PHOTOTROPHIC PICOEUKARYOTES OF THE ONEGA BAY, THE WHITE SEA: ABUNDANCE AND SPEСIES COMPOSITION

The abundance, biomass and species composition of phototrophic picoeukaryotes (PPE, cells size less than 3 μm) were studied in Onega Bay of the White Sea in June 2015. The highest PPE abundance and biomass were registered in the 0–5 m water layer. In the bay the average (in the 0–5 m water layer) ab...

Full description

Bibliographic Details
Main Authors: T. A. Belevich, L. V. Ilyash, I. A. Milyutina, M. D. Logacheva, A. V. Troitsky, Т. А. Белевич, Л. В. Ильяш, И. А. Милютина, М. Д. Логачева, А. В. Троицкий
Format: Article in Journal/Newspaper
Language:Russian
Published: Lomonosov Moscow State University, School of Biology 2017
Subjects:
Online Access:https://vestnik-bio-msu.elpub.ru/jour/article/view/468
id ftjhmub:oai:oai.vestnik-bio-msu.elpub.ru:article/468
record_format openpolar
institution Open Polar
collection Herald of Moscow University. Series 16. Biology
op_collection_id ftjhmub
language Russian
topic метагеномный анализ
phototrophic picoeukaryotes
Micromonas
Bathycoccus
Ostreococcus
Illumina sequencing
фототрофные пикоэукариоты
spellingShingle метагеномный анализ
phototrophic picoeukaryotes
Micromonas
Bathycoccus
Ostreococcus
Illumina sequencing
фототрофные пикоэукариоты
T. A. Belevich
L. V. Ilyash
I. A. Milyutina
M. D. Logacheva
A. V. Troitsky
Т. А. Белевич
Л. В. Ильяш
И. А. Милютина
М. Д. Логачева
А. В. Троицкий
PHOTOTROPHIC PICOEUKARYOTES OF THE ONEGA BAY, THE WHITE SEA: ABUNDANCE AND SPEСIES COMPOSITION
topic_facet метагеномный анализ
phototrophic picoeukaryotes
Micromonas
Bathycoccus
Ostreococcus
Illumina sequencing
фототрофные пикоэукариоты
description The abundance, biomass and species composition of phototrophic picoeukaryotes (PPE, cells size less than 3 μm) were studied in Onega Bay of the White Sea in June 2015. The highest PPE abundance and biomass were registered in the 0–5 m water layer. In the bay the average (in the 0–5 m water layer) abundance and biomass varied from 0 to 36,8 ·104 cell/l and from 0 to 117 μg С/m3, respectively. The Illumina sequencing of V4 region of 18S rRNA gene revealed eight classes of PPE. Mamiellophyceae dominated both in number of reads and operational taxonomic units. The green algae Bathycoccus prasinos, Ostreococcus tauri and Micromonas pusila, as well as diatoms Skeletonema marinoi and Minidiscus trioculatus were identified to species level. Численность, биомасса и состав фотоавтотрофных пикоэукариот (ФПЭ, размер клеток менее 3 мкм) оценены в Онежском заливе Белого моря в июне 2015 г. Наибольшие значения численности и биомассы ФПЭ были приурочены к слою 0–5 м, в котором средние значения этих показателей ФПЭ по акватории залива изменялись в пределах 0–36,8 ·104 кл/л и 0–117 мкг С/м3, соответственно. Метагеномное секвенирование области V4 гена 18S рРНК выявило присутствие таксонов ФПЭ, относящихся к восьми классам водорослей. По числу прочтений и операционных таксономических единиц преобладали Mamiellophyceae. До видового уровня идентифицированы зелёные водоросли Bathycoccus prasinos, Ostreococcus tauri и Micromonas pusila, а также диатомеи Skeletonema marinoi и Minidiscus trioculatus.
format Article in Journal/Newspaper
author T. A. Belevich
L. V. Ilyash
I. A. Milyutina
M. D. Logacheva
A. V. Troitsky
Т. А. Белевич
Л. В. Ильяш
И. А. Милютина
М. Д. Логачева
А. В. Троицкий
author_facet T. A. Belevich
L. V. Ilyash
I. A. Milyutina
M. D. Logacheva
A. V. Troitsky
Т. А. Белевич
Л. В. Ильяш
И. А. Милютина
М. Д. Логачева
А. В. Троицкий
author_sort T. A. Belevich
title PHOTOTROPHIC PICOEUKARYOTES OF THE ONEGA BAY, THE WHITE SEA: ABUNDANCE AND SPEСIES COMPOSITION
title_short PHOTOTROPHIC PICOEUKARYOTES OF THE ONEGA BAY, THE WHITE SEA: ABUNDANCE AND SPEСIES COMPOSITION
title_full PHOTOTROPHIC PICOEUKARYOTES OF THE ONEGA BAY, THE WHITE SEA: ABUNDANCE AND SPEСIES COMPOSITION
title_fullStr PHOTOTROPHIC PICOEUKARYOTES OF THE ONEGA BAY, THE WHITE SEA: ABUNDANCE AND SPEСIES COMPOSITION
title_full_unstemmed PHOTOTROPHIC PICOEUKARYOTES OF THE ONEGA BAY, THE WHITE SEA: ABUNDANCE AND SPEСIES COMPOSITION
title_sort phototrophic picoeukaryotes of the onega bay, the white sea: abundance and speсies composition
publisher Lomonosov Moscow State University, School of Biology
publishDate 2017
url https://vestnik-bio-msu.elpub.ru/jour/article/view/468
genre Arctic
Onega Bay
White Sea
Белого моря
genre_facet Arctic
Onega Bay
White Sea
Белого моря
op_source Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 72, № 3 (2017); 128-134
Вестник Московского университета. Серия 16. Биология; Том 72, № 3 (2017); 128-134
0137-0952
op_relation https://vestnik-bio-msu.elpub.ru/jour/article/view/468/392
Li W.K., McLaughlin F.A., Lovejoy C., Carmack E.C. Smallest algae thrive as the Arctic Ocean freshens // Science. 2009. Vol. 326. N 5952. P. 539.
Kirkham A.R., Lepère C., Jardillier L.E., Not F., Bouman H., Mead A., Scanlan D.J. A global perspective on marine photosynthetic picoeukaryote community structure // The ISME J. 2013. Vol. 7. N 5. P. 922–936.
Kilias E.S., Nöthig E.-M., Wolf C., Metfies K. Picoeukaryote plankton composition off West Spitsbergen at the entrance to the Arctic Ocean // J. Eukaryot. Microbiol. 2014. Vol. 61. N 6. P. 569–579.
Metfies K., von Appen W.-J., Kilias E., Nicolaus A., Nöthig E.-M. Biogeography and photosynthetic biomass of arctic marine pico-eukaryotes during summer of the record sea ice minimum 2016 // PLoS ONE. 2016. Vol. 11. N 2. e0148512.
Intergovernmental panel on climate change. Working group I 2007. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change / Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge Univ. Press, 2007. 996 pp.
Lovejoy C., Vincent W.F., Bonilla S., Roy S., Martineau M.J., Terrado R., Potvin M., Massana R., Pedros-Alio C. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in arctic seas // J. Phycol. 2007. Vol. 43. N 1. P. 78–89.
Berger V., Dahle S., Galaktionov K., Kosobokova X., Naumov A., Rat’kova T., Savinov V., Savinova T. White Sea. Ecology and Environment. St-Petersburg: Zoological Institute Russian Academy of Sciences, 2001. 157 p.
Belevich T.A., Ilyash L.V., Milyutina I.A., Logacheva M.D., Goryunov D.V., Troitsky A.V. Metagenomic analyses of White Sea picoalgae: first data // Biochemistry. 2015. Vol. 80. N 11. P. 1514–1521.
Belevich T.A., Ilyash L.V., Zimin A.V., Kravchishina M.D., Novikhin A.E., Dobrotina E.D. Peculiarities of summer phytoplankton spatial distribution in Onega Bay of the White Sea under local hydrophysical conditions // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 3. P. 135–140.
Hillebrand H., Dürselen C.-D., Kirschtel D., Pollingher U., Zohary T. Biovolume calculation for pelagic and benthic microalgae // J. Phycol. 1999. Vol. 5. N 2. P. 403–424.
Verity P.G., Robertson C.Y., Tronzo C.R., Andrews M.G., Nelson J.R., Sieracki M.E. Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton // Limnol. Oceanogr. 1992. Vol. 37. N 7. P. 1434–1446.
Schloss P.D., Westcott S.L., Ryabin T. et al. Introducing mothur: open-source, platform- independent, community- supported software for describing and comparing microbial communities // Appl. Environ. Microbiol. 2009. Vol. 75. N 23. P. 7537–7541.
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glockner F.O. The SILVA ribosomal RNA gene database project: improved data processing and webbased tools // Nucleic Acids Res. 2013. Vol. 41. N D1. P. D590–D596.
Vaulot D., Eikrem W., Viprey M., Moreau H. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems // FEMS Microb. Rev. 2008. Vol. 32. N 5. P. 795–820.
Zhu F., Massana R., Not F., Marie D., Vaulot D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene // FEMS Microbiol. Ecol. 2005. Vol. 52. N 1. P. 79–92.
Worden A.Z., Lee J.-H., Mock T. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas // Science. 2009. Vol. 324. N 5924. P. 268–272.
Choi D.Y., An S.M., Chun S., Yang E.C., Selph K.E., Lee C.M., Noh J.H. Dynamic changes in the composition of photosynthetic picoeukaryotes in the northwestern Pacific Ocean revealed by high-throughput tag sequencing of plastid 16S rRNA genes // FEMS Microbiol Ecol. 2016. Vol. 92. N 2. fiv170.
Ilyash L.V., Belevich T.A., Stupnikova A.N., Drits A.V., Flint M.V. Effects of local hydrophysical conditions on the spatial variability of phytoplankton in the White Sea // Oceanology. 2015. Vol. 55. N 2. P. 216–225.
Zhang F., He J., Lin L., Jin H. Dominance of picophytoplankton in the newly open surface water of the central Arctic Ocean // Polar Biol. 2015. Vol. 38. N 7. P. 1081–1089.
Clayton S., Lin Y.-C., Follows M.J., Worden A.Z. Coexistence of distinct Ostreococcus ecotypes at an oceanic front // Limnol. Oceanogr. 2017. Vol. 62. N 1. P. 75–88.
Simmons M.P., Bachy C., Sudek S., van Baren M.J., Sudek L., Ares M. Jr., Worden A.Z. Intron invasions trace algal speciation and reveal nearly identical Arctic and Antarctic Micromonas populations // Mol. Biol. Evol. 2015. Vol. 32. N 9. P. 2219–2235.
Ichinomiya M., Lopes dos Santos A., Gourvil P., Yoshikawa S., Kamiya M., Ohki K., Audic S., Vargas C. de Noël M.-H., Vaulot D., Kuwata A. Diversity and oceanic distribution of the Parmales (Bolidophyceae), a picoplanktonic group closely related to diatoms // ISME J. 2016. Vol. 10. N 10. P. 2419–2434.
Balzano S., Marie D., Gourvil P., Vaulot D. Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples // The ISME J. 2012. Vol. 6. N 8. P. 1480–1498.
Marquardt M., Vader A., Stübner E.I., Reigstad M., Gabrielsen T.M. Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, West Spitsbergen) // Appl. Environ. Microbiol. 2016. Vol. 82. N 6. P. 1868–1880.
https://vestnik-bio-msu.elpub.ru/jour/article/view/468
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой автороские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например, в институтском хранилище или на персональном сайте).
_version_ 1810293829816811520
spelling ftjhmub:oai:oai.vestnik-bio-msu.elpub.ru:article/468 2024-09-15T17:51:49+00:00 PHOTOTROPHIC PICOEUKARYOTES OF THE ONEGA BAY, THE WHITE SEA: ABUNDANCE AND SPEСIES COMPOSITION ОБИЛИЕ И ВИДОВОЙ СОСТАВ ФОТОАВТОТРОФНЫХ ПИКОЭУКАРИОТ ОНЕЖСКОГО ЗАЛИВА БЕЛОГО МОРЯ T. A. Belevich L. V. Ilyash I. A. Milyutina M. D. Logacheva A. V. Troitsky Т. А. Белевич Л. В. Ильяш И. А. Милютина М. Д. Логачева А. В. Троицкий 2017-07-28 application/pdf https://vestnik-bio-msu.elpub.ru/jour/article/view/468 rus rus Lomonosov Moscow State University, School of Biology https://vestnik-bio-msu.elpub.ru/jour/article/view/468/392 Li W.K., McLaughlin F.A., Lovejoy C., Carmack E.C. Smallest algae thrive as the Arctic Ocean freshens // Science. 2009. Vol. 326. N 5952. P. 539. Kirkham A.R., Lepère C., Jardillier L.E., Not F., Bouman H., Mead A., Scanlan D.J. A global perspective on marine photosynthetic picoeukaryote community structure // The ISME J. 2013. Vol. 7. N 5. P. 922–936. Kilias E.S., Nöthig E.-M., Wolf C., Metfies K. Picoeukaryote plankton composition off West Spitsbergen at the entrance to the Arctic Ocean // J. Eukaryot. Microbiol. 2014. Vol. 61. N 6. P. 569–579. Metfies K., von Appen W.-J., Kilias E., Nicolaus A., Nöthig E.-M. Biogeography and photosynthetic biomass of arctic marine pico-eukaryotes during summer of the record sea ice minimum 2016 // PLoS ONE. 2016. Vol. 11. N 2. e0148512. Intergovernmental panel on climate change. Working group I 2007. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change / Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge Univ. Press, 2007. 996 pp. Lovejoy C., Vincent W.F., Bonilla S., Roy S., Martineau M.J., Terrado R., Potvin M., Massana R., Pedros-Alio C. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in arctic seas // J. Phycol. 2007. Vol. 43. N 1. P. 78–89. Berger V., Dahle S., Galaktionov K., Kosobokova X., Naumov A., Rat’kova T., Savinov V., Savinova T. White Sea. Ecology and Environment. St-Petersburg: Zoological Institute Russian Academy of Sciences, 2001. 157 p. Belevich T.A., Ilyash L.V., Milyutina I.A., Logacheva M.D., Goryunov D.V., Troitsky A.V. Metagenomic analyses of White Sea picoalgae: first data // Biochemistry. 2015. Vol. 80. N 11. P. 1514–1521. Belevich T.A., Ilyash L.V., Zimin A.V., Kravchishina M.D., Novikhin A.E., Dobrotina E.D. Peculiarities of summer phytoplankton spatial distribution in Onega Bay of the White Sea under local hydrophysical conditions // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 3. P. 135–140. Hillebrand H., Dürselen C.-D., Kirschtel D., Pollingher U., Zohary T. Biovolume calculation for pelagic and benthic microalgae // J. Phycol. 1999. Vol. 5. N 2. P. 403–424. Verity P.G., Robertson C.Y., Tronzo C.R., Andrews M.G., Nelson J.R., Sieracki M.E. Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton // Limnol. Oceanogr. 1992. Vol. 37. N 7. P. 1434–1446. Schloss P.D., Westcott S.L., Ryabin T. et al. Introducing mothur: open-source, platform- independent, community- supported software for describing and comparing microbial communities // Appl. Environ. Microbiol. 2009. Vol. 75. N 23. P. 7537–7541. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glockner F.O. The SILVA ribosomal RNA gene database project: improved data processing and webbased tools // Nucleic Acids Res. 2013. Vol. 41. N D1. P. D590–D596. Vaulot D., Eikrem W., Viprey M., Moreau H. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems // FEMS Microb. Rev. 2008. Vol. 32. N 5. P. 795–820. Zhu F., Massana R., Not F., Marie D., Vaulot D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene // FEMS Microbiol. Ecol. 2005. Vol. 52. N 1. P. 79–92. Worden A.Z., Lee J.-H., Mock T. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas // Science. 2009. Vol. 324. N 5924. P. 268–272. Choi D.Y., An S.M., Chun S., Yang E.C., Selph K.E., Lee C.M., Noh J.H. Dynamic changes in the composition of photosynthetic picoeukaryotes in the northwestern Pacific Ocean revealed by high-throughput tag sequencing of plastid 16S rRNA genes // FEMS Microbiol Ecol. 2016. Vol. 92. N 2. fiv170. Ilyash L.V., Belevich T.A., Stupnikova A.N., Drits A.V., Flint M.V. Effects of local hydrophysical conditions on the spatial variability of phytoplankton in the White Sea // Oceanology. 2015. Vol. 55. N 2. P. 216–225. Zhang F., He J., Lin L., Jin H. Dominance of picophytoplankton in the newly open surface water of the central Arctic Ocean // Polar Biol. 2015. Vol. 38. N 7. P. 1081–1089. Clayton S., Lin Y.-C., Follows M.J., Worden A.Z. Coexistence of distinct Ostreococcus ecotypes at an oceanic front // Limnol. Oceanogr. 2017. Vol. 62. N 1. P. 75–88. Simmons M.P., Bachy C., Sudek S., van Baren M.J., Sudek L., Ares M. Jr., Worden A.Z. Intron invasions trace algal speciation and reveal nearly identical Arctic and Antarctic Micromonas populations // Mol. Biol. Evol. 2015. Vol. 32. N 9. P. 2219–2235. Ichinomiya M., Lopes dos Santos A., Gourvil P., Yoshikawa S., Kamiya M., Ohki K., Audic S., Vargas C. de Noël M.-H., Vaulot D., Kuwata A. Diversity and oceanic distribution of the Parmales (Bolidophyceae), a picoplanktonic group closely related to diatoms // ISME J. 2016. Vol. 10. N 10. P. 2419–2434. Balzano S., Marie D., Gourvil P., Vaulot D. Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples // The ISME J. 2012. Vol. 6. N 8. P. 1480–1498. Marquardt M., Vader A., Stübner E.I., Reigstad M., Gabrielsen T.M. Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, West Spitsbergen) // Appl. Environ. Microbiol. 2016. Vol. 82. N 6. P. 1868–1880. https://vestnik-bio-msu.elpub.ru/jour/article/view/468 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой автороские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например, в институтском хранилище или на персональном сайте). Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 72, № 3 (2017); 128-134 Вестник Московского университета. Серия 16. Биология; Том 72, № 3 (2017); 128-134 0137-0952 метагеномный анализ phototrophic picoeukaryotes Micromonas Bathycoccus Ostreococcus Illumina sequencing фототрофные пикоэукариоты info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2017 ftjhmub 2024-07-30T03:01:05Z The abundance, biomass and species composition of phototrophic picoeukaryotes (PPE, cells size less than 3 μm) were studied in Onega Bay of the White Sea in June 2015. The highest PPE abundance and biomass were registered in the 0–5 m water layer. In the bay the average (in the 0–5 m water layer) abundance and biomass varied from 0 to 36,8 ·104 cell/l and from 0 to 117 μg С/m3, respectively. The Illumina sequencing of V4 region of 18S rRNA gene revealed eight classes of PPE. Mamiellophyceae dominated both in number of reads and operational taxonomic units. The green algae Bathycoccus prasinos, Ostreococcus tauri and Micromonas pusila, as well as diatoms Skeletonema marinoi and Minidiscus trioculatus were identified to species level. Численность, биомасса и состав фотоавтотрофных пикоэукариот (ФПЭ, размер клеток менее 3 мкм) оценены в Онежском заливе Белого моря в июне 2015 г. Наибольшие значения численности и биомассы ФПЭ были приурочены к слою 0–5 м, в котором средние значения этих показателей ФПЭ по акватории залива изменялись в пределах 0–36,8 ·104 кл/л и 0–117 мкг С/м3, соответственно. Метагеномное секвенирование области V4 гена 18S рРНК выявило присутствие таксонов ФПЭ, относящихся к восьми классам водорослей. По числу прочтений и операционных таксономических единиц преобладали Mamiellophyceae. До видового уровня идентифицированы зелёные водоросли Bathycoccus prasinos, Ostreococcus tauri и Micromonas pusila, а также диатомеи Skeletonema marinoi и Minidiscus trioculatus. Article in Journal/Newspaper Arctic Onega Bay White Sea Белого моря Herald of Moscow University. Series 16. Biology