The Tikiusaaq carbonatite: a new Mesozoic intrusive complex in southern West Greenland

Ultrabasic alkaline magmatic rocks are products of melts generated deep within or at the base of the lithospheric mantle. The magmas may reach the surface to form lavas and pyroclastic deposits; alternatively they crystallise at depth to form dykes or central complexes. The rocks are chemically dist...

Full description

Bibliographic Details
Published in:Geological Survey of Denmark and Greenland (GEUS) Bulletin
Main Authors: Steenfelt, Agnete, Hollis, Julie A., Secher, Karsten
Format: Article in Journal/Newspaper
Language:English
Published: Geological Survey of Denmark and Greenland (GEUS) 2006
Subjects:
Online Access:https://geusbulletin.org/index.php/geusb/article/view/4905
https://doi.org/10.34194/geusb.v10.4905
id ftjgeusbullet:oai:geusjournals.org:article/4905
record_format openpolar
spelling ftjgeusbullet:oai:geusjournals.org:article/4905 2023-05-15T16:26:35+02:00 The Tikiusaaq carbonatite: a new Mesozoic intrusive complex in southern West Greenland Steenfelt, Agnete Hollis, Julie A. Secher, Karsten 2006-11-29 application/pdf https://geusbulletin.org/index.php/geusb/article/view/4905 https://doi.org/10.34194/geusb.v10.4905 eng eng Geological Survey of Denmark and Greenland (GEUS) https://geusbulletin.org/index.php/geusb/article/view/4905/10573 https://geusbulletin.org/index.php/geusb/article/view/4905 doi:10.34194/geusb.v10.4905 GEUS Bulletin; Vol. 10 (2006): Review of Survey activities 2005; 41-44 2597-2154 2597-2162 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Rapid Communication. Peer-reviewed Article. 2006 ftjgeusbullet https://doi.org/10.34194/geusb.v10.4905 2022-03-15T17:22:19Z Ultrabasic alkaline magmatic rocks are products of melts generated deep within or at the base of the lithospheric mantle. The magmas may reach the surface to form lavas and pyroclastic deposits; alternatively they crystallise at depth to form dykes or central complexes. The rocks are chemically distinct and may contain high concentrations of economically interesting minerals and chemical elements, such as diamonds, niobium, tantalum, rare earth elements, phosphorus, iron, uranium, thorium, and zirconium. Ultrabasic alkaline rocks are known from several provinces in Greenland, but extrusive facies have only been preserved at a few places; e.g. at Qassiarsuk in South Greenland where pyroclastic rocks occur, and in the Maniitsoq region, where a small volcanic breccia (‘Fossilik’) contains fragments of Palaeozoic limestone. Ultramafic lamprophyre and kimberlite are mainly emplaced as dykes, whereas carbonatite forms large intrusive bodies as well as dykes. The ultrabasic alkaline magmas that have been emplaced at certain times during the geological evolution of Greenland can be related to major episodes of continental break-up (Larsen & Rex 1992). The oldest are Archaean and the youngest dated so far are Palaeogene. Figure 1 shows the distribution of known ultrabasic alkaline rocks in West Greenland. The large and well-exposed bodies of alkaline rocks and carbonatites in the Gardar Province were discovered already in the early 1800s (Ussing 1912), while less conspicuous bodies were discovered much later during geological mapping and mineral exploration. Many alkaline rock bodies, particularly dykes, are difficult to identify in the field because they weather more extensively than the country rock gneisses and form vegetated depressions in the landscape. However, their distinct chemistry and mineralogy render alkaline rocks identifiable in geochemical and geophysical survey data. Thus, the Sarfartôq carbonatite complex was discovered during regional airborne gamma-spectrometric surveying owing to its elevated uranium and thorium contents (Secher 1986). The use of kimberlite indicator minerals has led to the discovery of alkaline rocks such as kimberlites and ultramafic lamprophyres that carry fragments of deep lithospheric mantle. Such rocks may also contain diamonds. Kimberlite indicator minerals are high-pressure varieties of minerals, such as garnet, clinopyroxene, chromite and ilmenite that were formed in the lithospheric mantle. Exploration companies have processed thousands of till samples from southern West Greenland for kimberlite indicator minerals and found many new dykes. Article in Journal/Newspaper Greenland Maniitsoq Qassiarsuk GEUS Bulletin (Geological Survey of Denmark and Greenland) Greenland Maniitsoq ENVELOPE(-55.217,-55.217,72.967,72.967) Geological Survey of Denmark and Greenland (GEUS) Bulletin 10 41 44
institution Open Polar
collection GEUS Bulletin (Geological Survey of Denmark and Greenland)
op_collection_id ftjgeusbullet
language English
description Ultrabasic alkaline magmatic rocks are products of melts generated deep within or at the base of the lithospheric mantle. The magmas may reach the surface to form lavas and pyroclastic deposits; alternatively they crystallise at depth to form dykes or central complexes. The rocks are chemically distinct and may contain high concentrations of economically interesting minerals and chemical elements, such as diamonds, niobium, tantalum, rare earth elements, phosphorus, iron, uranium, thorium, and zirconium. Ultrabasic alkaline rocks are known from several provinces in Greenland, but extrusive facies have only been preserved at a few places; e.g. at Qassiarsuk in South Greenland where pyroclastic rocks occur, and in the Maniitsoq region, where a small volcanic breccia (‘Fossilik’) contains fragments of Palaeozoic limestone. Ultramafic lamprophyre and kimberlite are mainly emplaced as dykes, whereas carbonatite forms large intrusive bodies as well as dykes. The ultrabasic alkaline magmas that have been emplaced at certain times during the geological evolution of Greenland can be related to major episodes of continental break-up (Larsen & Rex 1992). The oldest are Archaean and the youngest dated so far are Palaeogene. Figure 1 shows the distribution of known ultrabasic alkaline rocks in West Greenland. The large and well-exposed bodies of alkaline rocks and carbonatites in the Gardar Province were discovered already in the early 1800s (Ussing 1912), while less conspicuous bodies were discovered much later during geological mapping and mineral exploration. Many alkaline rock bodies, particularly dykes, are difficult to identify in the field because they weather more extensively than the country rock gneisses and form vegetated depressions in the landscape. However, their distinct chemistry and mineralogy render alkaline rocks identifiable in geochemical and geophysical survey data. Thus, the Sarfartôq carbonatite complex was discovered during regional airborne gamma-spectrometric surveying owing to its elevated uranium and thorium contents (Secher 1986). The use of kimberlite indicator minerals has led to the discovery of alkaline rocks such as kimberlites and ultramafic lamprophyres that carry fragments of deep lithospheric mantle. Such rocks may also contain diamonds. Kimberlite indicator minerals are high-pressure varieties of minerals, such as garnet, clinopyroxene, chromite and ilmenite that were formed in the lithospheric mantle. Exploration companies have processed thousands of till samples from southern West Greenland for kimberlite indicator minerals and found many new dykes.
format Article in Journal/Newspaper
author Steenfelt, Agnete
Hollis, Julie A.
Secher, Karsten
spellingShingle Steenfelt, Agnete
Hollis, Julie A.
Secher, Karsten
The Tikiusaaq carbonatite: a new Mesozoic intrusive complex in southern West Greenland
author_facet Steenfelt, Agnete
Hollis, Julie A.
Secher, Karsten
author_sort Steenfelt, Agnete
title The Tikiusaaq carbonatite: a new Mesozoic intrusive complex in southern West Greenland
title_short The Tikiusaaq carbonatite: a new Mesozoic intrusive complex in southern West Greenland
title_full The Tikiusaaq carbonatite: a new Mesozoic intrusive complex in southern West Greenland
title_fullStr The Tikiusaaq carbonatite: a new Mesozoic intrusive complex in southern West Greenland
title_full_unstemmed The Tikiusaaq carbonatite: a new Mesozoic intrusive complex in southern West Greenland
title_sort tikiusaaq carbonatite: a new mesozoic intrusive complex in southern west greenland
publisher Geological Survey of Denmark and Greenland (GEUS)
publishDate 2006
url https://geusbulletin.org/index.php/geusb/article/view/4905
https://doi.org/10.34194/geusb.v10.4905
long_lat ENVELOPE(-55.217,-55.217,72.967,72.967)
geographic Greenland
Maniitsoq
geographic_facet Greenland
Maniitsoq
genre Greenland
Maniitsoq
Qassiarsuk
genre_facet Greenland
Maniitsoq
Qassiarsuk
op_source GEUS Bulletin; Vol. 10 (2006): Review of Survey activities 2005; 41-44
2597-2154
2597-2162
op_relation https://geusbulletin.org/index.php/geusb/article/view/4905/10573
https://geusbulletin.org/index.php/geusb/article/view/4905
doi:10.34194/geusb.v10.4905
op_doi https://doi.org/10.34194/geusb.v10.4905
container_title Geological Survey of Denmark and Greenland (GEUS) Bulletin
container_volume 10
container_start_page 41
op_container_end_page 44
_version_ 1766015512567873536