Olive oil glycerolysis with an immobilized lipase Candida antarctica in a solvent free system

In the present work, the solvent free lipase glycerolysis of olive oil for the production of monoglyceride (MG) and diglyceride (DG) with an immobilized Lipase B Candida antarctica was studied. The experiments were performed in batch mode by varying different process parameters. The Results showed t...

Full description

Bibliographic Details
Published in:Grasas y Aceites
Main Authors: Singh, A. K., Mukhopadhyay, M.
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2012
Subjects:
Online Access:https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1368
https://doi.org/10.3989/gya.094811
id ftjgya:oai:grasasyaceites.revistas.csic.es:article/1368
record_format openpolar
institution Open Polar
collection Grasas y Aceites (E-Journal)
op_collection_id ftjgya
language English
topic Glycerolysis
Glycerol
Lipase
Lipase B Candida Antarctica
Monoglyceride
Olive oil
Aceite de oliva
Diglicerido
Glicerina
Glicerolisis
Lipasa
Lipasa B Candida Antarctica
Monoglicérido
spellingShingle Glycerolysis
Glycerol
Lipase
Lipase B Candida Antarctica
Monoglyceride
Olive oil
Aceite de oliva
Diglicerido
Glicerina
Glicerolisis
Lipasa
Lipasa B Candida Antarctica
Monoglicérido
Singh, A. K.
Mukhopadhyay, M.
Olive oil glycerolysis with an immobilized lipase Candida antarctica in a solvent free system
topic_facet Glycerolysis
Glycerol
Lipase
Lipase B Candida Antarctica
Monoglyceride
Olive oil
Aceite de oliva
Diglicerido
Glicerina
Glicerolisis
Lipasa
Lipasa B Candida Antarctica
Monoglicérido
description In the present work, the solvent free lipase glycerolysis of olive oil for the production of monoglyceride (MG) and diglyceride (DG) with an immobilized Lipase B Candida antarctica was studied. The experiments were performed in batch mode by varying different process parameters. The Results showed that the MG and DG yields were dependent on operating conditions such as time, temperature, glycerol/ oil molar ratio, enzyme concentration and the water content in glycerol. The optimum operating time for maximum MG, 26 wt% and DG, 30 wt% production was 3h. The initial reaction rate was studied by varying different process parameters for 1h. The initial reaction rate increased at 30 °C temperature, 2:1 glycerol/oil molar ratio, 3.5% (w/w) water content in glycerol and 0.015g of enzyme loading. Comparative data for MG and DG yields for different oils and enzyme combinations were presented. En el presente trabajo se ha estudiado la glicerolisis sin disolvente de aceites de oliva para la producción de monoglicéridos (MG) y diglicéridos (DG), con la lipasa inmovilizada Candida antarctica. Los experimentos fueron realizados por lotes, variando distintos parámetros del proceso. Los resultados mostraron que los rendimientos de MG y DG dependen de las condiciones de operación como el tiempo, la temperatura, la relación molar glycerol/aceite, la concentración de la enzima y del contenido en agua del glicerol. El tiempo óptimo de la operación fue de 3h para un rendimiento máximo en peso del 26% de MG, y del 30% de la producción en peso de DG. La velocidad de reacción inicial ha sido estudiada variando los diferentes parámetros del proceso durante 1h. La velocidad de reacción aumenta a la temperatura de 30 °C, con una relación molar 2:1 glicerina/aceite, un contenido de agua en glicerol de 3,5% (w/w) y una carga de enzima de 0.015g. Se presentan datos comparativos de redimientos de MG y DG para diferentes aceites y combinaciones de enzima.
format Article in Journal/Newspaper
author Singh, A. K.
Mukhopadhyay, M.
author_facet Singh, A. K.
Mukhopadhyay, M.
author_sort Singh, A. K.
title Olive oil glycerolysis with an immobilized lipase Candida antarctica in a solvent free system
title_short Olive oil glycerolysis with an immobilized lipase Candida antarctica in a solvent free system
title_full Olive oil glycerolysis with an immobilized lipase Candida antarctica in a solvent free system
title_fullStr Olive oil glycerolysis with an immobilized lipase Candida antarctica in a solvent free system
title_full_unstemmed Olive oil glycerolysis with an immobilized lipase Candida antarctica in a solvent free system
title_sort olive oil glycerolysis with an immobilized lipase candida antarctica in a solvent free system
publisher Consejo Superior de Investigaciones Científicas
publishDate 2012
url https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1368
https://doi.org/10.3989/gya.094811
long_lat ENVELOPE(-60.783,-60.783,-62.450,-62.450)
geographic Oliva
geographic_facet Oliva
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_source Grasas y Aceites; Vol. 63 No. 2 (2012); 202-208
Grasas y Aceites; Vol. 63 Núm. 2 (2012); 202-208
1988-4214
0017-3495
10.3989/gya.2012.v63.i2
op_relation https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1368/1366
Berger M, Schneider MP. 1992. Enzymatic esterification of glycerol II. Lipase-catalyzed synthesis of regioisomerically pure 1(3)-rac-monoacylglycerols. J. Am. Oil Chem. Soc. 69, 961-965. http://dx.doi.org/10.1007/BF02541058
Blasi F, Cossignani L, Simonetti MS, Damiani,P. 2007. Biocatalysed synthesis of sn-1,3-diacylglycerol oil from extra virgin olive oil. Enzyme Microb. Technol. 41, 727-732. http://dx.doi.org/10.1016/j.enzmictec.2007.06.005
Cao SG, Gao XG, Zhang KE. 1996. Enzymatic preparation of monoglycerides via glycerolvsis of fats and oils catalyzed by lipase from Pseudomonas species. Ann. NY. Acad. Sci. 799, 670-677. http://dx.doi.org/10.1111/j.1749-6632.1996.tb33272.x
Coteron A, Martinez M, Aracil J. 1998. Reactions of olive oil and glycerol over immobilized lipases. J. Am. Oil Chem. Soc. 75, 657-660. http://dx.doi.org/10.1007/s11746-998-0080-1
Damstrup ML, Jensen T, Sparsø FV, Kiil SZ, Jensen AD, Xu X. 2005. Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction. J. Am. Oil Chem. Soc. 82, 559- 564. http://dx.doi.org/10.1007/s11746-005-1109-y
Damstrup ML, Jensena T, Sparsø FV, Kiil SZ, Jensen AD, Xu X. 2006a. Production of heat-sensitive monoacylglycerols by enzymatic glycerolysis in tert-pentanol: process optimization by response surface methodology. J. Am. Oil Chem. Soc. 83, 27-33. http://dx.doi.org/10.1007/s11746-006-1171-5
Damstrup ML, Abildskov J, Kiil SZ, Jensen AD, Sparso FV, Xu X. 2006b. Evaluation of binary solvent mixtures for efficient monoacylglycerol production by continuous enzymatic glycerolysis. J. Agric. Food Chem. 54, 7113-7119. http://dx.doi.org/10.1021/jf061365r PMid:16968070
Elfman-Borjesson I, Harrod M. 1999. Synthesis of monoglycerides by glycerolysis of rapeseed oil using immobilized lipase. J. Am. Oil Chem. Soc. 76, 701- 707. http://dx.doi.org/10.1007/s11746-999-0162-8
Ferreira-Dias S, Fonseca MMR. 1995. Production of monoglycerides by glycerolysis of olive oil with immobilized lipases: effect of the water activity. Bioprocess. Eng. 12, 327-337. http://dx.doi.org/10.1007/BF00369510
Ferreira-Dias S, Correia AC, Baptista FO, Fonseca MMR. 2001. Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases. J. Mol. Catal. B: Enzym. 11, 699-711. http://dx.doi.org/10.1016/S1381-1177(00)00079-5
Firestone D. 2005. Olive oil. Bailey’s Industrial Oil and Fat Products. United States Food and Drug Administration. John Wiley & Sons, Inc. New York, USA.
Fregolente PBL, Fregolente LV, Pinto GMF, Batistella BC, Wolf-Maciel MR, Filho RM. 2008. Monoglycerides and diglycerides synthesis in a solvent-free system by lipase-catalyzed glycerolysis. Appl. Biochem. Biotechnol. 146, 165-172. http://dx.doi.org/10.1007/s12010-008-8133-3 PMid:18421596
Fregolente PBL, Pinto GMF, Wolf-Maciel MR, Filho RM. 2010. Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Appl. Biochem. Biotechnol. 160, 1879-1887. http://dx.doi.org/10.1007/s12010-009-8822-6 PMid:19862491
Garcia HS, Yang B, Parkin KL. 1996. Continuous reactor for enzymatic glycerolysis of butter oil in the absence of solvent. Food Res. Int. 28, 605-609. http://dx.doi.org/10.1016/0963-9969(95)00051-8
Ghamgui H, Miled N, Rehai A, Karra-Chaabouni M, Gargouri Y. 2006. Production of mono-olein by immobilized Staphylococcus simulans lipase in a solvent-free system: optimization by response surface methodology. Enzyme Microb. Technol. 39, 717-723. http://dx.doi.org/10.1016/j.enzmictec.2005.12.014
Guo Z, Xu X. 2006. Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: a further study on the reaction system. Green Chem. 8, 54-62. http://dx.doi.org/10.1039/b511117j
Jackson MA, King JW. 1997. Lipase-catalyzed glycerolysis of soybean oil in supercritical carbon dioxide. J. Am. Oil Chem. Soc. 74,103-106. http://dx.doi.org/10.1007/s11746-997-0152-7
Kaewthong W, H-Kittikun A. 2004. Glycerolysis of palm olein by immobilized lipase PS in organic solvents. Enzyme Microb. Technol. 35, 218-222. http://dx.doi.org/10.1016/j.enzmictec.2004.04.011
Kaewthong W, Sirisansaneeyakul S, Prasertsan P, H-Kittikun A. 2005. Continuous production of monoacylglycerols by glycerolysis of palm olein by immobilized lipase. Process Biochem. 40, 1525-1530. http://dx.doi.org/10.1016/j.procbio.2003.12.002
Kasamatsu T, Ogura R, Ikeda N, Motita O, Saigo K, Watabe H, Saito Y, Suzuki H. 2005. Genotoxicity studies on dietary diacylglycerol (DAG) oil. Food Chem. Toxicol. 43, 253-260. http://dx.doi.org/10.1016/j.fct.2004.10.001 PMid:15621338
Langone MAP, De Abreu ME, Rezende MJC, Sant’AnnaJr, GL. 2002. Enzymatic synthesis of medium chain monoglycerides in a solvent-free system. Appl. Biochem. Biotechnol. 98, 987-996. http://dx.doi.org/10.1385/ABAB:98-100:1-9:987
McNeill GP, Yamane T. 1991. Further improvements in the yield of monoglycerides during enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68, 6-10. http://dx.doi.org/10.1007/BF02660299
McNeill GP, Shimizu S, Yamane, T. 1991.High-yield enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68, 1-5. http://dx.doi.org/10.1007/BF02660298
Nagao T, Watanabe H, Gotoh N, Onizawa K, Taguchi H, Matsuo N, Yasukawa T, Tsushima R, Shimasaki H, Itakura H. 2000. Dietary diacylglycerol suppress accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. J. Nutr. 130, 792-797. PMid:10736331
Noureddini H, Harkey DW, Gutsmanc MR. 2004. A continuous process for the glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 81, 203-207. http://dx.doi.org/10.1007/s11746-004-0882-y
Pawongrat R, Xu X, H-Kittikun A. 2007. Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chem. 104, 251-258. http://dx.doi.org/10.1016/j.foodchem.2006.11.036
Stevenson DE, Stanley RA, Furneaux RH. 1993. Glycerolysis of tallow with immobilized lipase. Biotechnol. Lett. 15, 1043-1048. http://dx.doi.org/10.1007/BF00129935
Tüter M, Aksoy HA. 2000. Solvent-free glycerolysis of palm and palm kernel oils catalyzed by commercial1, 3-specific lipase from Humicolalanuginosa and composition of glycerolysis products. Biotechnol. Lett. 22, 31-34. http://dx.doi.org/10.1023/A:1005604406705
Valério A, Kruger RL, Ninow J, Corazza FC, Oliveira DD, Oliveira JV, Corazza ML. 2009. Kinetics of solventfree lipase-catalyzed glycerolysis of olive oil in surfactant system. J. Agric. Food Chem. 57, 8350-8356. http://dx.doi.org/10.1021/jf901771m PMid:19708657
Valério A, Rovani S, Treichel H, de Oliveira D, Oliveira JV. 2010. Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioprocess Biosyst. Eng. 33, 805-812. http://dx.doi.org/10.1007/s00449-009-0402-1 PMid:20091052
Wongsakul S, Prasertsan P, Bornscheuer UT, H-Kittikun A. 2003. Synthesis of 2-monoglycerides by alcoholysis of palm oil and tuna oil using immobilized lipases. Eur. J. Lipid Sci. Technol. 105, 68-73. http://dx.doi.org/10.1002/ejlt.200390019
Yamane T, Hoq MM, Itoh S, Shimizu S. 1986. Glycerolysis of Fat by Lipase.J. Jpn.Oil Chem.Soc. 35, 625-631. http://dx.doi.org/10.5650/jos1956.35.625
Yamane T, Kang ST, Kawahara K, Koizumi Y. 1994. High yield diacylglycerol formation by solid-phase enzymatic glycerolysis of hydrogenated beef tallow. J. Am. Oil Chem. Soc. 71, 339-342. http://dx.doi.org/10.1007/BF02638064
Yang T, Rebsdorf M, Engelrud U, Xu X. 2005. Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system. J. Food Lipids, 12, 299-312. http://dx.doi.org/10.1111/j.1745-4522.2005.00025.x
Zaher FA, Aly SM, and El-Kinawy OS.1998. Lipasecatalyzed glycerolysis of sunflower oil to produce partial glycerides. Grasas Aceites. 49, 411-414. http://dx.doi.org/10.3989/gya.1998.v49.i5-6.750
Zeng F, Yang B, Wang Y, Wang W, Ning Z, Li L. 2010. Enzymatic Production of Monoacylglycerols with Camellia Oil by the Glycerolysis Reaction. J. Am. Oil Chem. Soc. 87, 531-537. http://dx.doi.org/10.1007/s11746-009-1533-x
Zhong N, Li L, Xu X, Cheong L, Li B, Hu S, Zhao X. 2009. An efficient binary solvent mixture for monoacylglycerol synthesis by enzymatic glycerolysis. J. Am. Oil Chem. Soc. 86, 783-789. http://dx.doi.org/10.1007/s11746-009-1402-7
https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1368
doi:10.3989/gya.094811
op_rights Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/gya.094811
https://doi.org/10.3989/gya.2012.v63.i2
https://doi.org/10.1007/BF02541058
https://doi.org/10.1016/j.enzmictec.2007.06.005
https://doi.org/10.1111/j.1749-6632.1996.tb33272.x
https://doi.org/10.1007/s11746-998-0
container_title Grasas y Aceites
container_volume 63
container_issue 2
container_start_page 202
op_container_end_page 208
_version_ 1766013169502781440
spelling ftjgya:oai:grasasyaceites.revistas.csic.es:article/1368 2023-05-15T13:30:50+02:00 Olive oil glycerolysis with an immobilized lipase Candida antarctica in a solvent free system Glicerolisis de aceites de oliva mediante lipasa inmovilizada Candida antarctica en sistema libre de solventes Singh, A. K. Mukhopadhyay, M. 2012-06-30 application/pdf https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1368 https://doi.org/10.3989/gya.094811 eng eng Consejo Superior de Investigaciones Científicas https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1368/1366 Berger M, Schneider MP. 1992. Enzymatic esterification of glycerol II. Lipase-catalyzed synthesis of regioisomerically pure 1(3)-rac-monoacylglycerols. J. Am. Oil Chem. Soc. 69, 961-965. http://dx.doi.org/10.1007/BF02541058 Blasi F, Cossignani L, Simonetti MS, Damiani,P. 2007. Biocatalysed synthesis of sn-1,3-diacylglycerol oil from extra virgin olive oil. Enzyme Microb. Technol. 41, 727-732. http://dx.doi.org/10.1016/j.enzmictec.2007.06.005 Cao SG, Gao XG, Zhang KE. 1996. Enzymatic preparation of monoglycerides via glycerolvsis of fats and oils catalyzed by lipase from Pseudomonas species. Ann. NY. Acad. Sci. 799, 670-677. http://dx.doi.org/10.1111/j.1749-6632.1996.tb33272.x Coteron A, Martinez M, Aracil J. 1998. Reactions of olive oil and glycerol over immobilized lipases. J. Am. Oil Chem. Soc. 75, 657-660. http://dx.doi.org/10.1007/s11746-998-0080-1 Damstrup ML, Jensen T, Sparsø FV, Kiil SZ, Jensen AD, Xu X. 2005. Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction. J. Am. Oil Chem. Soc. 82, 559- 564. http://dx.doi.org/10.1007/s11746-005-1109-y Damstrup ML, Jensena T, Sparsø FV, Kiil SZ, Jensen AD, Xu X. 2006a. Production of heat-sensitive monoacylglycerols by enzymatic glycerolysis in tert-pentanol: process optimization by response surface methodology. J. Am. Oil Chem. Soc. 83, 27-33. http://dx.doi.org/10.1007/s11746-006-1171-5 Damstrup ML, Abildskov J, Kiil SZ, Jensen AD, Sparso FV, Xu X. 2006b. Evaluation of binary solvent mixtures for efficient monoacylglycerol production by continuous enzymatic glycerolysis. J. Agric. Food Chem. 54, 7113-7119. http://dx.doi.org/10.1021/jf061365r PMid:16968070 Elfman-Borjesson I, Harrod M. 1999. Synthesis of monoglycerides by glycerolysis of rapeseed oil using immobilized lipase. J. Am. Oil Chem. Soc. 76, 701- 707. http://dx.doi.org/10.1007/s11746-999-0162-8 Ferreira-Dias S, Fonseca MMR. 1995. Production of monoglycerides by glycerolysis of olive oil with immobilized lipases: effect of the water activity. Bioprocess. Eng. 12, 327-337. http://dx.doi.org/10.1007/BF00369510 Ferreira-Dias S, Correia AC, Baptista FO, Fonseca MMR. 2001. Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases. J. Mol. Catal. B: Enzym. 11, 699-711. http://dx.doi.org/10.1016/S1381-1177(00)00079-5 Firestone D. 2005. Olive oil. Bailey’s Industrial Oil and Fat Products. United States Food and Drug Administration. John Wiley & Sons, Inc. New York, USA. Fregolente PBL, Fregolente LV, Pinto GMF, Batistella BC, Wolf-Maciel MR, Filho RM. 2008. Monoglycerides and diglycerides synthesis in a solvent-free system by lipase-catalyzed glycerolysis. Appl. Biochem. Biotechnol. 146, 165-172. http://dx.doi.org/10.1007/s12010-008-8133-3 PMid:18421596 Fregolente PBL, Pinto GMF, Wolf-Maciel MR, Filho RM. 2010. Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Appl. Biochem. Biotechnol. 160, 1879-1887. http://dx.doi.org/10.1007/s12010-009-8822-6 PMid:19862491 Garcia HS, Yang B, Parkin KL. 1996. Continuous reactor for enzymatic glycerolysis of butter oil in the absence of solvent. Food Res. Int. 28, 605-609. http://dx.doi.org/10.1016/0963-9969(95)00051-8 Ghamgui H, Miled N, Rehai A, Karra-Chaabouni M, Gargouri Y. 2006. Production of mono-olein by immobilized Staphylococcus simulans lipase in a solvent-free system: optimization by response surface methodology. Enzyme Microb. Technol. 39, 717-723. http://dx.doi.org/10.1016/j.enzmictec.2005.12.014 Guo Z, Xu X. 2006. Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: a further study on the reaction system. Green Chem. 8, 54-62. http://dx.doi.org/10.1039/b511117j Jackson MA, King JW. 1997. Lipase-catalyzed glycerolysis of soybean oil in supercritical carbon dioxide. J. Am. Oil Chem. Soc. 74,103-106. http://dx.doi.org/10.1007/s11746-997-0152-7 Kaewthong W, H-Kittikun A. 2004. Glycerolysis of palm olein by immobilized lipase PS in organic solvents. Enzyme Microb. Technol. 35, 218-222. http://dx.doi.org/10.1016/j.enzmictec.2004.04.011 Kaewthong W, Sirisansaneeyakul S, Prasertsan P, H-Kittikun A. 2005. Continuous production of monoacylglycerols by glycerolysis of palm olein by immobilized lipase. Process Biochem. 40, 1525-1530. http://dx.doi.org/10.1016/j.procbio.2003.12.002 Kasamatsu T, Ogura R, Ikeda N, Motita O, Saigo K, Watabe H, Saito Y, Suzuki H. 2005. Genotoxicity studies on dietary diacylglycerol (DAG) oil. Food Chem. Toxicol. 43, 253-260. http://dx.doi.org/10.1016/j.fct.2004.10.001 PMid:15621338 Langone MAP, De Abreu ME, Rezende MJC, Sant’AnnaJr, GL. 2002. Enzymatic synthesis of medium chain monoglycerides in a solvent-free system. Appl. Biochem. Biotechnol. 98, 987-996. http://dx.doi.org/10.1385/ABAB:98-100:1-9:987 McNeill GP, Yamane T. 1991. Further improvements in the yield of monoglycerides during enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68, 6-10. http://dx.doi.org/10.1007/BF02660299 McNeill GP, Shimizu S, Yamane, T. 1991.High-yield enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68, 1-5. http://dx.doi.org/10.1007/BF02660298 Nagao T, Watanabe H, Gotoh N, Onizawa K, Taguchi H, Matsuo N, Yasukawa T, Tsushima R, Shimasaki H, Itakura H. 2000. Dietary diacylglycerol suppress accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. J. Nutr. 130, 792-797. PMid:10736331 Noureddini H, Harkey DW, Gutsmanc MR. 2004. A continuous process for the glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 81, 203-207. http://dx.doi.org/10.1007/s11746-004-0882-y Pawongrat R, Xu X, H-Kittikun A. 2007. Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chem. 104, 251-258. http://dx.doi.org/10.1016/j.foodchem.2006.11.036 Stevenson DE, Stanley RA, Furneaux RH. 1993. Glycerolysis of tallow with immobilized lipase. Biotechnol. Lett. 15, 1043-1048. http://dx.doi.org/10.1007/BF00129935 Tüter M, Aksoy HA. 2000. Solvent-free glycerolysis of palm and palm kernel oils catalyzed by commercial1, 3-specific lipase from Humicolalanuginosa and composition of glycerolysis products. Biotechnol. Lett. 22, 31-34. http://dx.doi.org/10.1023/A:1005604406705 Valério A, Kruger RL, Ninow J, Corazza FC, Oliveira DD, Oliveira JV, Corazza ML. 2009. Kinetics of solventfree lipase-catalyzed glycerolysis of olive oil in surfactant system. J. Agric. Food Chem. 57, 8350-8356. http://dx.doi.org/10.1021/jf901771m PMid:19708657 Valério A, Rovani S, Treichel H, de Oliveira D, Oliveira JV. 2010. Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioprocess Biosyst. Eng. 33, 805-812. http://dx.doi.org/10.1007/s00449-009-0402-1 PMid:20091052 Wongsakul S, Prasertsan P, Bornscheuer UT, H-Kittikun A. 2003. Synthesis of 2-monoglycerides by alcoholysis of palm oil and tuna oil using immobilized lipases. Eur. J. Lipid Sci. Technol. 105, 68-73. http://dx.doi.org/10.1002/ejlt.200390019 Yamane T, Hoq MM, Itoh S, Shimizu S. 1986. Glycerolysis of Fat by Lipase.J. Jpn.Oil Chem.Soc. 35, 625-631. http://dx.doi.org/10.5650/jos1956.35.625 Yamane T, Kang ST, Kawahara K, Koizumi Y. 1994. High yield diacylglycerol formation by solid-phase enzymatic glycerolysis of hydrogenated beef tallow. J. Am. Oil Chem. Soc. 71, 339-342. http://dx.doi.org/10.1007/BF02638064 Yang T, Rebsdorf M, Engelrud U, Xu X. 2005. Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system. J. Food Lipids, 12, 299-312. http://dx.doi.org/10.1111/j.1745-4522.2005.00025.x Zaher FA, Aly SM, and El-Kinawy OS.1998. Lipasecatalyzed glycerolysis of sunflower oil to produce partial glycerides. Grasas Aceites. 49, 411-414. http://dx.doi.org/10.3989/gya.1998.v49.i5-6.750 Zeng F, Yang B, Wang Y, Wang W, Ning Z, Li L. 2010. Enzymatic Production of Monoacylglycerols with Camellia Oil by the Glycerolysis Reaction. J. Am. Oil Chem. Soc. 87, 531-537. http://dx.doi.org/10.1007/s11746-009-1533-x Zhong N, Li L, Xu X, Cheong L, Li B, Hu S, Zhao X. 2009. An efficient binary solvent mixture for monoacylglycerol synthesis by enzymatic glycerolysis. J. Am. Oil Chem. Soc. 86, 783-789. http://dx.doi.org/10.1007/s11746-009-1402-7 https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1368 doi:10.3989/gya.094811 Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Grasas y Aceites; Vol. 63 No. 2 (2012); 202-208 Grasas y Aceites; Vol. 63 Núm. 2 (2012); 202-208 1988-4214 0017-3495 10.3989/gya.2012.v63.i2 Glycerolysis Glycerol Lipase Lipase B Candida Antarctica Monoglyceride Olive oil Aceite de oliva Diglicerido Glicerina Glicerolisis Lipasa Lipasa B Candida Antarctica Monoglicérido info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2012 ftjgya https://doi.org/10.3989/gya.094811 https://doi.org/10.3989/gya.2012.v63.i2 https://doi.org/10.1007/BF02541058 https://doi.org/10.1016/j.enzmictec.2007.06.005 https://doi.org/10.1111/j.1749-6632.1996.tb33272.x https://doi.org/10.1007/s11746-998-0 2022-03-10T18:37:47Z In the present work, the solvent free lipase glycerolysis of olive oil for the production of monoglyceride (MG) and diglyceride (DG) with an immobilized Lipase B Candida antarctica was studied. The experiments were performed in batch mode by varying different process parameters. The Results showed that the MG and DG yields were dependent on operating conditions such as time, temperature, glycerol/ oil molar ratio, enzyme concentration and the water content in glycerol. The optimum operating time for maximum MG, 26 wt% and DG, 30 wt% production was 3h. The initial reaction rate was studied by varying different process parameters for 1h. The initial reaction rate increased at 30 °C temperature, 2:1 glycerol/oil molar ratio, 3.5% (w/w) water content in glycerol and 0.015g of enzyme loading. Comparative data for MG and DG yields for different oils and enzyme combinations were presented. En el presente trabajo se ha estudiado la glicerolisis sin disolvente de aceites de oliva para la producción de monoglicéridos (MG) y diglicéridos (DG), con la lipasa inmovilizada Candida antarctica. Los experimentos fueron realizados por lotes, variando distintos parámetros del proceso. Los resultados mostraron que los rendimientos de MG y DG dependen de las condiciones de operación como el tiempo, la temperatura, la relación molar glycerol/aceite, la concentración de la enzima y del contenido en agua del glicerol. El tiempo óptimo de la operación fue de 3h para un rendimiento máximo en peso del 26% de MG, y del 30% de la producción en peso de DG. La velocidad de reacción inicial ha sido estudiada variando los diferentes parámetros del proceso durante 1h. La velocidad de reacción aumenta a la temperatura de 30 °C, con una relación molar 2:1 glicerina/aceite, un contenido de agua en glicerol de 3,5% (w/w) y una carga de enzima de 0.015g. Se presentan datos comparativos de redimientos de MG y DG para diferentes aceites y combinaciones de enzima. Article in Journal/Newspaper Antarc* Antarctica Grasas y Aceites (E-Journal) Oliva ENVELOPE(-60.783,-60.783,-62.450,-62.450) Grasas y Aceites 63 2 202 208