Cocoa olein glycerolysis with lipase Candida antarctica in a solvent free system

In this paper we present the valorization of cocoa olein obtained from the acid fat-splitting of soapstocks. The aim is to develop a solvent free process (enzymatically catalyzed) to maximize the production of a final product with high content of monoglycerides (MAG) and diglycerides (DAG). The effe...

Full description

Bibliographic Details
Published in:Grasas y Aceites
Main Authors: Zamorano, L. S., Calero Magaña, P., García Cisneros, E., Martínez, A. V., Martín, L. F.
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2020
Subjects:
Online Access:https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853
https://doi.org/10.3989/gya.0794191
id ftjgya:oai:grasasyaceites.revistas.csic.es:article/1853
record_format openpolar
institution Open Polar
collection Grasas y Aceites (E-Journal)
op_collection_id ftjgya
language English
topic By-products
Diglyceride
Enzymatic Glycerolysis
Lipase CALB
Monoglyceride
Olein
Diglicéridos
Glicerólisis enzimática
Lipasa CALB
Monoglicéridos
Oleína
Subproductos oleaginosos
spellingShingle By-products
Diglyceride
Enzymatic Glycerolysis
Lipase CALB
Monoglyceride
Olein
Diglicéridos
Glicerólisis enzimática
Lipasa CALB
Monoglicéridos
Oleína
Subproductos oleaginosos
Zamorano, L. S.
Calero Magaña, P.
García Cisneros, E.
Martínez, A. V.
Martín, L. F.
Cocoa olein glycerolysis with lipase Candida antarctica in a solvent free system
topic_facet By-products
Diglyceride
Enzymatic Glycerolysis
Lipase CALB
Monoglyceride
Olein
Diglicéridos
Glicerólisis enzimática
Lipasa CALB
Monoglicéridos
Oleína
Subproductos oleaginosos
description In this paper we present the valorization of cocoa olein obtained from the acid fat-splitting of soapstocks. The aim is to develop a solvent free process (enzymatically catalyzed) to maximize the production of a final product with high content of monoglycerides (MAG) and diglycerides (DAG). The effect of the enzyme dose, glycerol content, reaction times as well as the modification of the raw material and pressure were studied. The yield of the reaction increased up to 90-95% when using a vacuum of 2-3 mbar at 65 °C, enough to evaporate the water which is generated as a by-product, an enzyme dose of 1% and molar ratio oil:glycerol of 1:2. The highest yield in terms of MAG and DAG production was obtained by starting from a raw material which was rich in free acidity (FFA), rendering oil with 33.4 and 44.2% MAG and DAG, respectively. Short reaction times (6-8 h) were observed compared to previously reported results (24 h). En el presente trabajo se pretende valorizar la oleína vegetal de cacao procedente de la ruptura ácida de las pastas de refinación química. El objetivo es poner a punto un proceso de glicerólisis enzimática en un sistema libre de solventes maximizando la producción de monoglicéridos (MAG) y diglicéridos (DAG). Se ha estudiado el efecto de la dosis de enzima, el contenido de glicerol y el tiempo de reacción, la modificación de la presión de reacción y la composición de la materia prima. Se concluye que el rendimiento de la reacción aumenta hasta el 90-95% cuando se aplica un vacío de 2-3 mbar a 65 ºC suficiente para evaporar el agua que se va generando como producto, una dosis de enzima del 1% y una relación molar aceite:glicerol 1:2. El mayor rendimiento en cuanto a la producción de MAG y DAG se ha conseguido partiendo de una materia prima rica en acidez libre (FFA), obteniéndose un aceite con un 33.4 y 44.2% de MAG y DAG, respectivamente. Se observa que los tiempos de reacción son cortos (6-8h) comparados con los descritos en la bibliografía encontrada (24h).
format Article in Journal/Newspaper
author Zamorano, L. S.
Calero Magaña, P.
García Cisneros, E.
Martínez, A. V.
Martín, L. F.
author_facet Zamorano, L. S.
Calero Magaña, P.
García Cisneros, E.
Martínez, A. V.
Martín, L. F.
author_sort Zamorano, L. S.
title Cocoa olein glycerolysis with lipase Candida antarctica in a solvent free system
title_short Cocoa olein glycerolysis with lipase Candida antarctica in a solvent free system
title_full Cocoa olein glycerolysis with lipase Candida antarctica in a solvent free system
title_fullStr Cocoa olein glycerolysis with lipase Candida antarctica in a solvent free system
title_full_unstemmed Cocoa olein glycerolysis with lipase Candida antarctica in a solvent free system
title_sort cocoa olein glycerolysis with lipase candida antarctica in a solvent free system
publisher Consejo Superior de Investigaciones Científicas
publishDate 2020
url https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853
https://doi.org/10.3989/gya.0794191
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_source Grasas y Aceites; Vol. 71 No. 4 (2020); e383
Grasas y Aceites; Vol. 71 Núm. 4 (2020); e383
1988-4214
0017-3495
10.3989/gya.2020.v71.i4
op_relation https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853/2678
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853/2679
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853/2680
Abdelmoez W, Mustafa A. 2014. Oleochemical industry future through biotechnology. J. Oleo Sci. 63 (6), 545-554. https://doi.org/10.5650/jos.ess14022 PMid:24881769
Baeza-Jiménez R, Miranda K, García HS, Otero C. 2013. Lipase-catalyzed glycerolysis of fish oil to obtain diacylglycerols. Grasas Aceites 64 (3), 237-242. https://doi.org/10.3989/gya.084412
Baoping Z, Zhongwei C, Li W, Ren W, Zhengxing C, Lianhe Z. 2014. Production of glycerol monolaurate- enriched monoacylglycerols by lipase-catalyzed glycerolysis from coconut oil. Eur. J. Lipid Sci. Technol. 116, 328-335. https://doi.org/10.1002/ejlt.201300243
Borrelli GM, Trono D. 2015. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int. J. Mol. Sci. 16, 20774-20840. https://doi.org/10.3390/ijms160920774 PMid:26340621 PMCid:PMC4613230
Camino Feltes MM, De Oliveira D, Mara Block J, Luiz Ninow J. 2013. The Production, Benefits, and Applications of Monoacylglycerols and Diacylglycerols of Nutritional Interest. Food Bioprocess Technol. 6, 17-35. https://doi.org/10.1007/s11947-012-0836-3
Camino Feltes MM, Villeneuve P, Baréa B, Barouh N, Vladimir de Oliveira J, De Oliveira D, Luiz Ninow J. 2012. Enzymatic Production of Monoacylglycerols (MAG) and Diacylglycerols (DAG) from Fish Oil in a Solvent-Free System. J. Am. Oil Chem. Soc. 89, 1057-1065. https://doi.org/10.1007/s11746-011-1998-2
Choong TSY, Yeoh CM, Phuah ET, Siew WL, Lee YY, Tang TK. 2018. Kinetic study of lipase-catalyzed glycerolysis of palm olein using Lipozyme TLIM in solvent-free system. PLoS One 13 (2), e0192375. https://doi.org/10.1371/journal.pone.0192375 PMid:29401481 PMCid:PMC5798838
Csanádi Z, Bélafi-Bakó K, Gubicza L. 2009. Biocatalytic production of glycerol mono-stearate in non-conventional reaction media. New Biotechnology 25, Supplement Page S110. https://doi.org/10.1016/j.nbt.2009.06.388
Dias Ribeiro B, Machado de Castro A, Zarur Coelho MA, Guimaraes Freire DM. 2011. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production. Enzyme Res. 11, 1-16. https://doi.org/10.4061/2011/615803 PMid:21785707 PMCid:PMC3137985
Elfman-Börjesson I, Härröd M. 1999. Synthesis of Monoglycerides by Glycerolysis of Rapeseed Oil Using Immobilized Lipase. J. Am. Oil Chem. Soc. 76 (6), 701-707. https://doi.org/10.1007/s11746-999-0162-8
Fariha H, Aamer AS, Abdul H. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
Fregolente PBL, Vasconcelos Fregolente L, Maria Pinto G, César Batistella B, Wolf-Maciel MG, Maciel Filho R. 2008. Monoglycerides and Diglycerides Synthesis in a Solvent-Free System by Lipase-Catalyzed Glycerolysis. Appl. Biochem. Biotechnol. 146 (1-3), 165-172. https://doi.org/10.1007/s12010-008-8133-3 PMid:18421596
Fregolente PBL, Pinto GMF, Wolf-Maciel MR, Filho RM. 2010. Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Appl. Biochem. Biotechnol. 160 (7), 1879-1887. https://doi.org/10.1007/s12010-009-8822-6 PMid:19862491
Godfrey T. 1995. Lipases for industrial use. Lipid Technology.
Goswami D, De S, Basu JK. 2012. Effects of process variables and additives on mustard oil hydrolysis by porcine pancreas lipase. Braz. J. Chem. Eng. 29 (3), 449-460. https://doi.org/10.1590/S0104-66322012000300002
Kaewthong W, Sirisansaneeyakul S, Prasertsan P, H-Kittikun A. 2005. Continuous production of monoacylglycerols by glycerolysis of palm olein by immobilized lipase. Process Biochem. 40, 218-222. https://doi.org/10.1016/j.procbio.2003.12.002
Kapoor M, Gupta MN. 2012. Obtaining monoglycerides by esterification of glycerol with palmitic acid using some high activity preparations of Candida antarctica lipase B. Process Biochem. 47, 503-508. https://doi.org/10.1016/j.procbio.2011.12.009
Narvaez Rincón PC, Sánchez FJ, Alfonso Torres J, Ponce de León LF. 2004. Producción de ésteres metílicos de ácidos grasos: variables asociadas al proceso de transformación. Ing. Invest. 24 (002), 41-50.
Noureddini H, Harmeier SE. 1998. Enzymatic glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 75 (10), 1359-1365. https://doi.org/10.1007/s11746-998-0183-8
Otadi M, Shahraki A, Goharrokhi M, Bandarchian F. 2011. Reduction of free acids of waste oil by acid-catalyzed esterification. Procedia Eng. 18, 168-174. https://doi.org/10.1016/j.proeng.2011.11.027
Palacios D, Ortega N, Rubio-Rodríguez N, Busto MD. 2019. Lipase-catalyzed glycerolysis of anchovy oil in a solvent-free system: Simultaneous optimization of monoacylglycerol synthesis and end-product oxidative stability. Food Chem. 271, 372-379. https://doi.org/10.1016/j.foodchem.2018.07.184 PMid:30236689
Pereda Marín J, Barriga Mateos F, Álvarez-Mateos P. 2003. Use of residual soapstock from the refining of edible vegetable oils to make biodiesel. Grasas Aceites 54 (2), 130-137. https://doi.org/10.3989/gya.2003.v54.i2.255
Ramesh Rarokar N, Menghani S, Kerzare D, Bhujangrao Khedekar P. 2017. Progress in synthesis of monoglycerides for use in food and pharmaceuticals. J. Exp. Food Chem. 3 (3), 128-134. https://doi.org/10.4172/2472-0542.1000128
Rivera-Pérez C, García Carreño F. 2007. Enzimas lipolíticas y su aplicación en la industria del aceite. BioTecnología 11 (2), 37-45.
Satriana, Normalina A, Meldasari Lubis Y, Adisalamun, Supardan MD, Wan Aida WM. 2016. Diacylglycerol-enriched oil production using chemical glycerolysis. Eur. J. Lipid Sci. Tech. 118 (12), 1880-1890. https://doi.org/10.1002/ejlt.201500489
Singh AK, Mukhopadhyay M. 2012. Olive oil glycerolysis with the immobilized lipase Candida antarctica in a solvent free system. Grasas Aceites 63 (2), 202-208. https://doi.org/10.3989/gya.094811
Solaesa ÁG, Sanz MT, Falkeborg M, Beltrán S, Guo Z. 2016. Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. Food Chem. 190, 960-967. https://doi.org/10.1016/j.foodchem.2015.06.061 PMid:26213062
Solaesa ÁG, Sanz MT, Beltrán S, Melgosa R. 2016. Kinetic study and kinetic parameters of lipase-catalyzed glycerolysis of sardine oil in a homogeneous medium. Chinese J. Catal. 37. 596-606. https://doi.org/10.1016/S1872-2067(15)61040-3
Subroto E, Supriyanto, Utami T, Hidayat C. 2019. Enzymatic glycerolysis-interesterification of palm stearin-olein blend for synthesis structured lipid containing high mono- and diacylglycerol. Food Sci. Biotechnol. 28 (2), 511-517. https://doi.org/10.1007/s10068-018-0462-6 PMid:30956863 PMCid:PMC6431351
Torres C, Lin B, Hill C.G. 2002. Lipase-catalyzed glycerolysis of an oil rich in eicosapentaenoic acid residues. Biotechnol. Lett. 24, 667-673. https://doi.org/10.1023/A:1015298728683
Valério A, Rovani S, Treichel H, De Oliveira, Oliveira JV. 2010. Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioproc. Biosyst. Eng. 33, 805-812. https://doi.org/10.1007/s00449-009-0402-1 PMid:20091052
Vázquez L, González N, Reglero G, Torres C. 2016. Solvent-Free Lipase-Catalyzed Synthesis of Diacylglycerols as Low-Calorie Food Ingredientes. Front. Bioeng. Biotechnol. 4 (6), 1-10. https://doi.org/10.3389/fbioe.2016.00006 PMid:26904539 PMCid:PMC4748054
Wiphum Kaewthonga, Sarote Sirisansaneeyakulb, Poonsuk Prasertsana, AranH-Kittikuna. 2005. Continuous production of monoacylglycerols by glycerolysis of palm olein with immobilized lipase. Process Biochem. 40 (5), 1525-1530. https://doi.org/10.1016/j.procbio.2003.12.002
Yang T, Rebsdorf M, Engelrud U, Xu X. 2005. Enzymatic Production of Monoacylglycerols Containing Polyunsaturated Fatty Acids through an Efficient Glycerolysis System. J. Agric. Food Chem. 53 (5), 1475-1481. https://doi.org/10.1021/jf048405g PMid:15740027
Yang T, Rebsdorf M, Engelrud U, Xu X. 2005. Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system. J. Food Lipids. 12, 299-312. https://doi.org/10.1111/j.1745-4522.2005.00025.x
Zaher FA, Saadia M, Aly OS, El-Kinawy. 1998. Lipase - Catalyzed glycerolysis of sunflower oil to produce partial glycerides. Grasas Aceites 49 (5-6), 411-414. https://doi.org/10.3989/gya.1998.v49.i5-6.750
Zhao X, Fan M, Zeng J, Du W, Liu C, Liu D. 2013. Kinetics of lipase recovery from the aqueous phase of biodiesel production by macroporous resin adsorption and reuse of the adsorbed lipase for biodiesel preparation. Enzyme Microb. Tech. 52, 226-233. https://doi.org/10.1016/j.enzmictec.2013.02.006 PMid:23540923
Ziobrowski Z, Kiss K, Krupiczka R, Rotkegel A, Gubicza L, Nemestothy N. 2009. Pervaporation aided enzymatic production of glycerol monostearate in organic solvents. Desalination. 241, 212-217. https://doi.org/10.1016/j.desal.2008.01.067
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853
doi:10.3989/gya.0794191
op_rights Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/gya.0794191
https://doi.org/10.3989/gya.2020.v71.i4
https://doi.org/10.5650/jos.ess14022
https://doi.org/10.3989/gya.084412
https://doi.org/10.1002/ejlt.201300243
https://doi.org/10.3390/ijms160920774
https://doi.org/10
container_title Grasas y Aceites
container_volume 71
container_issue 4
container_start_page 383
_version_ 1766013177155289088
spelling ftjgya:oai:grasasyaceites.revistas.csic.es:article/1853 2023-05-15T13:30:51+02:00 Cocoa olein glycerolysis with lipase Candida antarctica in a solvent free system Glicerólisis de oleínas de cacao con lipasa Candida antarctica en un sistema libre de solventes Zamorano, L. S. Calero Magaña, P. García Cisneros, E. Martínez, A. V. Martín, L. F. 2020-12-04 text/html application/pdf application/xml https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853 https://doi.org/10.3989/gya.0794191 eng eng Consejo Superior de Investigaciones Científicas https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853/2678 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853/2679 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853/2680 Abdelmoez W, Mustafa A. 2014. Oleochemical industry future through biotechnology. J. Oleo Sci. 63 (6), 545-554. https://doi.org/10.5650/jos.ess14022 PMid:24881769 Baeza-Jiménez R, Miranda K, García HS, Otero C. 2013. Lipase-catalyzed glycerolysis of fish oil to obtain diacylglycerols. Grasas Aceites 64 (3), 237-242. https://doi.org/10.3989/gya.084412 Baoping Z, Zhongwei C, Li W, Ren W, Zhengxing C, Lianhe Z. 2014. Production of glycerol monolaurate- enriched monoacylglycerols by lipase-catalyzed glycerolysis from coconut oil. Eur. J. Lipid Sci. Technol. 116, 328-335. https://doi.org/10.1002/ejlt.201300243 Borrelli GM, Trono D. 2015. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int. J. Mol. Sci. 16, 20774-20840. https://doi.org/10.3390/ijms160920774 PMid:26340621 PMCid:PMC4613230 Camino Feltes MM, De Oliveira D, Mara Block J, Luiz Ninow J. 2013. The Production, Benefits, and Applications of Monoacylglycerols and Diacylglycerols of Nutritional Interest. Food Bioprocess Technol. 6, 17-35. https://doi.org/10.1007/s11947-012-0836-3 Camino Feltes MM, Villeneuve P, Baréa B, Barouh N, Vladimir de Oliveira J, De Oliveira D, Luiz Ninow J. 2012. Enzymatic Production of Monoacylglycerols (MAG) and Diacylglycerols (DAG) from Fish Oil in a Solvent-Free System. J. Am. Oil Chem. Soc. 89, 1057-1065. https://doi.org/10.1007/s11746-011-1998-2 Choong TSY, Yeoh CM, Phuah ET, Siew WL, Lee YY, Tang TK. 2018. Kinetic study of lipase-catalyzed glycerolysis of palm olein using Lipozyme TLIM in solvent-free system. PLoS One 13 (2), e0192375. https://doi.org/10.1371/journal.pone.0192375 PMid:29401481 PMCid:PMC5798838 Csanádi Z, Bélafi-Bakó K, Gubicza L. 2009. Biocatalytic production of glycerol mono-stearate in non-conventional reaction media. New Biotechnology 25, Supplement Page S110. https://doi.org/10.1016/j.nbt.2009.06.388 Dias Ribeiro B, Machado de Castro A, Zarur Coelho MA, Guimaraes Freire DM. 2011. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production. Enzyme Res. 11, 1-16. https://doi.org/10.4061/2011/615803 PMid:21785707 PMCid:PMC3137985 Elfman-Börjesson I, Härröd M. 1999. Synthesis of Monoglycerides by Glycerolysis of Rapeseed Oil Using Immobilized Lipase. J. Am. Oil Chem. Soc. 76 (6), 701-707. https://doi.org/10.1007/s11746-999-0162-8 Fariha H, Aamer AS, Abdul H. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016 Fregolente PBL, Vasconcelos Fregolente L, Maria Pinto G, César Batistella B, Wolf-Maciel MG, Maciel Filho R. 2008. Monoglycerides and Diglycerides Synthesis in a Solvent-Free System by Lipase-Catalyzed Glycerolysis. Appl. Biochem. Biotechnol. 146 (1-3), 165-172. https://doi.org/10.1007/s12010-008-8133-3 PMid:18421596 Fregolente PBL, Pinto GMF, Wolf-Maciel MR, Filho RM. 2010. Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Appl. Biochem. Biotechnol. 160 (7), 1879-1887. https://doi.org/10.1007/s12010-009-8822-6 PMid:19862491 Godfrey T. 1995. Lipases for industrial use. Lipid Technology. Goswami D, De S, Basu JK. 2012. Effects of process variables and additives on mustard oil hydrolysis by porcine pancreas lipase. Braz. J. Chem. Eng. 29 (3), 449-460. https://doi.org/10.1590/S0104-66322012000300002 Kaewthong W, Sirisansaneeyakul S, Prasertsan P, H-Kittikun A. 2005. Continuous production of monoacylglycerols by glycerolysis of palm olein by immobilized lipase. Process Biochem. 40, 218-222. https://doi.org/10.1016/j.procbio.2003.12.002 Kapoor M, Gupta MN. 2012. Obtaining monoglycerides by esterification of glycerol with palmitic acid using some high activity preparations of Candida antarctica lipase B. Process Biochem. 47, 503-508. https://doi.org/10.1016/j.procbio.2011.12.009 Narvaez Rincón PC, Sánchez FJ, Alfonso Torres J, Ponce de León LF. 2004. Producción de ésteres metílicos de ácidos grasos: variables asociadas al proceso de transformación. Ing. Invest. 24 (002), 41-50. Noureddini H, Harmeier SE. 1998. Enzymatic glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 75 (10), 1359-1365. https://doi.org/10.1007/s11746-998-0183-8 Otadi M, Shahraki A, Goharrokhi M, Bandarchian F. 2011. Reduction of free acids of waste oil by acid-catalyzed esterification. Procedia Eng. 18, 168-174. https://doi.org/10.1016/j.proeng.2011.11.027 Palacios D, Ortega N, Rubio-Rodríguez N, Busto MD. 2019. Lipase-catalyzed glycerolysis of anchovy oil in a solvent-free system: Simultaneous optimization of monoacylglycerol synthesis and end-product oxidative stability. Food Chem. 271, 372-379. https://doi.org/10.1016/j.foodchem.2018.07.184 PMid:30236689 Pereda Marín J, Barriga Mateos F, Álvarez-Mateos P. 2003. Use of residual soapstock from the refining of edible vegetable oils to make biodiesel. Grasas Aceites 54 (2), 130-137. https://doi.org/10.3989/gya.2003.v54.i2.255 Ramesh Rarokar N, Menghani S, Kerzare D, Bhujangrao Khedekar P. 2017. Progress in synthesis of monoglycerides for use in food and pharmaceuticals. J. Exp. Food Chem. 3 (3), 128-134. https://doi.org/10.4172/2472-0542.1000128 Rivera-Pérez C, García Carreño F. 2007. Enzimas lipolíticas y su aplicación en la industria del aceite. BioTecnología 11 (2), 37-45. Satriana, Normalina A, Meldasari Lubis Y, Adisalamun, Supardan MD, Wan Aida WM. 2016. Diacylglycerol-enriched oil production using chemical glycerolysis. Eur. J. Lipid Sci. Tech. 118 (12), 1880-1890. https://doi.org/10.1002/ejlt.201500489 Singh AK, Mukhopadhyay M. 2012. Olive oil glycerolysis with the immobilized lipase Candida antarctica in a solvent free system. Grasas Aceites 63 (2), 202-208. https://doi.org/10.3989/gya.094811 Solaesa ÁG, Sanz MT, Falkeborg M, Beltrán S, Guo Z. 2016. Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. Food Chem. 190, 960-967. https://doi.org/10.1016/j.foodchem.2015.06.061 PMid:26213062 Solaesa ÁG, Sanz MT, Beltrán S, Melgosa R. 2016. Kinetic study and kinetic parameters of lipase-catalyzed glycerolysis of sardine oil in a homogeneous medium. Chinese J. Catal. 37. 596-606. https://doi.org/10.1016/S1872-2067(15)61040-3 Subroto E, Supriyanto, Utami T, Hidayat C. 2019. Enzymatic glycerolysis-interesterification of palm stearin-olein blend for synthesis structured lipid containing high mono- and diacylglycerol. Food Sci. Biotechnol. 28 (2), 511-517. https://doi.org/10.1007/s10068-018-0462-6 PMid:30956863 PMCid:PMC6431351 Torres C, Lin B, Hill C.G. 2002. Lipase-catalyzed glycerolysis of an oil rich in eicosapentaenoic acid residues. Biotechnol. Lett. 24, 667-673. https://doi.org/10.1023/A:1015298728683 Valério A, Rovani S, Treichel H, De Oliveira, Oliveira JV. 2010. Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioproc. Biosyst. Eng. 33, 805-812. https://doi.org/10.1007/s00449-009-0402-1 PMid:20091052 Vázquez L, González N, Reglero G, Torres C. 2016. Solvent-Free Lipase-Catalyzed Synthesis of Diacylglycerols as Low-Calorie Food Ingredientes. Front. Bioeng. Biotechnol. 4 (6), 1-10. https://doi.org/10.3389/fbioe.2016.00006 PMid:26904539 PMCid:PMC4748054 Wiphum Kaewthonga, Sarote Sirisansaneeyakulb, Poonsuk Prasertsana, AranH-Kittikuna. 2005. Continuous production of monoacylglycerols by glycerolysis of palm olein with immobilized lipase. Process Biochem. 40 (5), 1525-1530. https://doi.org/10.1016/j.procbio.2003.12.002 Yang T, Rebsdorf M, Engelrud U, Xu X. 2005. Enzymatic Production of Monoacylglycerols Containing Polyunsaturated Fatty Acids through an Efficient Glycerolysis System. J. Agric. Food Chem. 53 (5), 1475-1481. https://doi.org/10.1021/jf048405g PMid:15740027 Yang T, Rebsdorf M, Engelrud U, Xu X. 2005. Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system. J. Food Lipids. 12, 299-312. https://doi.org/10.1111/j.1745-4522.2005.00025.x Zaher FA, Saadia M, Aly OS, El-Kinawy. 1998. Lipase - Catalyzed glycerolysis of sunflower oil to produce partial glycerides. Grasas Aceites 49 (5-6), 411-414. https://doi.org/10.3989/gya.1998.v49.i5-6.750 Zhao X, Fan M, Zeng J, Du W, Liu C, Liu D. 2013. Kinetics of lipase recovery from the aqueous phase of biodiesel production by macroporous resin adsorption and reuse of the adsorbed lipase for biodiesel preparation. Enzyme Microb. Tech. 52, 226-233. https://doi.org/10.1016/j.enzmictec.2013.02.006 PMid:23540923 Ziobrowski Z, Kiss K, Krupiczka R, Rotkegel A, Gubicza L, Nemestothy N. 2009. Pervaporation aided enzymatic production of glycerol monostearate in organic solvents. Desalination. 241, 212-217. https://doi.org/10.1016/j.desal.2008.01.067 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853 doi:10.3989/gya.0794191 Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Grasas y Aceites; Vol. 71 No. 4 (2020); e383 Grasas y Aceites; Vol. 71 Núm. 4 (2020); e383 1988-4214 0017-3495 10.3989/gya.2020.v71.i4 By-products Diglyceride Enzymatic Glycerolysis Lipase CALB Monoglyceride Olein Diglicéridos Glicerólisis enzimática Lipasa CALB Monoglicéridos Oleína Subproductos oleaginosos info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjgya https://doi.org/10.3989/gya.0794191 https://doi.org/10.3989/gya.2020.v71.i4 https://doi.org/10.5650/jos.ess14022 https://doi.org/10.3989/gya.084412 https://doi.org/10.1002/ejlt.201300243 https://doi.org/10.3390/ijms160920774 https://doi.org/10 2022-03-10T18:38:18Z In this paper we present the valorization of cocoa olein obtained from the acid fat-splitting of soapstocks. The aim is to develop a solvent free process (enzymatically catalyzed) to maximize the production of a final product with high content of monoglycerides (MAG) and diglycerides (DAG). The effect of the enzyme dose, glycerol content, reaction times as well as the modification of the raw material and pressure were studied. The yield of the reaction increased up to 90-95% when using a vacuum of 2-3 mbar at 65 °C, enough to evaporate the water which is generated as a by-product, an enzyme dose of 1% and molar ratio oil:glycerol of 1:2. The highest yield in terms of MAG and DAG production was obtained by starting from a raw material which was rich in free acidity (FFA), rendering oil with 33.4 and 44.2% MAG and DAG, respectively. Short reaction times (6-8 h) were observed compared to previously reported results (24 h). En el presente trabajo se pretende valorizar la oleína vegetal de cacao procedente de la ruptura ácida de las pastas de refinación química. El objetivo es poner a punto un proceso de glicerólisis enzimática en un sistema libre de solventes maximizando la producción de monoglicéridos (MAG) y diglicéridos (DAG). Se ha estudiado el efecto de la dosis de enzima, el contenido de glicerol y el tiempo de reacción, la modificación de la presión de reacción y la composición de la materia prima. Se concluye que el rendimiento de la reacción aumenta hasta el 90-95% cuando se aplica un vacío de 2-3 mbar a 65 ºC suficiente para evaporar el agua que se va generando como producto, una dosis de enzima del 1% y una relación molar aceite:glicerol 1:2. El mayor rendimiento en cuanto a la producción de MAG y DAG se ha conseguido partiendo de una materia prima rica en acidez libre (FFA), obteniéndose un aceite con un 33.4 y 44.2% de MAG y DAG, respectivamente. Se observa que los tiempos de reacción son cortos (6-8h) comparados con los descritos en la bibliografía encontrada (24h). Article in Journal/Newspaper Antarc* Antarctica Grasas y Aceites (E-Journal) Grasas y Aceites 71 4 383