Characteristics of fast sodium current in isolated quail cardiomyocytes

Fast sodium current (INa) provides depolarization of working myocardium and defines the excitability of its cells and the velocity of excitation propagation in the tissue. Alterations in activation and inactivation of INa channels can lead to the onset of various arrhythmias. Cardiac INa is poorly s...

Full description

Bibliographic Details
Main Authors: T. S. Filatova, D. V. Abramochkin, Т. С. Филатова, Д. В. Абрамочкин
Other Authors: The research was supported by government funding (project number 122012100156-5) and by the Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic biology”., Работа выполнена в рамках государственного задания (проект № 122012100156-5) и научно-образовательной школы МГУ «Молекулярные технологии живых систем и синтетическая биология».
Format: Article in Journal/Newspaper
Language:Russian
Published: Lomonosov Moscow State University, School of Biology 2022
Subjects:
Online Access:https://vestnik-bio-msu.elpub.ru/jour/article/view/1161
id ftjhmub:oai:oai.vestnik-bio-msu.elpub.ru:article/1161
record_format openpolar
institution Open Polar
collection Herald of Moscow University. Series 16. Biology
op_collection_id ftjhmub
language Russian
topic ранолазин
myocardium
isolated cardiomyocytes
fast sodium current
patch clamp
ranolazine
миокард
изолированные кардиомиоциты
быстрый натриевый ток
пэтч-кламп
spellingShingle ранолазин
myocardium
isolated cardiomyocytes
fast sodium current
patch clamp
ranolazine
миокард
изолированные кардиомиоциты
быстрый натриевый ток
пэтч-кламп
T. S. Filatova
D. V. Abramochkin
Т. С. Филатова
Д. В. Абрамочкин
Characteristics of fast sodium current in isolated quail cardiomyocytes
topic_facet ранолазин
myocardium
isolated cardiomyocytes
fast sodium current
patch clamp
ranolazine
миокард
изолированные кардиомиоциты
быстрый натриевый ток
пэтч-кламп
description Fast sodium current (INa) provides depolarization of working myocardium and defines the excitability of its cells and the velocity of excitation propagation in the tissue. Alterations in activation and inactivation of INa channels can lead to the onset of various arrhythmias. Cardiac INa is poorly studied in most vertebrate animals (excepting mammals) – including birds which are of great interest for comparative physiology. In the present work we for the first time study the characteristics of fast sodium current in myocardium of adult bird. Using standard patch clamp method, we recorded INa in isolated atrial and ventricular cardiomyocytes of Japanese quail. The current had great amplitude and quickly recovered from inactivation both in atrial and ventricular cells; the fast inactivation time constant of INa in atrial cells was lower than that of ventricular cells. Steady-state activation and inactivation suggest that sodium window current in avian myocardium is less pronounced in comparison to that in mammalian heart. In quail ventricular myocytes the blocker of late sodium current ranolazine caused a slight decrease in peak current amplitude and did not affect inactivation – however, it shifted steady-state inactivation curve towards more negative potentials, shortened action potentials and caused a decrease in maximum upstroke velocity. Thus, the characteristics of INa in quail myocardium reflect an adaptation to high heart rates in birds, and also suggest possible differences in the structure and function of INa channels between birds and mammals. Быстрый натриевый ток (INa) обеспечивает деполяризацию рабочего миокарда, определяя возбудимость его клеток и скорость распространения возбуждения. Нарушения активации и инактивации каналов натриевого тока могут приводить к развитию различных аритмий. У большинства позвоночных, за исключением млекопитающих, INa исследован достаточно слабо – в том числе и у птиц, представляющих большой интерес для сравнительной физиологии. Данная работа впервые рассматривает ...
author2 The research was supported by government funding (project number 122012100156-5) and by the Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic biology”.
Работа выполнена в рамках государственного задания (проект № 122012100156-5) и научно-образовательной школы МГУ «Молекулярные технологии живых систем и синтетическая биология».
format Article in Journal/Newspaper
author T. S. Filatova
D. V. Abramochkin
Т. С. Филатова
Д. В. Абрамочкин
author_facet T. S. Filatova
D. V. Abramochkin
Т. С. Филатова
Д. В. Абрамочкин
author_sort T. S. Filatova
title Characteristics of fast sodium current in isolated quail cardiomyocytes
title_short Characteristics of fast sodium current in isolated quail cardiomyocytes
title_full Characteristics of fast sodium current in isolated quail cardiomyocytes
title_fullStr Characteristics of fast sodium current in isolated quail cardiomyocytes
title_full_unstemmed Characteristics of fast sodium current in isolated quail cardiomyocytes
title_sort characteristics of fast sodium current in isolated quail cardiomyocytes
publisher Lomonosov Moscow State University, School of Biology
publishDate 2022
url https://vestnik-bio-msu.elpub.ru/jour/article/view/1161
genre Arctic
genre_facet Arctic
op_source Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 77, № 3 (2022); 173-179
Вестник Московского университета. Серия 16. Биология; Том 77, № 3 (2022); 173-179
0137-0952
op_relation https://vestnik-bio-msu.elpub.ru/jour/article/view/1161/595
Amin A.S., Asghari-Roodsari A., Tan H.L. Cardiac sodium channelopathies // Pflugers Arch. Eur. J. Physiol. 2010. Vol. 460. N 2. P. 223–237.
Asfaw T.N., Bondarenko V.E. A mathematical model of the human cardiac Na + channel // J. Membr. Biol. 2019. Vol. 252. N 1. P. 77–103.
Isom L.L., Jongh K.S. De, Patton D.E., Reber B.F.X., Offord J., Charbonneau H., Walsh K., Goldin A.L., Catterall W.A. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel // Science. 1992. Vol. 256. N 5058. P. 839–842.
Haufe V., Cordeiro J.M., Zimmer T., Wu Y.S., Schiccitano S., Benndorf K., Dumaine R. Contribution of neuronal sodium channels to the cardiac fast sodium current I Na is greater in dog heart Purkinje fibers than in ventricles // Cardiovasc. Res. 2005. Vol. 65. N 1. P. 117–127.
Chadda K.R., Jeevaratnam K., Lei M., Huang C.L.H. Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes // Pflugers Arch. Eur. J. Physiol. 2017. Vol. 469. N 5–6. P. 629–641.
Filatova T.S., Abramochkin D. V., Pavlova N.S., Pustovit K.B., Konovalova O.P., Kuzmin V.S., Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: Novel translational model for cardiac electrophysiology // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2021. Vol. 255: 110919.
Fujii S., Ayer R.K., DeHaan R.L. Development of the fast sodium current in early embryonic chick heart cells // J. Membr. Biol. 1988. Vol. 101. N 1. P. 209–223.
Vornanen M., Hassinen M., Haverinen J. Tetrodotoxin sensitivity of the vertebrate cardiac Na+ current // Mar. Drugs. 2011. Vol. 9. N 11. P. 2409–2422.
Jensen B., Wang T., Christoffels V.M., Moorman A.F.M. Evolution and development of the building plan of the vertebrate heart // Biochim. Biophys. Acta. Mol. Cell Res. 2013. Vol. 1833. N 4. P. 783–794.
Abramochkin D. V., Filatova T.S., Pustovit K.B., Voronina Y.A., Kuzmin V.S., Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2022. Vol. 268: 111204.
Hassinen M., Abramochkin D. V., Vornanen M. Seasonal acclimatization of the cardiac action potential in the Arctic navaga cod (Eleginus navaga, Gadidae) // J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2014. Vol. 184. N 3. P. 319–327.
Islam M.A., Nojima H., Kimura I. Muscarinic M1 receptor activation reduces maximum upstroke velocity of action potential in mouse right atria. // Eur. J. Pharmacol. 1998. Vol. 346. N 2–3. P. 227–236.
Clark R.B., Giles W. Sodium current in single cells from bullfrog atrium: voltage dependence and ion transfer properties // J. Physiol. 1987. Vol. 391. N 1. P. 235–265.
Sakakibara Y., Wasserstrom J.A., Furukawa T., Jia H., Arentzen C.E., Hartz R.S., Singer D.H. Characterization of the sodium current in single human atrial myocytes // Circ. Res. 1992. Vol. 71. N 3. P. 535–546.
Sakakibara Y., Furukawa T., Singer D.H., Jia H., Backer C.L., Arentzen C.E., Wasserstrom J.A. Sodium current in isolated human ventricular myocytes // Am. J. Physiol. Hear. Circ. Physiol. 1993. Vol. 265. N 4. P. H1301–H1309.
Haverinen J., Hassinen M., Korajoki H., Vornanen M. Cardiac voltage-gated sodium channel expression and electrophysiological characterization of the sodium current in the zebrafish (Danio rerio) ventricle // Prog. Biophys. Mol. Biol. 2018. Vol. 138. P. 59–68.
Zaza A., Rocchetti M. The late Na+ current – origin and pathophysiological relevance // Cardiovasc. Drugs Ther. 2013. Vol. 27. N 1. P. 61–68.
Schneider M., Proebstle T., Hombach V., Hannekum A., Rüdel R. Characterization of the sodium currents in isolated human cardiocytes // Pflügers Arch. 1994. Vol. 428. N 1. P. 84–90.
Shander G.S., Fan Z., Makielski J.C. Slowly recovering cardiac sodium current in rat ventricular myocytes: effects of conditioning duration and recovery potential // J. Cardiovasc. Electrophysiol. 1995. Vol. 6. N 10. P. 786–795.
Burashnikov A. Late INa inhibition as an antiarrhythmic strategy // J. Cardiovasc. Pharmacol. 2017. Vol. 70. N 3. P. 159–167.
Rajamani S., El-Bizri N., Shryock J.C., Makielski J.C., Belardinelli L. Use-dependent block of cardiac late Na+ current by ranolazine // Hear. Rhythm. 2009. Vol. 6. N 11. P. 1625–1631.
Zygmunt A.C., Nesterenko V. V., Rajamani S., Hu D., Barajas-Martinez H., Belardinelli L., Antzelevitch C. Mechanisms of atrial-selective block of Na+ channels by ranolazine: I. Experimental analysis of the use-dependent block // Am. J. Physiol. – Hear. Circ. Physiol. 2011. Vol. 301. N 4. P. 1606–1614.
Antzelevitch C., Belardinelli L., Zygmunt A.C., Burashnikov A., Di Diego J.M., Fish J.M., Cordeiro J.M., Thomas G. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties // Circulation. 2004. Vol. 110. N 8. P. 904–910.
Carmeliet E. Action potential duration, rate of stimulation, and intracellular sodium // J. Cardiovasc. Electrophysiol. 2006. Vol. 17. Suppl. 1. P. S2–S7.
https://vestnik-bio-msu.elpub.ru/jour/article/view/1161
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой автороские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например, в институтском хранилище или на персональном сайте).
op_rightsnorm CC-BY
_version_ 1766302569031794688
spelling ftjhmub:oai:oai.vestnik-bio-msu.elpub.ru:article/1161 2023-05-15T14:28:24+02:00 Characteristics of fast sodium current in isolated quail cardiomyocytes Характеристики быстрого натриевого тока в изолированных кардиомиоцитах перепела T. S. Filatova D. V. Abramochkin Т. С. Филатова Д. В. Абрамочкин The research was supported by government funding (project number 122012100156-5) and by the Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic biology”. Работа выполнена в рамках государственного задания (проект № 122012100156-5) и научно-образовательной школы МГУ «Молекулярные технологии живых систем и синтетическая биология». 2022-08-20 application/pdf https://vestnik-bio-msu.elpub.ru/jour/article/view/1161 rus rus Lomonosov Moscow State University, School of Biology https://vestnik-bio-msu.elpub.ru/jour/article/view/1161/595 Amin A.S., Asghari-Roodsari A., Tan H.L. Cardiac sodium channelopathies // Pflugers Arch. Eur. J. Physiol. 2010. Vol. 460. N 2. P. 223–237. Asfaw T.N., Bondarenko V.E. A mathematical model of the human cardiac Na + channel // J. Membr. Biol. 2019. Vol. 252. N 1. P. 77–103. Isom L.L., Jongh K.S. De, Patton D.E., Reber B.F.X., Offord J., Charbonneau H., Walsh K., Goldin A.L., Catterall W.A. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel // Science. 1992. Vol. 256. N 5058. P. 839–842. Haufe V., Cordeiro J.M., Zimmer T., Wu Y.S., Schiccitano S., Benndorf K., Dumaine R. Contribution of neuronal sodium channels to the cardiac fast sodium current I Na is greater in dog heart Purkinje fibers than in ventricles // Cardiovasc. Res. 2005. Vol. 65. N 1. P. 117–127. Chadda K.R., Jeevaratnam K., Lei M., Huang C.L.H. Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes // Pflugers Arch. Eur. J. Physiol. 2017. Vol. 469. N 5–6. P. 629–641. Filatova T.S., Abramochkin D. V., Pavlova N.S., Pustovit K.B., Konovalova O.P., Kuzmin V.S., Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: Novel translational model for cardiac electrophysiology // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2021. Vol. 255: 110919. Fujii S., Ayer R.K., DeHaan R.L. Development of the fast sodium current in early embryonic chick heart cells // J. Membr. Biol. 1988. Vol. 101. N 1. P. 209–223. Vornanen M., Hassinen M., Haverinen J. Tetrodotoxin sensitivity of the vertebrate cardiac Na+ current // Mar. Drugs. 2011. Vol. 9. N 11. P. 2409–2422. Jensen B., Wang T., Christoffels V.M., Moorman A.F.M. Evolution and development of the building plan of the vertebrate heart // Biochim. Biophys. Acta. Mol. Cell Res. 2013. Vol. 1833. N 4. P. 783–794. Abramochkin D. V., Filatova T.S., Pustovit K.B., Voronina Y.A., Kuzmin V.S., Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2022. Vol. 268: 111204. Hassinen M., Abramochkin D. V., Vornanen M. Seasonal acclimatization of the cardiac action potential in the Arctic navaga cod (Eleginus navaga, Gadidae) // J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2014. Vol. 184. N 3. P. 319–327. Islam M.A., Nojima H., Kimura I. Muscarinic M1 receptor activation reduces maximum upstroke velocity of action potential in mouse right atria. // Eur. J. Pharmacol. 1998. Vol. 346. N 2–3. P. 227–236. Clark R.B., Giles W. Sodium current in single cells from bullfrog atrium: voltage dependence and ion transfer properties // J. Physiol. 1987. Vol. 391. N 1. P. 235–265. Sakakibara Y., Wasserstrom J.A., Furukawa T., Jia H., Arentzen C.E., Hartz R.S., Singer D.H. Characterization of the sodium current in single human atrial myocytes // Circ. Res. 1992. Vol. 71. N 3. P. 535–546. Sakakibara Y., Furukawa T., Singer D.H., Jia H., Backer C.L., Arentzen C.E., Wasserstrom J.A. Sodium current in isolated human ventricular myocytes // Am. J. Physiol. Hear. Circ. Physiol. 1993. Vol. 265. N 4. P. H1301–H1309. Haverinen J., Hassinen M., Korajoki H., Vornanen M. Cardiac voltage-gated sodium channel expression and electrophysiological characterization of the sodium current in the zebrafish (Danio rerio) ventricle // Prog. Biophys. Mol. Biol. 2018. Vol. 138. P. 59–68. Zaza A., Rocchetti M. The late Na+ current – origin and pathophysiological relevance // Cardiovasc. Drugs Ther. 2013. Vol. 27. N 1. P. 61–68. Schneider M., Proebstle T., Hombach V., Hannekum A., Rüdel R. Characterization of the sodium currents in isolated human cardiocytes // Pflügers Arch. 1994. Vol. 428. N 1. P. 84–90. Shander G.S., Fan Z., Makielski J.C. Slowly recovering cardiac sodium current in rat ventricular myocytes: effects of conditioning duration and recovery potential // J. Cardiovasc. Electrophysiol. 1995. Vol. 6. N 10. P. 786–795. Burashnikov A. Late INa inhibition as an antiarrhythmic strategy // J. Cardiovasc. Pharmacol. 2017. Vol. 70. N 3. P. 159–167. Rajamani S., El-Bizri N., Shryock J.C., Makielski J.C., Belardinelli L. Use-dependent block of cardiac late Na+ current by ranolazine // Hear. Rhythm. 2009. Vol. 6. N 11. P. 1625–1631. Zygmunt A.C., Nesterenko V. V., Rajamani S., Hu D., Barajas-Martinez H., Belardinelli L., Antzelevitch C. Mechanisms of atrial-selective block of Na+ channels by ranolazine: I. Experimental analysis of the use-dependent block // Am. J. Physiol. – Hear. Circ. Physiol. 2011. Vol. 301. N 4. P. 1606–1614. Antzelevitch C., Belardinelli L., Zygmunt A.C., Burashnikov A., Di Diego J.M., Fish J.M., Cordeiro J.M., Thomas G. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties // Circulation. 2004. Vol. 110. N 8. P. 904–910. Carmeliet E. Action potential duration, rate of stimulation, and intracellular sodium // J. Cardiovasc. Electrophysiol. 2006. Vol. 17. Suppl. 1. P. S2–S7. https://vestnik-bio-msu.elpub.ru/jour/article/view/1161 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой автороские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например, в институтском хранилище или на персональном сайте). CC-BY Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 77, № 3 (2022); 173-179 Вестник Московского университета. Серия 16. Биология; Том 77, № 3 (2022); 173-179 0137-0952 ранолазин myocardium isolated cardiomyocytes fast sodium current patch clamp ranolazine миокард изолированные кардиомиоциты быстрый натриевый ток пэтч-кламп info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftjhmub 2023-01-10T01:12:11Z Fast sodium current (INa) provides depolarization of working myocardium and defines the excitability of its cells and the velocity of excitation propagation in the tissue. Alterations in activation and inactivation of INa channels can lead to the onset of various arrhythmias. Cardiac INa is poorly studied in most vertebrate animals (excepting mammals) – including birds which are of great interest for comparative physiology. In the present work we for the first time study the characteristics of fast sodium current in myocardium of adult bird. Using standard patch clamp method, we recorded INa in isolated atrial and ventricular cardiomyocytes of Japanese quail. The current had great amplitude and quickly recovered from inactivation both in atrial and ventricular cells; the fast inactivation time constant of INa in atrial cells was lower than that of ventricular cells. Steady-state activation and inactivation suggest that sodium window current in avian myocardium is less pronounced in comparison to that in mammalian heart. In quail ventricular myocytes the blocker of late sodium current ranolazine caused a slight decrease in peak current amplitude and did not affect inactivation – however, it shifted steady-state inactivation curve towards more negative potentials, shortened action potentials and caused a decrease in maximum upstroke velocity. Thus, the characteristics of INa in quail myocardium reflect an adaptation to high heart rates in birds, and also suggest possible differences in the structure and function of INa channels between birds and mammals. Быстрый натриевый ток (INa) обеспечивает деполяризацию рабочего миокарда, определяя возбудимость его клеток и скорость распространения возбуждения. Нарушения активации и инактивации каналов натриевого тока могут приводить к развитию различных аритмий. У большинства позвоночных, за исключением млекопитающих, INa исследован достаточно слабо – в том числе и у птиц, представляющих большой интерес для сравнительной физиологии. Данная работа впервые рассматривает ... Article in Journal/Newspaper Arctic Herald of Moscow University. Series 16. Biology