Synthesis, characterization and evaluation of 1-monoacylglycerols of unsaturated fatty acids as potential bioactive lipids

The synthesis of 1-monoacylglycerols of selected unsaturated fatty acids and their antimicrobial and cytotoxicity activity is reported in the present study. The monoacylglycerols of fatty acids like undecenoic, oleic, linoleic and erucic acids were prepared by chemical esterification with solketal f...

Full description

Bibliographic Details
Published in:Journal of Physical Oceanography
Main Authors: Johny, J., Jatla, A., Eruva, V. K., Misra, S., Kaki, S. S.
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2019
Subjects:
Online Access:https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793
https://doi.org/10.3989/gya.1052182
id ftjgya:oai:grasasyaceites.revistas.csic.es:article/1793
record_format openpolar
institution Open Polar
collection Grasas y Aceites (E-Journal)
op_collection_id ftjgya
language English
topic 1-monoacylglycerols
Antimicrobial activity
Cytotoxicity
Fatty acids
Lipids
Synthesis
1-monoacilgliceroles
Ácidos grasos
Actividad antimicrobiana
Citotoxicidad
Lípidos
Síntesis
spellingShingle 1-monoacylglycerols
Antimicrobial activity
Cytotoxicity
Fatty acids
Lipids
Synthesis
1-monoacilgliceroles
Ácidos grasos
Actividad antimicrobiana
Citotoxicidad
Lípidos
Síntesis
Johny, J.
Jatla, A.
Eruva, V. K.
Misra, S.
Kaki, S. S.
Synthesis, characterization and evaluation of 1-monoacylglycerols of unsaturated fatty acids as potential bioactive lipids
topic_facet 1-monoacylglycerols
Antimicrobial activity
Cytotoxicity
Fatty acids
Lipids
Synthesis
1-monoacilgliceroles
Ácidos grasos
Actividad antimicrobiana
Citotoxicidad
Lípidos
Síntesis
description The synthesis of 1-monoacylglycerols of selected unsaturated fatty acids and their antimicrobial and cytotoxicity activity is reported in the present study. The monoacylglycerols of fatty acids like undecenoic, oleic, linoleic and erucic acids were prepared by chemical esterification with solketal followed by deprotection. Fatty acids like alpha linolenic, gamma linolenic and ricinoleic acids were initially isolated from natural sources and further enriched in their respective methyl ester forms. The monoacylglycerols of ricinoleic and linolenic acid methyl esters were prepared by enzymatic transesterification with solketal using lipase from Candida antarctica followed by deprotection. The synthesized 1-monoacylglycerols were purified and characterized by spectral studies. The antimicrobial activity revealed that the monoacylglycerol of gamma linolenic acid was the most effective antibacterial followed by the monoacylglycerols of undecenoic and alpha linolenic acids. In the cytotoxicity assay against five cell lines, all the monoacylglycerols exhibited moderate activity but the activity was best against MCF7 Human Breast Adenocarcinoma cell lines. La síntesis de 1-monoacilgliceroles de ácidos grasos insaturados seleccionados y su actividad antimicrobiana y citotoxicidad se describen en el presente estudio. Los monoacilgliceroles de ácidos grasos como los ácidos undecenoico, oleico, linoleico y erúcico se prepararon mediante esterificación química con solketal seguido de desprotección. Los ácidos grasos como el alfa-linolénico, gamma-linolénico y ricinoleico se aislaron inicialmente de fuentes naturales y se enriquecieron aún más en sus respectivos ésteres metílicos. Los monoacilgliceroles de los ésteres metílicos de los ácidos ricinoleico y linolénico se prepararon mediante transesterificación enzimática con solketal utilizando lipasa de Candida antárctica seguido de desprotección. Los 1-monoacilgliceroles sintetizados se purificaron y caracterizaron mediante estudios espectrales. La actividad antimicrobiana mostró que el monoacilglicerol del ácido gamma-linolénico fue el antibacteriano más eficaz seguido del monoacilglicerol de los ácidos undecenoico y alfa-linolénico. En el ensayo de citotoxicidad contra cinco líneas celulares, todos los monoacilgliceroles mostraron una actividad moderada, pero la actividad fue mejor contra las líneas celulares de adenocarcinoma de mama humano MCF7.
format Article in Journal/Newspaper
author Johny, J.
Jatla, A.
Eruva, V. K.
Misra, S.
Kaki, S. S.
author_facet Johny, J.
Jatla, A.
Eruva, V. K.
Misra, S.
Kaki, S. S.
author_sort Johny, J.
title Synthesis, characterization and evaluation of 1-monoacylglycerols of unsaturated fatty acids as potential bioactive lipids
title_short Synthesis, characterization and evaluation of 1-monoacylglycerols of unsaturated fatty acids as potential bioactive lipids
title_full Synthesis, characterization and evaluation of 1-monoacylglycerols of unsaturated fatty acids as potential bioactive lipids
title_fullStr Synthesis, characterization and evaluation of 1-monoacylglycerols of unsaturated fatty acids as potential bioactive lipids
title_full_unstemmed Synthesis, characterization and evaluation of 1-monoacylglycerols of unsaturated fatty acids as potential bioactive lipids
title_sort synthesis, characterization and evaluation of 1-monoacylglycerols of unsaturated fatty acids as potential bioactive lipids
publisher Consejo Superior de Investigaciones Científicas
publishDate 2019
url https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793
https://doi.org/10.3989/gya.1052182
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_source Grasas y Aceites; Vol. 70 No. 4 (2019); e325
Grasas y Aceites; Vol. 70 Núm. 4 (2019); e325
1988-4214
0017-3495
10.3989/gya.2019.v70.i4
op_relation https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793/2497
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793/2498
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793/2499
Aarti N, Louk ARMP, Potts RO, Guy RH. 1995. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Cont. Release 37, 299-306. https://doi.org/10.1016/0168-3659(95)00088-7
Adlercreutz P. 2013. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 42, 6406-6436. https://doi.org/10.1039/c3cs35446f PMid:23403895
Altieri C, Bevilacqua A, Cardillo D, Sinigaglia M. 2009. Effectiveness of fatty acids and their monoglycerides against gram-negative pathogens. Int. J. Food Sci. Technol. 44, 359-366. https://doi.org/10.1111/j.1365-2621.2008.01744.x
Berdeaux O, Christie WW, Gunstone FD, Sebedio JL. 1997. Large-scale synthesis of methyl cis-9,trans-11-octadecadienoate from methyl ricinoleate. J. Am. Oil Chem. Soc. 74, 1011-1015. https://doi.org/10.1007/s11746-997-0018-z
Bornscheuer UT. 1995. Lipase-Catalyzed Syntheses of Monoglycerols. Enzyme Microb. Technol. 17, 578-586. https://doi.org/10.1016/0141-0229(94)00096-A
Christie, WW. 1982. The preparation of derivatives of lipids. Lipid Analysis, 2nd ed.; Pergamon Press Ltd.: Oxford, United Kingdom, pp 51-61.
Clinical and Laboratory Standards Institute. 2008. Performance Standards for Antimicrobial Susceptibility Tests; Eighteen informational supplement M100-S18.
Desbois AP, Lawlor KC. 2013. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar. Drugs 11, 4544-4557. https://doi.org/10.3390/md11114544 PMid:24232668 PMCid:PMC3853744
Dolezalova M, Janis R, Svobodova H, Kasparkova V, Humpolıcek P, Krejci J. 2010. Antimicrobial properties of 1-monoacylglycerols prepared from undecanoic (C11:0) and undecenoic (C11:1) acid. Eur. J. Lipid Sci. Technol. 112, 1106-1114. https://doi.org/10.1002/ejlt.200900295
Flider FJ. 2005. GLA: Uses and new sources. INFORM 16, 279-282.
Hayes DG, Bengtsson YC, Van Alstine JM, Setterwall F. 1998. Urea complexation for the rapid, ecologically responsible fractionation of fatty acids from seed oil. J. Amer. Oil Chem. Soc. 75, 1403-1409. https://doi.org/10.1007/s11746-998-0190-9
Kabara JJ, Marshall DL. 2005. Medium-chain fatty acids and esters, in Davidson PM, Sofos JN, Branen AL. (Eds.). Antimicrobials in Food. CRC Press, Boca Raton, USA, pp. 327-360. https://doi.org/10.1201/9781420028737.ch11
Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 2, 23-28. https://doi.org/10.1128/AAC.2.1.23 PMid:4670656 PMCid:PMC444260
Kaki SS, Ravinder T, Ashwini B, Rao BVSK, Prasad RBN. 2014. Enzymatic modification of phosphatidylcholine with n-3 PUFA from silkworm oil fatty acids. Grasas Aceites 65, e021. https://doi.org/10.3989/gya.097213
Kalpana J, Gousia B, Shruti SD, Rohit RK, Sunil M. 2018. Potential of the bioinspired CaCo3 microspheres loaded with tetracycline in inducing differential cytotoxic effects toward noncancerous and cancer cells: a cytogenetic toxicity assessment using CHO cells in vitro. Chem. Res. Toxicol. 31, 629-636. https://doi.org/10.1021/acs.chemrestox.8b00131 PMid:29923707
Linday ME. 1962. Practical Introduction to Microbiology. E and F.N. Spon Ltd., United Kingdom, p. 177.
Littich R. 2017. Antimicrobial lipids: attenuating the use of medically important antimicrobial drugs in food-producing animals: What role Can cGMP lipids play? Drug Dev. Del. 17, 56-61.
Lu W, Kelly Al, Miao S. 2017. Improved bioavailability of encapsulated bioactive nutrients delivered through monoglyceride-structured o/w emulsions. J. Agric. Food Chem. 65, 3048?3055. https://doi.org/10.1021/acs.jafc.6b05644 PMid:28317373
Maryam SF, Ming D, Pan A, Sun Q, Stephanie EC, Lyn MS, Walter CW, Hu FB. 2014. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation 130, 1568-1578. https://doi.org/10.1161/CIRCULATIONAHA.114.010236 PMid:25161045 PMCid:PMC4334131
Nguemeni C, Gouix E, Bourourou M, Heurteaux C, Blondeau N. 2013. Alpha-linolenic acid: A promising nutraceutical for the prevention of stroke. Pharm. Nutrition 1, 1-8. https://doi.org/10.1016/j.phanu.2012.12.002
Osborn HT, Akoh, CC. 2002. Structured lipids - Novel fats with medical, nutraceutical and food applications. Compr. Rev. Food Sci. Food Saf. 3, 110-120. https://doi.org/10.1111/j.1541-4337.2002.tb00010.x
Pabis' S, Kula J. 2016. Synthesis and bioactivity of (r)-ricinoleic acid derivatives: A review. Curr. Med. Chem. 23, 4037-4056. https://doi.org/10.2174/0929867323666160627104453 PMid:27356539
Pawongrat R, Xu X, Kittikun AH. 2008. Physico-enzymatic production of monoacylglycerols enriched with very-long-chain polyunsaturated fatty acids. J. Sci. Food Agric. 88, 256-262. https://doi.org/10.1002/jsfa.3081
Pierard GE, Arrese JE, Pierard-Franchimont C, De Doncker P. 1997. Prolonged effects of anti-dandruff shampoos - time to recurrence of Malassezia ovalis colonisation of skin. Int. J. Cosmet. Sci. 19, 111-117. https://doi.org/10.1046/j.1467-2494.1997.171706.x PMid:18507638
Janis R, Krejcí J, Klásek A. 2000. Preparation of 1-monoacylglycerols from glycidol and fatty acids catalyzed by the chromium(III)- fatty acid system. Eur. J. Lipid Sci. Technol. 102, 351-354. 3.0.CO;2-J" target="_blank">https://doi.org/10.1002/(SICI)1438-9312(200005)102:5<351::AID-EJLT351>3.0.CO;2-J
Sonntag NOV. 1982. Glycerolysis of fats and methylesters- Status, review and critique. J. Am. Oil Chem. Soc. 59, 795A-802A. https://doi.org/10.1007/BF02634442
Thormar H, Hilmarsson H. 2007. The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem. Phys. Lipids 150, 1-11. https://doi.org/10.1016/j.chemphyslip.2007.06.220 PMid:17686469
Yang D, Cwynar VA, Hart DJ, Madanmohan J, Lee J, Lyons J, Caffrey M. 2012. Preparation of 1-monoacylglycerols via the Suzuki-Miyaura reaction: 2, 3-dihydroxypropyl (Z)-tetradec-7-enoate. Org. Synth. 89, 183-201. https://doi.org/10.15227/orgsyn.089.0183
Yoon BK, Jackman JA, Valle-González ER, Cho NJ. 2018. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 19, 1114. https://doi.org/10.3390/ijms19041114 PMid:29642500 PMCid:PMC5979495
Zheng CJ, Jung-Sung Y, Tae-Gyu L, Hee-Young C, Young-Ho K, Won-Gon K. 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 579, 5157-5162. https://doi.org/10.1016/j.febslet.2005.08.028
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793
doi:10.3989/gya.1052182
op_rights Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/gya.1052182
https://doi.org/10.3989/gya.2019.v70.i4
https://doi.org/10.1016/0168-3659(95)00088-7
https://doi.org/10.1039/c3cs35446f
https://doi.org/10.1111/j.1365-2621.2008.01744.x
https://doi.org/10.1007/s11746-997-0018-
container_title Journal of Physical Oceanography
container_volume 43
container_issue 10
container_start_page 2113
op_container_end_page 2131
_version_ 1766013175155654656
spelling ftjgya:oai:grasasyaceites.revistas.csic.es:article/1793 2023-05-15T13:30:51+02:00 Synthesis, characterization and evaluation of 1-monoacylglycerols of unsaturated fatty acids as potential bioactive lipids Síntesis, caracterización y evaluación de 1-monoacilgliceroles de ácidos grasos insaturados como potenciales lípidos bioactivos Johny, J. Jatla, A. Eruva, V. K. Misra, S. Kaki, S. S. 2019-12-30 text/html application/pdf application/xml https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793 https://doi.org/10.3989/gya.1052182 eng eng Consejo Superior de Investigaciones Científicas https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793/2497 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793/2498 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793/2499 Aarti N, Louk ARMP, Potts RO, Guy RH. 1995. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Cont. Release 37, 299-306. https://doi.org/10.1016/0168-3659(95)00088-7 Adlercreutz P. 2013. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 42, 6406-6436. https://doi.org/10.1039/c3cs35446f PMid:23403895 Altieri C, Bevilacqua A, Cardillo D, Sinigaglia M. 2009. Effectiveness of fatty acids and their monoglycerides against gram-negative pathogens. Int. J. Food Sci. Technol. 44, 359-366. https://doi.org/10.1111/j.1365-2621.2008.01744.x Berdeaux O, Christie WW, Gunstone FD, Sebedio JL. 1997. Large-scale synthesis of methyl cis-9,trans-11-octadecadienoate from methyl ricinoleate. J. Am. Oil Chem. Soc. 74, 1011-1015. https://doi.org/10.1007/s11746-997-0018-z Bornscheuer UT. 1995. Lipase-Catalyzed Syntheses of Monoglycerols. Enzyme Microb. Technol. 17, 578-586. https://doi.org/10.1016/0141-0229(94)00096-A Christie, WW. 1982. The preparation of derivatives of lipids. Lipid Analysis, 2nd ed.; Pergamon Press Ltd.: Oxford, United Kingdom, pp 51-61. Clinical and Laboratory Standards Institute. 2008. Performance Standards for Antimicrobial Susceptibility Tests; Eighteen informational supplement M100-S18. Desbois AP, Lawlor KC. 2013. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar. Drugs 11, 4544-4557. https://doi.org/10.3390/md11114544 PMid:24232668 PMCid:PMC3853744 Dolezalova M, Janis R, Svobodova H, Kasparkova V, Humpolıcek P, Krejci J. 2010. Antimicrobial properties of 1-monoacylglycerols prepared from undecanoic (C11:0) and undecenoic (C11:1) acid. Eur. J. Lipid Sci. Technol. 112, 1106-1114. https://doi.org/10.1002/ejlt.200900295 Flider FJ. 2005. GLA: Uses and new sources. INFORM 16, 279-282. Hayes DG, Bengtsson YC, Van Alstine JM, Setterwall F. 1998. Urea complexation for the rapid, ecologically responsible fractionation of fatty acids from seed oil. J. Amer. Oil Chem. Soc. 75, 1403-1409. https://doi.org/10.1007/s11746-998-0190-9 Kabara JJ, Marshall DL. 2005. Medium-chain fatty acids and esters, in Davidson PM, Sofos JN, Branen AL. (Eds.). Antimicrobials in Food. CRC Press, Boca Raton, USA, pp. 327-360. https://doi.org/10.1201/9781420028737.ch11 Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 2, 23-28. https://doi.org/10.1128/AAC.2.1.23 PMid:4670656 PMCid:PMC444260 Kaki SS, Ravinder T, Ashwini B, Rao BVSK, Prasad RBN. 2014. Enzymatic modification of phosphatidylcholine with n-3 PUFA from silkworm oil fatty acids. Grasas Aceites 65, e021. https://doi.org/10.3989/gya.097213 Kalpana J, Gousia B, Shruti SD, Rohit RK, Sunil M. 2018. Potential of the bioinspired CaCo3 microspheres loaded with tetracycline in inducing differential cytotoxic effects toward noncancerous and cancer cells: a cytogenetic toxicity assessment using CHO cells in vitro. Chem. Res. Toxicol. 31, 629-636. https://doi.org/10.1021/acs.chemrestox.8b00131 PMid:29923707 Linday ME. 1962. Practical Introduction to Microbiology. E and F.N. Spon Ltd., United Kingdom, p. 177. Littich R. 2017. Antimicrobial lipids: attenuating the use of medically important antimicrobial drugs in food-producing animals: What role Can cGMP lipids play? Drug Dev. Del. 17, 56-61. Lu W, Kelly Al, Miao S. 2017. Improved bioavailability of encapsulated bioactive nutrients delivered through monoglyceride-structured o/w emulsions. J. Agric. Food Chem. 65, 3048?3055. https://doi.org/10.1021/acs.jafc.6b05644 PMid:28317373 Maryam SF, Ming D, Pan A, Sun Q, Stephanie EC, Lyn MS, Walter CW, Hu FB. 2014. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation 130, 1568-1578. https://doi.org/10.1161/CIRCULATIONAHA.114.010236 PMid:25161045 PMCid:PMC4334131 Nguemeni C, Gouix E, Bourourou M, Heurteaux C, Blondeau N. 2013. Alpha-linolenic acid: A promising nutraceutical for the prevention of stroke. Pharm. Nutrition 1, 1-8. https://doi.org/10.1016/j.phanu.2012.12.002 Osborn HT, Akoh, CC. 2002. Structured lipids - Novel fats with medical, nutraceutical and food applications. Compr. Rev. Food Sci. Food Saf. 3, 110-120. https://doi.org/10.1111/j.1541-4337.2002.tb00010.x Pabis' S, Kula J. 2016. Synthesis and bioactivity of (r)-ricinoleic acid derivatives: A review. Curr. Med. Chem. 23, 4037-4056. https://doi.org/10.2174/0929867323666160627104453 PMid:27356539 Pawongrat R, Xu X, Kittikun AH. 2008. Physico-enzymatic production of monoacylglycerols enriched with very-long-chain polyunsaturated fatty acids. J. Sci. Food Agric. 88, 256-262. https://doi.org/10.1002/jsfa.3081 Pierard GE, Arrese JE, Pierard-Franchimont C, De Doncker P. 1997. Prolonged effects of anti-dandruff shampoos - time to recurrence of Malassezia ovalis colonisation of skin. Int. J. Cosmet. Sci. 19, 111-117. https://doi.org/10.1046/j.1467-2494.1997.171706.x PMid:18507638 Janis R, Krejcí J, Klásek A. 2000. Preparation of 1-monoacylglycerols from glycidol and fatty acids catalyzed by the chromium(III)- fatty acid system. Eur. J. Lipid Sci. Technol. 102, 351-354. 3.0.CO;2-J" target="_blank">https://doi.org/10.1002/(SICI)1438-9312(200005)102:5<351::AID-EJLT351>3.0.CO;2-J Sonntag NOV. 1982. Glycerolysis of fats and methylesters- Status, review and critique. J. Am. Oil Chem. Soc. 59, 795A-802A. https://doi.org/10.1007/BF02634442 Thormar H, Hilmarsson H. 2007. The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem. Phys. Lipids 150, 1-11. https://doi.org/10.1016/j.chemphyslip.2007.06.220 PMid:17686469 Yang D, Cwynar VA, Hart DJ, Madanmohan J, Lee J, Lyons J, Caffrey M. 2012. Preparation of 1-monoacylglycerols via the Suzuki-Miyaura reaction: 2, 3-dihydroxypropyl (Z)-tetradec-7-enoate. Org. Synth. 89, 183-201. https://doi.org/10.15227/orgsyn.089.0183 Yoon BK, Jackman JA, Valle-González ER, Cho NJ. 2018. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 19, 1114. https://doi.org/10.3390/ijms19041114 PMid:29642500 PMCid:PMC5979495 Zheng CJ, Jung-Sung Y, Tae-Gyu L, Hee-Young C, Young-Ho K, Won-Gon K. 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 579, 5157-5162. https://doi.org/10.1016/j.febslet.2005.08.028 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1793 doi:10.3989/gya.1052182 Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Grasas y Aceites; Vol. 70 No. 4 (2019); e325 Grasas y Aceites; Vol. 70 Núm. 4 (2019); e325 1988-4214 0017-3495 10.3989/gya.2019.v70.i4 1-monoacylglycerols Antimicrobial activity Cytotoxicity Fatty acids Lipids Synthesis 1-monoacilgliceroles Ácidos grasos Actividad antimicrobiana Citotoxicidad Lípidos Síntesis info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjgya https://doi.org/10.3989/gya.1052182 https://doi.org/10.3989/gya.2019.v70.i4 https://doi.org/10.1016/0168-3659(95)00088-7 https://doi.org/10.1039/c3cs35446f https://doi.org/10.1111/j.1365-2621.2008.01744.x https://doi.org/10.1007/s11746-997-0018- 2022-03-10T18:38:13Z The synthesis of 1-monoacylglycerols of selected unsaturated fatty acids and their antimicrobial and cytotoxicity activity is reported in the present study. The monoacylglycerols of fatty acids like undecenoic, oleic, linoleic and erucic acids were prepared by chemical esterification with solketal followed by deprotection. Fatty acids like alpha linolenic, gamma linolenic and ricinoleic acids were initially isolated from natural sources and further enriched in their respective methyl ester forms. The monoacylglycerols of ricinoleic and linolenic acid methyl esters were prepared by enzymatic transesterification with solketal using lipase from Candida antarctica followed by deprotection. The synthesized 1-monoacylglycerols were purified and characterized by spectral studies. The antimicrobial activity revealed that the monoacylglycerol of gamma linolenic acid was the most effective antibacterial followed by the monoacylglycerols of undecenoic and alpha linolenic acids. In the cytotoxicity assay against five cell lines, all the monoacylglycerols exhibited moderate activity but the activity was best against MCF7 Human Breast Adenocarcinoma cell lines. La síntesis de 1-monoacilgliceroles de ácidos grasos insaturados seleccionados y su actividad antimicrobiana y citotoxicidad se describen en el presente estudio. Los monoacilgliceroles de ácidos grasos como los ácidos undecenoico, oleico, linoleico y erúcico se prepararon mediante esterificación química con solketal seguido de desprotección. Los ácidos grasos como el alfa-linolénico, gamma-linolénico y ricinoleico se aislaron inicialmente de fuentes naturales y se enriquecieron aún más en sus respectivos ésteres metílicos. Los monoacilgliceroles de los ésteres metílicos de los ácidos ricinoleico y linolénico se prepararon mediante transesterificación enzimática con solketal utilizando lipasa de Candida antárctica seguido de desprotección. Los 1-monoacilgliceroles sintetizados se purificaron y caracterizaron mediante estudios espectrales. La actividad antimicrobiana mostró que el monoacilglicerol del ácido gamma-linolénico fue el antibacteriano más eficaz seguido del monoacilglicerol de los ácidos undecenoico y alfa-linolénico. En el ensayo de citotoxicidad contra cinco líneas celulares, todos los monoacilgliceroles mostraron una actividad moderada, pero la actividad fue mejor contra las líneas celulares de adenocarcinoma de mama humano MCF7. Article in Journal/Newspaper Antarc* Antarctica Grasas y Aceites (E-Journal) Journal of Physical Oceanography 43 10 2113 2131