowski, Tower e Windy, ilha Rei George . Dissertação (Mestrado) UFRGS, Porto Alegre, 2018 . 123 p . http://hdl.handle.net/10183/180993. Pętlicki M., Sziło J., MacDonell S., Vivero S., Bialik R.J. Recent Deceleration of the Ice Elevation Change of Ecology Glacier (King George Island, Antarctica) // Remote Sens . 2017 . V . 9 . № 6 . Р . 520 . https://doi.org/10.3390/rs9060520. Petsch C., Rosa K.K.d., Vieira R., Braun M.H., Costa R.M., Simões J.C. The effects of climatic change on glacial, proglacial and paraglacial systems at Collins Glacier, King George Island, Antarctica, from the end of the Little Ice Age to the 21st century // Investigaciones geográficas 2020 . № 103 . elocation e60153 . https://doi.org/10.14350/rig.60153. Pudełko R., Angiel P.J., Potocki M., Jędrejek A., Kozak M. Fluctuation of Glacial Retreat Rates in the Eastern Part of Warszawa Icefield, King George Island, Antarctica, 1979–2018 // Remote Sensing . 2018 . V . 10 . № 6 . Р . 892 . https://doi.org/10.3390/rs10060892. Rückamp M., Blindow N. King George Island ice cap geometry updated with airborne GPR measurements // Earth System Science Data . 2012 . V . 4 . № 1 . P . 23–30 . https://doi.org/10.5194/essd-4-23-2012. Rückamp M., Braun M., Suckro S., Blindow N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade // Global and Planetary Change . 2011 . V . 79 . № 1-2 . P . 99–109 . Simoes C.L., Rosa K.K.d., Czapela F.F., Vieira R., Simoes J.C. Collins Glacier Retreat Process and Regional Climatic Variations, King George Island, Antarctica // Geogr . Review . 2015 . V . 105 . № 4 . P . 462–471 . https://doi.org/10.1111/j.1931-0846.2015.12091.x. Szilo J., Bialik R.J. Recession and ice surface elevation changes of Baranowski Glacier and its impact on proglacial relief (King George Island, West Antarctica) // Geosciences . 2018 . V . 8 . № 10 . Р . 355 . https://doi.org/10.3390/geosciences8100355. https://ice-snow.igras.ru/jour/article/view/1028 doi:10.31857/S2076673422030135 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 62, № 3 (2022); 325-342 Лёд и Снег; Том 62, № 3 (2022); 325-342 2412-3765 2076-6734 degree day factor;snow and ice melting;summer mass balance летний баланс массы;таяние снега и льда;температурный коэффициент таяния info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftjias https://doi.org/10.31857/S207667342203013510.1017/S095410209500043510.1016/j.gloplacha.2003.11.01010.1017/S095410201800039110.5194/tc-12-1211-201810.3189/1998AoG27-1-105-10910.3390/s2104153210.3390/rs906052010.14350/rig.6015310.3390/rs1006089210.5194/essd 2023-06-25T17:53:38Z For the first time the summer mass balance of the Bellingshausen Ice Cap, the King George Island (Water-loo) in Antarctica, was estimated for the period of summer seasons 2007–2012 and 2014–2020. Measurements were carried out over a network of 29 ablation stakes. The contribution to the summer mass balance on the dome includes melting of snow (77%), glacial ice (15%), and superimposed ice (8%). Altitude gradients of snow and ice melting on slopes of different exposition were determined, which changed from –1.5 mm of water equivalent (w.e.) per 1 m on western slope in years with annual positive ice mass balance to –11 mm w.e. per 1 m on southern slope in years with negative ice mass balance. The summer mass balance on the cap was calculated using: 1) the average summer air temperature; 2) the sum of positive daily temperatures from data of the Bellingshausen weather station, 3) sum of average monthly air temperatures. Based on a comparison of colder (2009/10) and warmer (2019/20) years, the average melting coefficient for snow and ice for the glacier was calculated to be 9.5 mm/°C per day (Day Degree Factor – DDF). The high value of the DDF is probably due to intensive summer condensation during periods of frequent foggy weather on King George Island. A good correlation was found between the summer mass balance on the cap and the average summer air temperature at the Bellingshausen weather station for December–March (R2 = 0.9). This shows that the air temperature is the decisive factor of the change in the summer mass balance. Using this correlation, the dynamics of the summer mass balance on the cap was restored for the observation period (1969– 2020), which approximately corresponds to the trends in the annual mass balance on the cap. According to observations, it was found that positive deviation of the average summer air temperature by 0.5 °C from its climatic average value (~1 °C) increases the summer mass balance by 56%, while its negative deviation by 0.5 °C decreases the summer mass balance by 36%. This ... Article in Journal/Newspaper Annals of Glaciology Antarc* Antarctic Science Antarctica Ice cap King George Island The Cryosphere Антарктика Ice and Snow (E-Journal) Bellingshausen Dome ENVELOPE(-58.888,-58.888,-62.165,-62.165) King George Island Ice and Snow 59 1