Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines

Inhibitors of tumor growth using extracts from aromatic plants are rapidly emerging as important new drug candidates for cancer therapy. The cytotoxicity and in vitro anticancer evaluation of the essential oils from thyme, juniper and clove has been assessed against five different human cancer cell...

Full description

Bibliographic Details
Published in:Grasas y Aceites
Main Authors: Ramadan, M. M., Ali, M. M., Ghanem, K. Z., El-Ghorabe, A. H.
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2015
Subjects:
Online Access:https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545
https://doi.org/10.3989/gya.0955142
id ftjgya:oai:grasasyaceites.revistas.csic.es:article/1545
record_format openpolar
institution Open Polar
collection Grasas y Aceites (E-Journal)
op_collection_id ftjgya
language English
topic Anticancer
Antioxidant
Clove Juniper
Thyme
Anticancerígeno
Antioxidante
Clavo
Enebro
Tomillo
spellingShingle Anticancer
Antioxidant
Clove Juniper
Thyme
Anticancerígeno
Antioxidante
Clavo
Enebro
Tomillo
Ramadan, M. M.
Ali, M. M.
Ghanem, K. Z.
El-Ghorabe, A. H.
Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines
topic_facet Anticancer
Antioxidant
Clove Juniper
Thyme
Anticancerígeno
Antioxidante
Clavo
Enebro
Tomillo
description Inhibitors of tumor growth using extracts from aromatic plants are rapidly emerging as important new drug candidates for cancer therapy. The cytotoxicity and in vitro anticancer evaluation of the essential oils from thyme, juniper and clove has been assessed against five different human cancer cell lines (liver HepG2, breast MCF-7, prostate PC3, colon HCT116 and lung A549). A GC/MS analysis revealed that α-pinene, thymol and eugenol are the major components of Egyptian juniper, thyme and clove oils with concentrations of 31.19%, 79.15% and 82.71%, respectively. Strong antioxidant profiles of all the oils are revealed in vitro by DPPH and β-carotene bleaching assays. The results showed that clove oil was similarly potent to the reference drug, doxorubicin in prostate, colon and lung cell lines. Thyme oil was more effective than the doxorubicin in breast and lung cell lines while juniper oil was more effective than the doxorubicin in all the tested cancer cell lines except prostate cancer. In conclusion, the essential oils from Egyptian aromatic plants can be used as good candidates for novel therapeutic strategies for cancer as they possess significant anticancer activity. Los inhibidores de crecimiento de tumores usando extractos de plantas aromáticas están emergiendo con rapidez como nuevos e importantes medicamentos para el tratamiento del cáncer. La citotoxicidad y la acción anticancerígena in vitro de aceites esenciales de tomillo, enebro y clavo han sido evaluadas en cinco líneas celulares de cáncer humano (hígado HepG2, mama MCF-7, próstata PC3, colon HCT116 y pulmón A549). Los análisis de GC/MS mostraron que α-pineno, timol y eugenol son los principales componentes de los aceites egipcios de enebro, tomillo y clavo, con concentraciones de 31,19%, 79,15% y 82,71%, respectivamente. Se demuestra, mediante ensayos in vitro de blanqueo de DPPH y β-caroteno, el enérgico perfil antioxidante de todos los aceites. Los resultados mostraron que el aceite de clavo fue similar de potente al fármaco de referencia, doxorrubicina en las líneas celulares de próstata, colon y pulmón. El aceite de tomillo fue más efectivo que la doxorrubicina en las líneas celulares de mama y de pulmón, mientras que el aceite de enebro fue más eficaz que la doxorrubicina en todas las líneas celulares de cáncer ensayados, excepto en la de cáncer de próstata. En conclusión, los aceites esenciales de plantas aromáticas egipcias se pueden utilizar como buenos candidatos para nuevas estrategias terapéuticas para el cáncer al poseer una significativa actividad anticancerígena.
format Article in Journal/Newspaper
author Ramadan, M. M.
Ali, M. M.
Ghanem, K. Z.
El-Ghorabe, A. H.
author_facet Ramadan, M. M.
Ali, M. M.
Ghanem, K. Z.
El-Ghorabe, A. H.
author_sort Ramadan, M. M.
title Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines
title_short Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines
title_full Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines
title_fullStr Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines
title_full_unstemmed Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines
title_sort essential oils from egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines
publisher Consejo Superior de Investigaciones Científicas
publishDate 2015
url https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545
https://doi.org/10.3989/gya.0955142
long_lat ENVELOPE(-60.833,-60.833,-63.667,-63.667)
geographic Clavo
Referencia
geographic_facet Clavo
Referencia
genre Sibirica
genre_facet Sibirica
op_source Grasas y Aceites; Vol. 66 No. 2 (2015); e080
Grasas y Aceites; Vol. 66 Núm. 2 (2015); e080
1988-4214
0017-3495
10.3989/gya.2015.v66.i2
op_relation https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545/1730
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545/1731
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545/1732
Abd-Algader NN, El-Kamali HH, Ramadan MM, Ghanem KZ, Farrag AH. 2013. Xylopia aethiopica volatile compounds protect against panadol-induced hepatic and renal toxicity in male rats. World Appl. Sci. J. 27, 10–22.
Adams RP. 1995. Identification of essential oil components by gas chromatography/mass spectrometry; Allured Publishing: Carol Stream, IL, USA.
AitM'barek L, Ait Mouse H, Jaâfari A, Aboufatima R, Benharref A, Bénard J, El Abbadi N, Bensalah M, Gamouh A, Chait A, Dalal A. 2007. Cytotoxic effect of essential oil of thyme (Thymus broussonettii) on the IGR-OV1 tumor cells resistant to chemotherapy. Braz. J. Med. Res. 40, 1537–1544. http://dx.doi.org/10.1590/S0100-879X2007001100014
Ali MM, Sohair AH. 2007. Role of some newly synthesized tetrahydro-naphthalin-thiazol derivatives as anticancer complexes. Int. J. Cancer Res. 3, 103–110. http://dx.doi.org/10.3923/ijcr.2007.103.110
Aydin E, Tu.rkez H, Geyikog˘lu F. 2013. Antioxidative, anticancer and genotoxic properties of £\-pinene on N2a neuroblastoma cells. J. Biol. 68, 1004–1009.
Brusselmans K, Vrolix R, Verhoeven G, Swinnen J. 2005. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 280, 5636–5645. http://dx.doi.org/10.1074/jbc.M408177200 PMid:15533929
Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP. 2005. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol. 69, 1421–1432. http://dx.doi.org/10.1016/j.bcp.2005.02.022 PMid:15857606
Dugo P, Mondello L, Dugo L, Stancanelli R, Dugo G. 2000. LC–MS for the identification of oxygen heterocyclic compounds in citrus essential oils. J. Pharmaceut. Biomed. Anal. 24, 147–154. http://dx.doi.org/10.1016/S0731-7085(00)00400-3
Elattar I. 2003. National Cancer Institute Egypt. Magnitude of liver cancer in Egypt.
Ghomi JS, Ebrahimabadi AH, Bidgoli ZD, Batooli H. 2009. GC/MS analysis and in vitro antioxidant activity of essential oil and methanol extracts of Thymus caramanicus Jalas and its main constituent carvacrol. Food Chem. 115, 1524–1528. http://dx.doi.org/10.1016/j.foodchem.2009.01.051
Gülcin I, Elmastas M, Aboul-Enein HY. 2007. Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum) assayed by different methodologies. Phytother Res. 21, 354–361. http://dx.doi.org/10.1002/ptr.2069 PMid:17221941
Gülcin I, Elmastas M, Aboul-Enein HY. 2012. Antioxidant activity of clove oil a powerful antioxidant source. Arab J Chem. 5, 489–499. http://dx.doi.org/10.1016/j.arabjc.2010.09.016
Gülcin I. 2006. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicol. 217, 213–220. http://dx.doi.org/10.1016/j.tox.2005.09.011 PMid:16243424
Hamedo HA, Abdelmigid HM. 2009. Use of antimicrobial and genotoxicity potentiality for evaluation of essential oils as food preservatives. Open Biotechnol. J. 3, 50–56. http://dx.doi.org/10.2174/1874070700903010050
Jo JU, Park S, Parki Y, Chae YZ, Lee GH, Park GY, Jang BC. 2012. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells. Inter. J. Oncol. 40, 1238–1245. PMid:22086183 PMCid:PMC3584576
Jordan MJ, Maria VL, Rota C, Loran S, Sotomayor JA. 2013. Effect of bioclimatic area on the essential oil composition and antibacterial activity of Rosmarinus officinalis L. Food Control 30, 463–468. http://dx.doi.org/10.1016/j.foodcont.2012.07.029
Lamaty G, Menut C, Bessiere JM, Zollo JM, Fekam PHA. 1987. Aromatic plants of tropical Central Africa: I. Volatile components of two annonaceae from Cameroon: Xylopia aethiopica (Dunal) A. Richard and Monodora myristica (Gaerth.) Dunal. Flavour. Frag. J. 2, 91–94. http://dx.doi.org/10.1002/ffj.2730020302
Lee KG, Shibamoto T. 2001. Antioxidant property of aroma extract isolated from clove buds Syzygium aromaticum. Food Chem. 74, 443–448. http://dx.doi.org/10.1016/S0308-8146(01)00161-3
Lesjak MM, Beara IN, Orcic DZ, Anackov GT, Balog KJ, Franci‰kovic MM. 2011. Juniperus sibirica Burgs dorf. as a novel source of antioxidant and anti-inflammatory agents. Food Chem. 124, 850–856. http://dx.doi.org/10.1016/j.foodchem.2010.07.006
Matsuo AL, Figueiredo CR, Arruda DC, Pereira FV, Scutti JAB, Massaoka MH, Travassos LR, Sartorelli P, Lago JHG. 2011. £\-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun. 411, 449–454. http://dx.doi.org/10.1016/j.bbrc.2011.06.176 PMid:21756878
Nikoli M, Glamo J, Isabel C, Ferreira FR, Calhelha RC, Fernandes Â, Markovi T, Markovi D, Giweli A, Sokovi M. 2014. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crop Prod. 52, 183–190. http://dx.doi.org/10.1016/j.indcrop.2013.10.006
Orav J, Koel M, Kailas T, Mu.u.rise M. 2010. Comparative analysis of the composition of essential oils and supercritical carbon dioxide extracts from the berries and needles of Estonian juniper (Juniperus communis L.). Procedia Chem. 2, 161–167. http://dx.doi.org/10.1016/j.proche.2009.12.023
Paul S, De Castro AJ, Lee HJ, Smolarek AK, So JY, Simi B, Wang CX, Zhou R, Rimando AM, Suh N. 2010. Dietary intake of pterostilbene, a constituent of blue berries, inhibits the b-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis 31, 1272–1278. http://dx.doi.org/10.1093/carcin/bgq004 PMid:20061362 PMCid:PMC2899944
Pepeljnjak S, Kosalec I, Kalodera Z, Blazevic N. 2005. Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae). ActaPharmaceut. 55, 417–422.
Pisano M, Pagnan G, Loi M, Mura ME, Tilocca MG, Palmieri G, Fabbri D, Dettori MA, Delogu G. 2007. Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol. Cancer 8, 234–242.
Prashar A, Locke IC, Evans CS. 2006. Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Proliferat. 39, 241–248. http://dx.doi.org/10.1111/j.1365-2184.2006.00384.x PMid:16872360
Ramadan MM, Abd-Algader NN, El-kamali HH, Ghanem KZ, Farrag AH. 2013a. Volatile compounds and antioxidant activity of the aromatic herb Anethum graveolens. J. Arab Soc. Medical Res. 8, 79–88. http://dx.doi.org/10.4103/1687-4293.123791
Ramadan MM, Abd Algader NN, El-kamali HH, Ghanem KZ, Farrag AH. 2013b. Chemo preventive effect of Coriandrum sativum fruits on hepatic toxicity in male rats. World J. Med. Sci. 8, 322–333.
Ramadan MM, Yehia HA, Shaheen MS, Abed EL, Fattah MS. 2014. Aroma volatiles, antibacterial, antifungal and antioxidant properties of essential oils obtained from some spices widely consumed in Egypt. American-Eurasian J. Agric. Environ. Sci. 14, 486–494.
Rosato A, Vitali C, Gallo D, Balenrano L, Mallamaci R. 2008. The inhibition of Candida albicans by selected essential oils and their synergism with amphotericin-B. Phytomed. 15, 635–638. http://dx.doi.org/10.1016/j.phymed.2008.05.001 PMid:18579358
Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. 1990. New colorimetric cytotoxicity assay for anticancerdrug screening. J. Nat. Cancer Instit. 82, 1107–1112. http://dx.doi.org/10.1093/jnci/82.13.1107 PMid:2359136
Teixeira B, Marques A, Ramos C, Neng NR, Nogueir JMF, Saraiva JA, Nunes ML. 2013. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crop Prod. 43, 587–595. http://dx.doi.org/10.1016/j.indcrop.2012.07.069
Tsukamoto Y, Fukutani S, Takeuchi S, Okamoto T, Mori M. 1989. Some phenolic compounds stimulate the proliferation of human pulpal fibroblasts. Shika Kiso Igakkai Zasshi 31, 357–362. http://dx.doi.org/10.2330/joralbiosci1965.31.357 PMid:2519277
Wang W, Li N, Luo M, Zu Y, Efferth T. 2012. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 17, 2704–2713. http://dx.doi.org/10.3390/molecules17032704 PMid:22391603
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545
doi:10.3989/gya.0955142
op_rights Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/gya.0955142
https://doi.org/10.3989/gya.2015.v66.i2
https://doi.org/10.1590/S0100-879X2007001100014
https://doi.org/10.3923/ijcr.2007.103.110
https://doi.org/10.1074/jbc.M408177200
https://doi.org/10.1016/j.bcp.2005.02.02
container_title Grasas y Aceites
container_volume 66
container_issue 2
container_start_page e080
_version_ 1766196892897640448
spelling ftjgya:oai:grasasyaceites.revistas.csic.es:article/1545 2023-05-15T18:19:41+02:00 Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines Aceites esenciales de plantas aromáticas egipcias como novedosos agentes anticancerígenos y antioxidantes en líneas celulares de cáncer humano Ramadan, M. M. Ali, M. M. Ghanem, K. Z. El-Ghorabe, A. H. 2015-06-30 text/html application/pdf text/xml https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545 https://doi.org/10.3989/gya.0955142 eng eng Consejo Superior de Investigaciones Científicas https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545/1730 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545/1731 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545/1732 Abd-Algader NN, El-Kamali HH, Ramadan MM, Ghanem KZ, Farrag AH. 2013. Xylopia aethiopica volatile compounds protect against panadol-induced hepatic and renal toxicity in male rats. World Appl. Sci. J. 27, 10–22. Adams RP. 1995. Identification of essential oil components by gas chromatography/mass spectrometry; Allured Publishing: Carol Stream, IL, USA. AitM'barek L, Ait Mouse H, Jaâfari A, Aboufatima R, Benharref A, Bénard J, El Abbadi N, Bensalah M, Gamouh A, Chait A, Dalal A. 2007. Cytotoxic effect of essential oil of thyme (Thymus broussonettii) on the IGR-OV1 tumor cells resistant to chemotherapy. Braz. J. Med. Res. 40, 1537–1544. http://dx.doi.org/10.1590/S0100-879X2007001100014 Ali MM, Sohair AH. 2007. Role of some newly synthesized tetrahydro-naphthalin-thiazol derivatives as anticancer complexes. Int. J. Cancer Res. 3, 103–110. http://dx.doi.org/10.3923/ijcr.2007.103.110 Aydin E, Tu.rkez H, Geyikog˘lu F. 2013. Antioxidative, anticancer and genotoxic properties of £\-pinene on N2a neuroblastoma cells. J. Biol. 68, 1004–1009. Brusselmans K, Vrolix R, Verhoeven G, Swinnen J. 2005. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 280, 5636–5645. http://dx.doi.org/10.1074/jbc.M408177200 PMid:15533929 Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP. 2005. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol. 69, 1421–1432. http://dx.doi.org/10.1016/j.bcp.2005.02.022 PMid:15857606 Dugo P, Mondello L, Dugo L, Stancanelli R, Dugo G. 2000. LC–MS for the identification of oxygen heterocyclic compounds in citrus essential oils. J. Pharmaceut. Biomed. Anal. 24, 147–154. http://dx.doi.org/10.1016/S0731-7085(00)00400-3 Elattar I. 2003. National Cancer Institute Egypt. Magnitude of liver cancer in Egypt. Ghomi JS, Ebrahimabadi AH, Bidgoli ZD, Batooli H. 2009. GC/MS analysis and in vitro antioxidant activity of essential oil and methanol extracts of Thymus caramanicus Jalas and its main constituent carvacrol. Food Chem. 115, 1524–1528. http://dx.doi.org/10.1016/j.foodchem.2009.01.051 Gülcin I, Elmastas M, Aboul-Enein HY. 2007. Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum) assayed by different methodologies. Phytother Res. 21, 354–361. http://dx.doi.org/10.1002/ptr.2069 PMid:17221941 Gülcin I, Elmastas M, Aboul-Enein HY. 2012. Antioxidant activity of clove oil a powerful antioxidant source. Arab J Chem. 5, 489–499. http://dx.doi.org/10.1016/j.arabjc.2010.09.016 Gülcin I. 2006. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicol. 217, 213–220. http://dx.doi.org/10.1016/j.tox.2005.09.011 PMid:16243424 Hamedo HA, Abdelmigid HM. 2009. Use of antimicrobial and genotoxicity potentiality for evaluation of essential oils as food preservatives. Open Biotechnol. J. 3, 50–56. http://dx.doi.org/10.2174/1874070700903010050 Jo JU, Park S, Parki Y, Chae YZ, Lee GH, Park GY, Jang BC. 2012. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells. Inter. J. Oncol. 40, 1238–1245. PMid:22086183 PMCid:PMC3584576 Jordan MJ, Maria VL, Rota C, Loran S, Sotomayor JA. 2013. Effect of bioclimatic area on the essential oil composition and antibacterial activity of Rosmarinus officinalis L. Food Control 30, 463–468. http://dx.doi.org/10.1016/j.foodcont.2012.07.029 Lamaty G, Menut C, Bessiere JM, Zollo JM, Fekam PHA. 1987. Aromatic plants of tropical Central Africa: I. Volatile components of two annonaceae from Cameroon: Xylopia aethiopica (Dunal) A. Richard and Monodora myristica (Gaerth.) Dunal. Flavour. Frag. J. 2, 91–94. http://dx.doi.org/10.1002/ffj.2730020302 Lee KG, Shibamoto T. 2001. Antioxidant property of aroma extract isolated from clove buds Syzygium aromaticum. Food Chem. 74, 443–448. http://dx.doi.org/10.1016/S0308-8146(01)00161-3 Lesjak MM, Beara IN, Orcic DZ, Anackov GT, Balog KJ, Franci‰kovic MM. 2011. Juniperus sibirica Burgs dorf. as a novel source of antioxidant and anti-inflammatory agents. Food Chem. 124, 850–856. http://dx.doi.org/10.1016/j.foodchem.2010.07.006 Matsuo AL, Figueiredo CR, Arruda DC, Pereira FV, Scutti JAB, Massaoka MH, Travassos LR, Sartorelli P, Lago JHG. 2011. £\-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun. 411, 449–454. http://dx.doi.org/10.1016/j.bbrc.2011.06.176 PMid:21756878 Nikoli M, Glamo J, Isabel C, Ferreira FR, Calhelha RC, Fernandes Â, Markovi T, Markovi D, Giweli A, Sokovi M. 2014. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crop Prod. 52, 183–190. http://dx.doi.org/10.1016/j.indcrop.2013.10.006 Orav J, Koel M, Kailas T, Mu.u.rise M. 2010. Comparative analysis of the composition of essential oils and supercritical carbon dioxide extracts from the berries and needles of Estonian juniper (Juniperus communis L.). Procedia Chem. 2, 161–167. http://dx.doi.org/10.1016/j.proche.2009.12.023 Paul S, De Castro AJ, Lee HJ, Smolarek AK, So JY, Simi B, Wang CX, Zhou R, Rimando AM, Suh N. 2010. Dietary intake of pterostilbene, a constituent of blue berries, inhibits the b-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis 31, 1272–1278. http://dx.doi.org/10.1093/carcin/bgq004 PMid:20061362 PMCid:PMC2899944 Pepeljnjak S, Kosalec I, Kalodera Z, Blazevic N. 2005. Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae). ActaPharmaceut. 55, 417–422. Pisano M, Pagnan G, Loi M, Mura ME, Tilocca MG, Palmieri G, Fabbri D, Dettori MA, Delogu G. 2007. Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol. Cancer 8, 234–242. Prashar A, Locke IC, Evans CS. 2006. Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Proliferat. 39, 241–248. http://dx.doi.org/10.1111/j.1365-2184.2006.00384.x PMid:16872360 Ramadan MM, Abd-Algader NN, El-kamali HH, Ghanem KZ, Farrag AH. 2013a. Volatile compounds and antioxidant activity of the aromatic herb Anethum graveolens. J. Arab Soc. Medical Res. 8, 79–88. http://dx.doi.org/10.4103/1687-4293.123791 Ramadan MM, Abd Algader NN, El-kamali HH, Ghanem KZ, Farrag AH. 2013b. Chemo preventive effect of Coriandrum sativum fruits on hepatic toxicity in male rats. World J. Med. Sci. 8, 322–333. Ramadan MM, Yehia HA, Shaheen MS, Abed EL, Fattah MS. 2014. Aroma volatiles, antibacterial, antifungal and antioxidant properties of essential oils obtained from some spices widely consumed in Egypt. American-Eurasian J. Agric. Environ. Sci. 14, 486–494. Rosato A, Vitali C, Gallo D, Balenrano L, Mallamaci R. 2008. The inhibition of Candida albicans by selected essential oils and their synergism with amphotericin-B. Phytomed. 15, 635–638. http://dx.doi.org/10.1016/j.phymed.2008.05.001 PMid:18579358 Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. 1990. New colorimetric cytotoxicity assay for anticancerdrug screening. J. Nat. Cancer Instit. 82, 1107–1112. http://dx.doi.org/10.1093/jnci/82.13.1107 PMid:2359136 Teixeira B, Marques A, Ramos C, Neng NR, Nogueir JMF, Saraiva JA, Nunes ML. 2013. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crop Prod. 43, 587–595. http://dx.doi.org/10.1016/j.indcrop.2012.07.069 Tsukamoto Y, Fukutani S, Takeuchi S, Okamoto T, Mori M. 1989. Some phenolic compounds stimulate the proliferation of human pulpal fibroblasts. Shika Kiso Igakkai Zasshi 31, 357–362. http://dx.doi.org/10.2330/joralbiosci1965.31.357 PMid:2519277 Wang W, Li N, Luo M, Zu Y, Efferth T. 2012. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 17, 2704–2713. http://dx.doi.org/10.3390/molecules17032704 PMid:22391603 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1545 doi:10.3989/gya.0955142 Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Grasas y Aceites; Vol. 66 No. 2 (2015); e080 Grasas y Aceites; Vol. 66 Núm. 2 (2015); e080 1988-4214 0017-3495 10.3989/gya.2015.v66.i2 Anticancer Antioxidant Clove Juniper Thyme Anticancerígeno Antioxidante Clavo Enebro Tomillo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjgya https://doi.org/10.3989/gya.0955142 https://doi.org/10.3989/gya.2015.v66.i2 https://doi.org/10.1590/S0100-879X2007001100014 https://doi.org/10.3923/ijcr.2007.103.110 https://doi.org/10.1074/jbc.M408177200 https://doi.org/10.1016/j.bcp.2005.02.02 2022-03-10T18:38:00Z Inhibitors of tumor growth using extracts from aromatic plants are rapidly emerging as important new drug candidates for cancer therapy. The cytotoxicity and in vitro anticancer evaluation of the essential oils from thyme, juniper and clove has been assessed against five different human cancer cell lines (liver HepG2, breast MCF-7, prostate PC3, colon HCT116 and lung A549). A GC/MS analysis revealed that α-pinene, thymol and eugenol are the major components of Egyptian juniper, thyme and clove oils with concentrations of 31.19%, 79.15% and 82.71%, respectively. Strong antioxidant profiles of all the oils are revealed in vitro by DPPH and β-carotene bleaching assays. The results showed that clove oil was similarly potent to the reference drug, doxorubicin in prostate, colon and lung cell lines. Thyme oil was more effective than the doxorubicin in breast and lung cell lines while juniper oil was more effective than the doxorubicin in all the tested cancer cell lines except prostate cancer. In conclusion, the essential oils from Egyptian aromatic plants can be used as good candidates for novel therapeutic strategies for cancer as they possess significant anticancer activity. Los inhibidores de crecimiento de tumores usando extractos de plantas aromáticas están emergiendo con rapidez como nuevos e importantes medicamentos para el tratamiento del cáncer. La citotoxicidad y la acción anticancerígena in vitro de aceites esenciales de tomillo, enebro y clavo han sido evaluadas en cinco líneas celulares de cáncer humano (hígado HepG2, mama MCF-7, próstata PC3, colon HCT116 y pulmón A549). Los análisis de GC/MS mostraron que α-pineno, timol y eugenol son los principales componentes de los aceites egipcios de enebro, tomillo y clavo, con concentraciones de 31,19%, 79,15% y 82,71%, respectivamente. Se demuestra, mediante ensayos in vitro de blanqueo de DPPH y β-caroteno, el enérgico perfil antioxidante de todos los aceites. Los resultados mostraron que el aceite de clavo fue similar de potente al fármaco de referencia, doxorrubicina en las líneas celulares de próstata, colon y pulmón. El aceite de tomillo fue más efectivo que la doxorrubicina en las líneas celulares de mama y de pulmón, mientras que el aceite de enebro fue más eficaz que la doxorrubicina en todas las líneas celulares de cáncer ensayados, excepto en la de cáncer de próstata. En conclusión, los aceites esenciales de plantas aromáticas egipcias se pueden utilizar como buenos candidatos para nuevas estrategias terapéuticas para el cáncer al poseer una significativa actividad anticancerígena. Article in Journal/Newspaper Sibirica Grasas y Aceites (E-Journal) Clavo ENVELOPE(-60.833,-60.833,-63.667,-63.667) Referencia Grasas y Aceites 66 2 e080