Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus

This study aimed to evaluate the effect of different factors (season, gender, location, total lipid, weight and length) on the fatty acid composition and nutritional quality ofCyprinion macrostomus.The results were evaluated through PERMANOVA, principal coordinates (PCO), and cluster analysis for si...

Full description

Bibliographic Details
Main Authors: Şen Özdemir, N., Koyun, M., Caf, F., Kırıcı, M.
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2023
Subjects:
AI
EPA
h/H
h/S
Online Access:https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984
https://doi.org/10.3989/gya.0444221
id ftjgya:oai:grasasyaceites.revistas.csic.es:article/1984
record_format openpolar
institution Open Polar
collection Grasas y Aceites (E-Journal)
op_collection_id ftjgya
language English
topic AI
Cyprinion macrostomus
EPA
Fatty acids
h/H
PERMANOVA
Ácidos grasos
Cyprinion macrostomo
h/S
spellingShingle AI
Cyprinion macrostomus
EPA
Fatty acids
h/H
PERMANOVA
Ácidos grasos
Cyprinion macrostomo
h/S
Şen Özdemir, N.
Koyun, M.
Caf, F.
Kırıcı, M.
Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus
topic_facet AI
Cyprinion macrostomus
EPA
Fatty acids
h/H
PERMANOVA
Ácidos grasos
Cyprinion macrostomo
h/S
description This study aimed to evaluate the effect of different factors (season, gender, location, total lipid, weight and length) on the fatty acid composition and nutritional quality ofCyprinion macrostomus.The results were evaluated through PERMANOVA, principal coordinates (PCO), and cluster analysis for similarity ranges. An analysis of similarity (ANOSIM) was performed on the distance matrix using multiple permutations within a significant fixed effect (p < 0.05). C18:1ω9, EPA and DHA were the most important fatty acids which had an effect on the nutritional quality in all the factor groups. Total lipid amount, season and length factors were the most influential on the fatty acid compositions ofC. macrostomus. Summer and Spring were the best the periods for the good nutritional quality ofC. macrostomusin terms of AI (Atherogenicity index), TI (Thrombogenicity index) and h/H (Σhypocholesterolemic/Σhypercholesterolemic fatty acid index). In addition, station, gender and weight had no effect on nutritional quality. The study indicated thatC. macrostomusis a potential fish meat for human nutrition with high nutritional value in terms of fatty acid composition. El estudio tuvo como objetivo evaluar el efecto de diferentes factores (estación, género, ubicación, lípidos totales, peso y talla) que afectan la composición de ácidos grasos sobre la calidad nutricional deCyprinion macrostomus. Los resultados se evaluaron mediante PERMANOVA, coordenadas principales (COP) y análisis de cluster para rangos de similitud. Se realizó un análisis de similitud (ANDSIM) en la matriz de distancias utilizando múltiples permutaciones dentro de un efecto fijo significativo (p<0,05). C18:1ω9, EPA y DHA fueron los ácidos grasos más importantes que tuvieron efecto sobre la calidad nutricional para todos los grupos de factores. Los factores más influyentes fueron la cantidad total de lípidos, la estación y la longitud, en la composición de ácidos grasos deC. macrostomus. El verano y la primavera fueron los mejores períodos para la buena ...
format Article in Journal/Newspaper
author Şen Özdemir, N.
Koyun, M.
Caf, F.
Kırıcı, M.
author_facet Şen Özdemir, N.
Koyun, M.
Caf, F.
Kırıcı, M.
author_sort Şen Özdemir, N.
title Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus
title_short Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus
title_full Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus
title_fullStr Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus
title_full_unstemmed Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus
title_sort factors affecting nutritional quality in terms of the fatty acid composition of cyprinion macrostomus
publisher Consejo Superior de Investigaciones Científicas
publishDate 2023
url https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984
https://doi.org/10.3989/gya.0444221
long_lat ENVELOPE(13.782,13.782,67.054,67.054)
geographic Tuvo
geographic_facet Tuvo
genre Polar Biology
genre_facet Polar Biology
op_source Grasas y Aceites; Vol. 74 No. 2 (2023); e508
Grasas y Aceites; Vol. 74 Núm. 2 (2023); e508
1988-4214
0017-3495
10.3989/gya.2023.v74.i2
op_relation https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984/3041
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984/3042
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984/3043
Aguiar AC, Morais DR, Santos LP, Stevanato FB, Visentainer JEL, de Souza NE, Visentainer JV. 2007. Effect of flaxseed oil in diet on fatty acid composition in the liver of Nile Tilapia (Oreochromis niloticus). Arch. Lat. Nutric. 57 (3), 273-277.
Brenna JT. 2002. Efficiency of conversion of alpha-linoleic acidv to long cahin n-3 fatty acids in man. Curr. Op. Clin. Nutrit. Metabol. Care 5 (2), 127-132.
Calder P. 2018. Very long-chain n-3 fatty acids and human health: Fact fiction and the future. Proceedings Nutrit. Soc. 77 (1), 52-72.
Cengiz EI, Ünlü E, Başhan M. 2010. Fatty acid composition of total lipids in muscle tissues of ninefreshwater fish from the River Tigris (Turkey). Turkish J. Biol. 34, 433-438.
Christie WW. 1992. Gas chromatography and lipids. The Oil Pres, Glaskow.
Coad BW. 1996. Zoogeography of the fishes of the Tigris-Euphrates basin. Zool. Midd. East 13, 51-70.
EFSA. 2013. Guidance on the assessment criteria for studies evaluating the effectiveness of 422 stunning interventions regarding animal protection at the time of killing. EFSA Panel on 423 Animal Health and Welfare (AHAW), Pharma: Italy, 11 (12), 3486, 40p.
Falk-Petersen S, Sargent JR, Henderson J, Hegseth EN, Hop H, Okolodkov YB. 1998. Lipids and fatty acids in ice algae and phytoplankton from the Marginal Ice Zone in the Barents Sea. Polar Biology 20 (1), 41-47.
Fernandes CE, Vasconcelos MA, Ribeiro MA, Sarubbo L A, Andrade SA, Melo Filho AB. 2014. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 160, 67-71.
Food and Agriculture Organization-FAO. 2014. The state of world fisheries and aquaculture 2014: Opportunities and challenges, Rome: Italy, 243 p.
Food and Agriculture Organisation-FAO. 2018. The State of World Fisheries and Aquaculture 2018- Meeting the sustainable developing goals. Rome, License: CC BY- NC-SA 3.0 IGO.
Galloway AWE, Winder M. 2015. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS ONE 10 (6), 1-23.
Gladyshev M I, Sushchik NN, Makhutova ON. 2013. Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostagland. Lipid Mediat. 107, 117-126.
Güler G O, Kıztanır B, Aktümsek A, Citil OB, Özparlak H. (2008). Determination of the seasonal changes on total fatty acid composition and ω3/ω6 ratios of carp (Cyprinus carpio L.) muscle lipids in Beysehir Lake (Turkey). Food Chem. 108 (2), 689-694.
Hara A, Radin NS. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90, 420-426.
Henderson R J, Tocher D R. 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26, 281-347.
Hlais S, El-Bistami D, El-Rahi B, Mattar MA, Obeid OA. 2013. Combined fish oil and high oleic sunflower oil supplements neutralize their individual effects on the lipid profile of healthy men. Lipids 48 (9), 853-861.
Jobling J, Leknes O. 2010. Cod liver oil: feed oil influences on fatty acid composition. Aquacult. Internat. 18, 223-230. .
Kelly JR, Scheibling RE. 2012. Fatty acids as dietary tracers in benthic food webs. Marine Ecol. Prog. Ser. 446, 1-22.
Khériji S, EL CAFSI M, Masmoudi W, CastelL JD, Romdhane M S. (2003). Salinity and temperature effects on the lipid composition of mullet sea fry (Mugil cephalus, Linne, 1758). Aquacult. Internat. 11, 571-582.
Kolakowska A, Szczygielski M, Bienkiewicz G, Zienkowicz L. 2000. Some of fısh species as a source of n-3 polyunsaturated fatty acids. Acta Ichthyol. Piscator. 30 (2), 59-70.
Langroudi H, Mousavi S. 2018. Reproductive biology of lotak, Cyprinion macrostomum Heckel, 1843 (Pisces: Cyprinidae), from the Tigris River drainage. Iranian J. Fisher. Sci. 17 (2), 288-299.
Matos AP, Matos AC, Moecke EHS. 2019. Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Brazilian J. Food Technol. 22, 1-11.
Mellery J, Geay F, Tocher DR, Debier C, Rollin X, Larondelle Y. 2016. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet. PLoS One, 11 (10), 1-24.
Napolitano GE. 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems, pp. 21-44. M.T. Arts and B.C. Wainman (eds.). In: Lipids in Freshwater Ecosystems, Springer, New York.
Norambuena F, Rombenso A, Turchini GM. 2016. Towards the optimization of performance of Atlantic salmon reared at different water temperatures via the manipulation of dietary ARA/EPA ratio. Aquaculture 450, 48-57.
Parrish CC. 2009. Lipids in aquatic ecosystems. M.T. Arts. M.T. Brett. and M.J. Kainz (Eds.). In: Essential fatty acids in aquatic food webs. pp. 309-326. Springer. New York.
Parzanini C, Colombo SM, Kainz MJ, Wacker A, Parrish CC, Arts MT. 2020. Discrimination between freshwater and marine fish using fatty acids: ecological implications and future perspectives. Environment. Rev. 28 (4), 1-14.
Pethybridge H, Daley RK, Nichols PD. 2011. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J. Experiment. Marine Biol. Ecol. 409 (1-2), 290-299.
Ramos-Filho, MM, Ramos MIL, Hiane PA, Souza EMT. 2008. Perfil lipídico de quatro espécies de peixes da região pantaneira de Mato Grosso do Sul. Food Sci. Technol. 28 (2), 361-365.
Rhee JJ, Kim E, Buring JE, Kurth T. 2017. Fish consumption. omega-3 fatty acids and risk of cardiovascular disease. Am. J. Prevent. Med. 52 (1), 10-19.
Santos-Silva J, Bessa RJB, Santos-Silva F. 2002. Effect of genotype. feeding system and slaughter weight on the quality of light lambs. Livestock Product. Sci. 77 (2-3), 187-194.
Simat V, Bogdanovic T, Poljak V, Petricevic S. 2015. Changes in fatty acid composition. atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus. 1758) during storage on ice: Effect of fish farming activities. J. Food Composit. Anal. 40, 120-125.
Simopoulos AP. 2008. The importance of the omega-6/omega-3 Fatty Acid ratio in cardiovascular disease and other chronic diseases. Experiment. Biol. Med. 233, 674-688.
Şen Özdemir N, Feyzioğlu AM, Caf F, Yıldız, I. 2017. Seasonal changes in abundance, lipid and fatty acid composition of Calanus euxinus in the South-eastern Black Sea. Indian J. Fisher. 64 (3), 55-66.
Tocher DR. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquacult. Res. 41, 717-732.
Turchini GM, Francis DS. 2009. Fatty acid metabolism (desaturation. elongation and β-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. British J. Nutrit. 102 (1), 69-81.
Viso AC, Marty JC. 1993. Fatty acids from 28 marine microalgae. Phytochem. 34 (6), 1521-1533.
Wijekoon M, Parrish CC, Mansour A. 2021. Effect of Growth Temperature on Muscle Lipid Class and Fatty Acid Composition in Adult Steelhead Trout (Oncorhynchus mykiss) Fed Commercial Diets with Different ω6 to ω3 Fatty Acid Ratios. J. Aquacult. Res. Develop. 12 (6)-643, 1-11.
Williams CM, Burdge G. 2006. Long-chain n-3 PUFA: plant vs. marine sources. Proceed. Nutrit. Soc. 65 (1), 42-50.
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984
doi:10.3989/gya.0444221
op_rights Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_doi https://doi.org/10.3989/gya.044422110.3989/gya.2023.v74.i2
_version_ 1771549557814984704
spelling ftjgya:oai:grasasyaceites.revistas.csic.es:article/1984 2023-07-16T04:00:36+02:00 Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus Factores que afectan la calidad nutricional en términos de composición de ácidos grasos de Cyprinion macrostomus Şen Özdemir, N. Koyun, M. Caf, F. Kırıcı, M. 2023-05-25 text/html application/pdf text/xml https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984 https://doi.org/10.3989/gya.0444221 eng eng Consejo Superior de Investigaciones Científicas https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984/3041 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984/3042 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984/3043 Aguiar AC, Morais DR, Santos LP, Stevanato FB, Visentainer JEL, de Souza NE, Visentainer JV. 2007. Effect of flaxseed oil in diet on fatty acid composition in the liver of Nile Tilapia (Oreochromis niloticus). Arch. Lat. Nutric. 57 (3), 273-277. Brenna JT. 2002. Efficiency of conversion of alpha-linoleic acidv to long cahin n-3 fatty acids in man. Curr. Op. Clin. Nutrit. Metabol. Care 5 (2), 127-132. Calder P. 2018. Very long-chain n-3 fatty acids and human health: Fact fiction and the future. Proceedings Nutrit. Soc. 77 (1), 52-72. Cengiz EI, Ünlü E, Başhan M. 2010. Fatty acid composition of total lipids in muscle tissues of ninefreshwater fish from the River Tigris (Turkey). Turkish J. Biol. 34, 433-438. Christie WW. 1992. Gas chromatography and lipids. The Oil Pres, Glaskow. Coad BW. 1996. Zoogeography of the fishes of the Tigris-Euphrates basin. Zool. Midd. East 13, 51-70. EFSA. 2013. Guidance on the assessment criteria for studies evaluating the effectiveness of 422 stunning interventions regarding animal protection at the time of killing. EFSA Panel on 423 Animal Health and Welfare (AHAW), Pharma: Italy, 11 (12), 3486, 40p. Falk-Petersen S, Sargent JR, Henderson J, Hegseth EN, Hop H, Okolodkov YB. 1998. Lipids and fatty acids in ice algae and phytoplankton from the Marginal Ice Zone in the Barents Sea. Polar Biology 20 (1), 41-47. Fernandes CE, Vasconcelos MA, Ribeiro MA, Sarubbo L A, Andrade SA, Melo Filho AB. 2014. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 160, 67-71. Food and Agriculture Organization-FAO. 2014. The state of world fisheries and aquaculture 2014: Opportunities and challenges, Rome: Italy, 243 p. Food and Agriculture Organisation-FAO. 2018. The State of World Fisheries and Aquaculture 2018- Meeting the sustainable developing goals. Rome, License: CC BY- NC-SA 3.0 IGO. Galloway AWE, Winder M. 2015. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS ONE 10 (6), 1-23. Gladyshev M I, Sushchik NN, Makhutova ON. 2013. Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostagland. Lipid Mediat. 107, 117-126. Güler G O, Kıztanır B, Aktümsek A, Citil OB, Özparlak H. (2008). Determination of the seasonal changes on total fatty acid composition and ω3/ω6 ratios of carp (Cyprinus carpio L.) muscle lipids in Beysehir Lake (Turkey). Food Chem. 108 (2), 689-694. Hara A, Radin NS. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90, 420-426. Henderson R J, Tocher D R. 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26, 281-347. Hlais S, El-Bistami D, El-Rahi B, Mattar MA, Obeid OA. 2013. Combined fish oil and high oleic sunflower oil supplements neutralize their individual effects on the lipid profile of healthy men. Lipids 48 (9), 853-861. Jobling J, Leknes O. 2010. Cod liver oil: feed oil influences on fatty acid composition. Aquacult. Internat. 18, 223-230. . Kelly JR, Scheibling RE. 2012. Fatty acids as dietary tracers in benthic food webs. Marine Ecol. Prog. Ser. 446, 1-22. Khériji S, EL CAFSI M, Masmoudi W, CastelL JD, Romdhane M S. (2003). Salinity and temperature effects on the lipid composition of mullet sea fry (Mugil cephalus, Linne, 1758). Aquacult. Internat. 11, 571-582. Kolakowska A, Szczygielski M, Bienkiewicz G, Zienkowicz L. 2000. Some of fısh species as a source of n-3 polyunsaturated fatty acids. Acta Ichthyol. Piscator. 30 (2), 59-70. Langroudi H, Mousavi S. 2018. Reproductive biology of lotak, Cyprinion macrostomum Heckel, 1843 (Pisces: Cyprinidae), from the Tigris River drainage. Iranian J. Fisher. Sci. 17 (2), 288-299. Matos AP, Matos AC, Moecke EHS. 2019. Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Brazilian J. Food Technol. 22, 1-11. Mellery J, Geay F, Tocher DR, Debier C, Rollin X, Larondelle Y. 2016. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet. PLoS One, 11 (10), 1-24. Napolitano GE. 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems, pp. 21-44. M.T. Arts and B.C. Wainman (eds.). In: Lipids in Freshwater Ecosystems, Springer, New York. Norambuena F, Rombenso A, Turchini GM. 2016. Towards the optimization of performance of Atlantic salmon reared at different water temperatures via the manipulation of dietary ARA/EPA ratio. Aquaculture 450, 48-57. Parrish CC. 2009. Lipids in aquatic ecosystems. M.T. Arts. M.T. Brett. and M.J. Kainz (Eds.). In: Essential fatty acids in aquatic food webs. pp. 309-326. Springer. New York. Parzanini C, Colombo SM, Kainz MJ, Wacker A, Parrish CC, Arts MT. 2020. Discrimination between freshwater and marine fish using fatty acids: ecological implications and future perspectives. Environment. Rev. 28 (4), 1-14. Pethybridge H, Daley RK, Nichols PD. 2011. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J. Experiment. Marine Biol. Ecol. 409 (1-2), 290-299. Ramos-Filho, MM, Ramos MIL, Hiane PA, Souza EMT. 2008. Perfil lipídico de quatro espécies de peixes da região pantaneira de Mato Grosso do Sul. Food Sci. Technol. 28 (2), 361-365. Rhee JJ, Kim E, Buring JE, Kurth T. 2017. Fish consumption. omega-3 fatty acids and risk of cardiovascular disease. Am. J. Prevent. Med. 52 (1), 10-19. Santos-Silva J, Bessa RJB, Santos-Silva F. 2002. Effect of genotype. feeding system and slaughter weight on the quality of light lambs. Livestock Product. Sci. 77 (2-3), 187-194. Simat V, Bogdanovic T, Poljak V, Petricevic S. 2015. Changes in fatty acid composition. atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus. 1758) during storage on ice: Effect of fish farming activities. J. Food Composit. Anal. 40, 120-125. Simopoulos AP. 2008. The importance of the omega-6/omega-3 Fatty Acid ratio in cardiovascular disease and other chronic diseases. Experiment. Biol. Med. 233, 674-688. Şen Özdemir N, Feyzioğlu AM, Caf F, Yıldız, I. 2017. Seasonal changes in abundance, lipid and fatty acid composition of Calanus euxinus in the South-eastern Black Sea. Indian J. Fisher. 64 (3), 55-66. Tocher DR. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquacult. Res. 41, 717-732. Turchini GM, Francis DS. 2009. Fatty acid metabolism (desaturation. elongation and β-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. British J. Nutrit. 102 (1), 69-81. Viso AC, Marty JC. 1993. Fatty acids from 28 marine microalgae. Phytochem. 34 (6), 1521-1533. Wijekoon M, Parrish CC, Mansour A. 2021. Effect of Growth Temperature on Muscle Lipid Class and Fatty Acid Composition in Adult Steelhead Trout (Oncorhynchus mykiss) Fed Commercial Diets with Different ω6 to ω3 Fatty Acid Ratios. J. Aquacult. Res. Develop. 12 (6)-643, 1-11. Williams CM, Burdge G. 2006. Long-chain n-3 PUFA: plant vs. marine sources. Proceed. Nutrit. Soc. 65 (1), 42-50. https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984 doi:10.3989/gya.0444221 Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 Grasas y Aceites; Vol. 74 No. 2 (2023); e508 Grasas y Aceites; Vol. 74 Núm. 2 (2023); e508 1988-4214 0017-3495 10.3989/gya.2023.v74.i2 AI Cyprinion macrostomus EPA Fatty acids h/H PERMANOVA Ácidos grasos Cyprinion macrostomo h/S info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjgya https://doi.org/10.3989/gya.044422110.3989/gya.2023.v74.i2 2023-06-27T23:38:21Z This study aimed to evaluate the effect of different factors (season, gender, location, total lipid, weight and length) on the fatty acid composition and nutritional quality ofCyprinion macrostomus.The results were evaluated through PERMANOVA, principal coordinates (PCO), and cluster analysis for similarity ranges. An analysis of similarity (ANOSIM) was performed on the distance matrix using multiple permutations within a significant fixed effect (p < 0.05). C18:1ω9, EPA and DHA were the most important fatty acids which had an effect on the nutritional quality in all the factor groups. Total lipid amount, season and length factors were the most influential on the fatty acid compositions ofC. macrostomus. Summer and Spring were the best the periods for the good nutritional quality ofC. macrostomusin terms of AI (Atherogenicity index), TI (Thrombogenicity index) and h/H (Σhypocholesterolemic/Σhypercholesterolemic fatty acid index). In addition, station, gender and weight had no effect on nutritional quality. The study indicated thatC. macrostomusis a potential fish meat for human nutrition with high nutritional value in terms of fatty acid composition. El estudio tuvo como objetivo evaluar el efecto de diferentes factores (estación, género, ubicación, lípidos totales, peso y talla) que afectan la composición de ácidos grasos sobre la calidad nutricional deCyprinion macrostomus. Los resultados se evaluaron mediante PERMANOVA, coordenadas principales (COP) y análisis de cluster para rangos de similitud. Se realizó un análisis de similitud (ANDSIM) en la matriz de distancias utilizando múltiples permutaciones dentro de un efecto fijo significativo (p<0,05). C18:1ω9, EPA y DHA fueron los ácidos grasos más importantes que tuvieron efecto sobre la calidad nutricional para todos los grupos de factores. Los factores más influyentes fueron la cantidad total de lípidos, la estación y la longitud, en la composición de ácidos grasos deC. macrostomus. El verano y la primavera fueron los mejores períodos para la buena ... Article in Journal/Newspaper Polar Biology Grasas y Aceites (E-Journal) Tuvo ENVELOPE(13.782,13.782,67.054,67.054)