Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining

Co-products of vegetable oil refining such as a mixed deodorizer distillate resulting from the refining of various vegetable oils, a crude distillate resulting from the physical refining of coconut oil and commercial mixtures of distilled sunflower and coconut fatty acids were used as starting mater...

Full description

Bibliographic Details
Published in:Grasas y Aceites
Main Authors: Tangkam, Kamol, Weber, Nikolaus, Wiege, Berthold
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2008
Subjects:
Online Access:https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/515
https://doi.org/10.3989/gya.2008.v59.i3.515
id ftjgya:oai:grasasyaceites.revistas.csic.es:article/515
record_format openpolar
institution Open Polar
collection Grasas y Aceites (E-Journal)
op_collection_id ftjgya
language English
topic Co-products of vegetable oil refining
Diglycerides
Distilled fatty acids
Esterification
Immobilized microbial lipases
Transesterification
Coproductos del refinado de aceites vegetales
Diglicéridos
Destilado de ácidos grasos
Esterificación
Lipasas microbianas inmovilizadas
Transesterificación
spellingShingle Co-products of vegetable oil refining
Diglycerides
Distilled fatty acids
Esterification
Immobilized microbial lipases
Transesterification
Coproductos del refinado de aceites vegetales
Diglicéridos
Destilado de ácidos grasos
Esterificación
Lipasas microbianas inmovilizadas
Transesterificación
Tangkam, Kamol
Weber, Nikolaus
Wiege, Berthold
Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining
topic_facet Co-products of vegetable oil refining
Diglycerides
Distilled fatty acids
Esterification
Immobilized microbial lipases
Transesterification
Coproductos del refinado de aceites vegetales
Diglicéridos
Destilado de ácidos grasos
Esterificación
Lipasas microbianas inmovilizadas
Transesterificación
description Co-products of vegetable oil refining such as a mixed deodorizer distillate resulting from the refining of various vegetable oils, a crude distillate resulting from the physical refining of coconut oil and commercial mixtures of distilled sunflower and coconut fatty acids were used as starting materials for the enzymatic preparation of diglycerides. Reaction conditions (temperature, pressure, molar ratio) for the formation of diglycerides by lipase-catalyzed esterification/transesterification were studied using the mixed deodorizer distillate and glycerol as starting materials. The best results were obtained with the immobilized lipase B from Candida antarctica (Novozym 435) in vacuo at 60 °C leading to moderate proportions (~52%) of diglycerides. The proportion of diglycerides increased when residual acylglycerides of the co-products of vegetable oil refining were hydrolyzed prior to esterification. Thus, the esterification of hydrolyzed co-products of vegetable oil refining with glycerol led to high formation (62-72%) of diglycerides. Short-path vacuum distillation of the esterification products yielded distillation residues containing from 70% to 94% diglycerides. The proportions of fatty acids and monoglycerides in the distilled residues were quite low (≤ 1% and 1 to 3.9%, respectively). Immobilized lipases from Rhizomucor miehei and Thermomyces lanuginosus were less active as esterification biocatalysts. Subproductos del refinado de los aceites vegetales tales como el destilado obtenido en el desodorizador al refinar distintos aceites vegetales, el destilado crudo resultante de la refinación física del aceite de coco, y mezclas comerciales de los ácidos grasos obtenidos en la destilación de aceites de girasol y coco fueron utilizados como materiales de partida para la preparación enzimática de diglicéridos. Se estudiaron las condiciones de reacción (temperatura, presión, relación molar) para la formación de diglicéridos mediante esterificación/ transesterificación catalizada por lipasas usando la mezcla obtenida del desodorizador y glicerol como materiales de partida. Los mejores resultados se obtuvieron con lipasa B inmovilizada de Candida antarctica (Novozym 435) a vacío y 60 °C obteniéndose una concentración moderada (~52%) de diglicéridos. La proporción de diglicéridos aumentó cuando los aciglicéridos residuales de los subproductos de la refinación de los aceites vegetales fueron hidrolizados como paso previo a la esterificación. Así, la esterificación de subproductos hidrolizados del refinado de aceites vegetales con glicerol produjo una alta (62-72%) formación de diglicéridos. La posterior destilación a vacío de los productos de esta esterificación produjo destilados conteniendo del 70 al 94% de diglicéridos. Las proporciones de ácidos grasos y monoglicéridos en estos destilados fueron bastante bajas (≤ 1% y 1-3.9%, respectivamente). Las lipasas inmovilizadas de Rhizomucor miehei y Thermomyces lanuginosus fueron menos activas como biocatalizadores de esterificación.
format Article in Journal/Newspaper
author Tangkam, Kamol
Weber, Nikolaus
Wiege, Berthold
author_facet Tangkam, Kamol
Weber, Nikolaus
Wiege, Berthold
author_sort Tangkam, Kamol
title Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining
title_short Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining
title_full Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining
title_fullStr Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining
title_full_unstemmed Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining
title_sort solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining
publisher Consejo Superior de Investigaciones Científicas
publishDate 2008
url https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/515
https://doi.org/10.3989/gya.2008.v59.i3.515
long_lat ENVELOPE(-61.216,-61.216,-62.589,-62.589)
geographic Alta
Partida
geographic_facet Alta
Partida
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_source Grasas y Aceites; Vol. 59 No. 3 (2008); 245-253
Grasas y Aceites; Vol. 59 Núm. 3 (2008); 245-253
1988-4214
0017-3495
10.3989/gya.2008.v59.i3
op_relation https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/515/517
Bornscheuer UT. 1995. Lipase-catalyzed syntheses of monoacylglycerols. Enzyme Microb. Technol. 17, 578-586. doi:10.1016/0141-0229(94)00096-A
Gunstone FD. 1999. Enzymes as biocatalysts in the modification of natural lipids. J. Sci. Food Agric. 79, 1535-1549. doi:10.1002/(SICI)1097-0010(199909)79:12<1535::AID-JSFA430>3.0.CO;2-7
Ko SK, Baharin BS, Tan CP, Lai OM. 2004a. Enzymecatalyzed production and chemical composition of diacylglycerols from corn oil deodorizer distillate. Food Biotechnol. 18, 265-278. doi:10.1081/FBT-200035014
Ko SK, Baharin BS, Tan CP, Lai OM. 2004b. Lipasecatalysed production and chemical composition of diacylglycerols from soybean oil deodoriser distillate. Eur. J. Lipid Sci. Technol. 106, 218-224. doi:10.1002/ejlt.200300888
Ko SK, Baharin BS, Tan CP, Lai OM. 2004c. Diacylglycerols from palm oil deodoriser distillate, Part 1 – Synthesis by lipase-catalysed esterification. Food Sci. Tech. Int. 10, 149-156. doi:10.1177/1082013204044826
Kristensen, JB, Xu X, Mu H. 2005a. Process optimization using response surface design and pilot plant production of dietary diacylglycerols by lipasecatalyzed glycerolysis, J. Agric. Food Chem. 53, 7059-7066. doi:10.1021/jf0507745 PMid:16131111
Kristensen JB, Xu X, Mu H. 2005b. Diacylglycerol synthesis by enzymatic glycerolysis: screening of commercially available lipases. J. Amer. Oil Chem. Soc. 82, 329-334. doi:10.1007/s11746-005-1074-5
Maki KC, Davidson MH, Tsushima R, Matsuo N, Tokimitsu I, Umporowicz DM, Dicklin MR, Foster GS, Ingram KA, Anderson BD, Frost SD, Bell M. 2002. Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am. J. Clin. Nutr. 76, 1230-1236.
Mukherjee KD. 1990. Lipase-catalyzed reactions for modification of fats and other lipids. Biocatalysis 3, 277-293. doi:10.3109/10242429008992072
Nakajima Y. 2004.Water-retaining ability of diacylglycerol. J. Amer. Oil Chem. Soc. 81, 907-912. doi:10.1007/s11746-004-1000-x
Nandi S, Gangopadhyay S, Ghosh S. 2005. Production of medium-chain glycerides from coconut and palm kernel fatty acid distillates by lipase-catalyzed reactions. Enzyme Microb. Technol. 36, 725-728. doi:10.1016/j.enzmictec.2004.12.016
Noureddini H, Gao X, Joshi S. 2003. Immobilization of Candida rugosa lipase by sol-gel entrapment and its application in the hydrolysis of soybean oil. J. Amer. Oil Chem. Soc. 80, 1077-1083. doi:10.1007/s11746-003-0823-9
Rosu R, Yasui M, Iwasaki Y, Yamane T. 1999. Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent-free system. J. Am. Oil Chem. Soc. 76, 839-843. doi:10.1007/s11746-999-0074-7
Sakaguchi H. Marketing a healthy oil. Oils Fats Internat. 2001. 18-19.
Tada N, Yoshida H. 2003. Diacylglycerol on lipid metabolism. Curr. Opin. Lipidol. 14, 29-33. doi:10.1097/00041433-200302000-00006 PMid:12544658
Watanabe T, Shimizu M, Sugiura M, Sato M, Kohori J, Yamada N, Nakanishi K. 2003. 2004. Optimization of reaction conditions for the production of DAG using immobilized 1,3-regiospecific lipase lipozyme RM IM. J. Am. Oil Chem. Soc. 80, 1201-1207. doi:10.1007/s11746-003-0843-5
Weber N, Mukherjee KD. 2004. Solvent-free lipasecatalyzed preparation of diacylglycerols. J. Agric. Food Chem. 52, 5347-5353. doi:10.1021/jf0400819 PMid:15315368
Yamada N, Matsuo N, Watanabe T, Yanagita T. 2005. Enzymatic production of diacylglycerol and its beneficial physiological functions, in: Hou CT (Ed.) Handbook of Industrial Biocatalysis, CRC Press / Taylor & Francis, Boca Raton, FL, pp. 11-1–11-17.
Yamada Y, Shimizu M, Sugiura M, Yamada N. Process for producing diglycerides.WO 1999/09119
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/515
doi:10.3989/gya.2008.v59.i3.515
op_rights Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/gya.2008.v59.i3.515
https://doi.org/10.3989/gya.2008.v59.i3
https://doi.org/10.1016/0141-0229(94)00096-A
https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1535::AID-JSFA430>3.0.CO;2-7
https://doi.org/10.1081/FBT-20003501
container_title Grasas y Aceites
container_volume 59
container_issue 3
_version_ 1766013167566061568
spelling ftjgya:oai:grasasyaceites.revistas.csic.es:article/515 2023-05-15T13:30:50+02:00 Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining Obtención de diglicéridos a partir de subproductos del refinado de aceites vegetales mediante la esterificación catalizada por lipasas en ausencia de disolventes Tangkam, Kamol Weber, Nikolaus Wiege, Berthold 2008-09-30 application/pdf https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/515 https://doi.org/10.3989/gya.2008.v59.i3.515 eng eng Consejo Superior de Investigaciones Científicas https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/515/517 Bornscheuer UT. 1995. Lipase-catalyzed syntheses of monoacylglycerols. Enzyme Microb. Technol. 17, 578-586. doi:10.1016/0141-0229(94)00096-A Gunstone FD. 1999. Enzymes as biocatalysts in the modification of natural lipids. J. Sci. Food Agric. 79, 1535-1549. doi:10.1002/(SICI)1097-0010(199909)79:12<1535::AID-JSFA430>3.0.CO;2-7 Ko SK, Baharin BS, Tan CP, Lai OM. 2004a. Enzymecatalyzed production and chemical composition of diacylglycerols from corn oil deodorizer distillate. Food Biotechnol. 18, 265-278. doi:10.1081/FBT-200035014 Ko SK, Baharin BS, Tan CP, Lai OM. 2004b. Lipasecatalysed production and chemical composition of diacylglycerols from soybean oil deodoriser distillate. Eur. J. Lipid Sci. Technol. 106, 218-224. doi:10.1002/ejlt.200300888 Ko SK, Baharin BS, Tan CP, Lai OM. 2004c. Diacylglycerols from palm oil deodoriser distillate, Part 1 – Synthesis by lipase-catalysed esterification. Food Sci. Tech. Int. 10, 149-156. doi:10.1177/1082013204044826 Kristensen, JB, Xu X, Mu H. 2005a. Process optimization using response surface design and pilot plant production of dietary diacylglycerols by lipasecatalyzed glycerolysis, J. Agric. Food Chem. 53, 7059-7066. doi:10.1021/jf0507745 PMid:16131111 Kristensen JB, Xu X, Mu H. 2005b. Diacylglycerol synthesis by enzymatic glycerolysis: screening of commercially available lipases. J. Amer. Oil Chem. Soc. 82, 329-334. doi:10.1007/s11746-005-1074-5 Maki KC, Davidson MH, Tsushima R, Matsuo N, Tokimitsu I, Umporowicz DM, Dicklin MR, Foster GS, Ingram KA, Anderson BD, Frost SD, Bell M. 2002. Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am. J. Clin. Nutr. 76, 1230-1236. Mukherjee KD. 1990. Lipase-catalyzed reactions for modification of fats and other lipids. Biocatalysis 3, 277-293. doi:10.3109/10242429008992072 Nakajima Y. 2004.Water-retaining ability of diacylglycerol. J. Amer. Oil Chem. Soc. 81, 907-912. doi:10.1007/s11746-004-1000-x Nandi S, Gangopadhyay S, Ghosh S. 2005. Production of medium-chain glycerides from coconut and palm kernel fatty acid distillates by lipase-catalyzed reactions. Enzyme Microb. Technol. 36, 725-728. doi:10.1016/j.enzmictec.2004.12.016 Noureddini H, Gao X, Joshi S. 2003. Immobilization of Candida rugosa lipase by sol-gel entrapment and its application in the hydrolysis of soybean oil. J. Amer. Oil Chem. Soc. 80, 1077-1083. doi:10.1007/s11746-003-0823-9 Rosu R, Yasui M, Iwasaki Y, Yamane T. 1999. Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent-free system. J. Am. Oil Chem. Soc. 76, 839-843. doi:10.1007/s11746-999-0074-7 Sakaguchi H. Marketing a healthy oil. Oils Fats Internat. 2001. 18-19. Tada N, Yoshida H. 2003. Diacylglycerol on lipid metabolism. Curr. Opin. Lipidol. 14, 29-33. doi:10.1097/00041433-200302000-00006 PMid:12544658 Watanabe T, Shimizu M, Sugiura M, Sato M, Kohori J, Yamada N, Nakanishi K. 2003. 2004. Optimization of reaction conditions for the production of DAG using immobilized 1,3-regiospecific lipase lipozyme RM IM. J. Am. Oil Chem. Soc. 80, 1201-1207. doi:10.1007/s11746-003-0843-5 Weber N, Mukherjee KD. 2004. Solvent-free lipasecatalyzed preparation of diacylglycerols. J. Agric. Food Chem. 52, 5347-5353. doi:10.1021/jf0400819 PMid:15315368 Yamada N, Matsuo N, Watanabe T, Yanagita T. 2005. Enzymatic production of diacylglycerol and its beneficial physiological functions, in: Hou CT (Ed.) Handbook of Industrial Biocatalysis, CRC Press / Taylor & Francis, Boca Raton, FL, pp. 11-1–11-17. Yamada Y, Shimizu M, Sugiura M, Yamada N. Process for producing diglycerides.WO 1999/09119 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/515 doi:10.3989/gya.2008.v59.i3.515 Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Grasas y Aceites; Vol. 59 No. 3 (2008); 245-253 Grasas y Aceites; Vol. 59 Núm. 3 (2008); 245-253 1988-4214 0017-3495 10.3989/gya.2008.v59.i3 Co-products of vegetable oil refining Diglycerides Distilled fatty acids Esterification Immobilized microbial lipases Transesterification Coproductos del refinado de aceites vegetales Diglicéridos Destilado de ácidos grasos Esterificación Lipasas microbianas inmovilizadas Transesterificación info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2008 ftjgya https://doi.org/10.3989/gya.2008.v59.i3.515 https://doi.org/10.3989/gya.2008.v59.i3 https://doi.org/10.1016/0141-0229(94)00096-A https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1535::AID-JSFA430>3.0.CO;2-7 https://doi.org/10.1081/FBT-20003501 2022-03-10T18:37:05Z Co-products of vegetable oil refining such as a mixed deodorizer distillate resulting from the refining of various vegetable oils, a crude distillate resulting from the physical refining of coconut oil and commercial mixtures of distilled sunflower and coconut fatty acids were used as starting materials for the enzymatic preparation of diglycerides. Reaction conditions (temperature, pressure, molar ratio) for the formation of diglycerides by lipase-catalyzed esterification/transesterification were studied using the mixed deodorizer distillate and glycerol as starting materials. The best results were obtained with the immobilized lipase B from Candida antarctica (Novozym 435) in vacuo at 60 °C leading to moderate proportions (~52%) of diglycerides. The proportion of diglycerides increased when residual acylglycerides of the co-products of vegetable oil refining were hydrolyzed prior to esterification. Thus, the esterification of hydrolyzed co-products of vegetable oil refining with glycerol led to high formation (62-72%) of diglycerides. Short-path vacuum distillation of the esterification products yielded distillation residues containing from 70% to 94% diglycerides. The proportions of fatty acids and monoglycerides in the distilled residues were quite low (≤ 1% and 1 to 3.9%, respectively). Immobilized lipases from Rhizomucor miehei and Thermomyces lanuginosus were less active as esterification biocatalysts. Subproductos del refinado de los aceites vegetales tales como el destilado obtenido en el desodorizador al refinar distintos aceites vegetales, el destilado crudo resultante de la refinación física del aceite de coco, y mezclas comerciales de los ácidos grasos obtenidos en la destilación de aceites de girasol y coco fueron utilizados como materiales de partida para la preparación enzimática de diglicéridos. Se estudiaron las condiciones de reacción (temperatura, presión, relación molar) para la formación de diglicéridos mediante esterificación/ transesterificación catalizada por lipasas usando la mezcla obtenida del desodorizador y glicerol como materiales de partida. Los mejores resultados se obtuvieron con lipasa B inmovilizada de Candida antarctica (Novozym 435) a vacío y 60 °C obteniéndose una concentración moderada (~52%) de diglicéridos. La proporción de diglicéridos aumentó cuando los aciglicéridos residuales de los subproductos de la refinación de los aceites vegetales fueron hidrolizados como paso previo a la esterificación. Así, la esterificación de subproductos hidrolizados del refinado de aceites vegetales con glicerol produjo una alta (62-72%) formación de diglicéridos. La posterior destilación a vacío de los productos de esta esterificación produjo destilados conteniendo del 70 al 94% de diglicéridos. Las proporciones de ácidos grasos y monoglicéridos en estos destilados fueron bastante bajas (≤ 1% y 1-3.9%, respectivamente). Las lipasas inmovilizadas de Rhizomucor miehei y Thermomyces lanuginosus fueron menos activas como biocatalizadores de esterificación. Article in Journal/Newspaper Antarc* Antarctica Grasas y Aceites (E-Journal) Alta Partida ENVELOPE(-61.216,-61.216,-62.589,-62.589) Grasas y Aceites 59 3