Mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of Vanadzor (Armenia)

Mercury is a widespread environmental pollutant becoming a crucial health concern as a result of natural and anthropogenic releases. Understanding Hg distribution pattern between different functional urban areas is needed for urban pollution control and health impact assessment. Therefore, in this p...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Lilit Sahakyan, Gevorg Tepanosyan, Gayane Melkonyan, Nairuhi Maghakyan, Armen Saghatelyan
Other Authors: This research was done in the frames of a thematic state project “Assessment of mercury contamination risks in Armenia's area” № 15T-1E017 financed by the State Committee for Science MES RA.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2019
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/918
https://doi.org/10.24057/2071-9388-2019-121
id ftjges:oai:oai.gesj.elpub.ru:article/918
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic Mercury;Soil pollution;Urban functional area;health risk;kindergartens
spellingShingle Mercury;Soil pollution;Urban functional area;health risk;kindergartens
Lilit Sahakyan
Gevorg Tepanosyan
Gayane Melkonyan
Nairuhi Maghakyan
Armen Saghatelyan
Mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of Vanadzor (Armenia)
topic_facet Mercury;Soil pollution;Urban functional area;health risk;kindergartens
description Mercury is a widespread environmental pollutant becoming a crucial health concern as a result of natural and anthropogenic releases. Understanding Hg distribution pattern between different functional urban areas is needed for urban pollution control and health impact assessment. Therefore, in this paper urban soil Hg spatial distribution, pollution level evaluation, and mercury-induced health risks were studied, for different urban functional areas (355 samples) and kindergartens (18 samples) of Vanadzor. Geospatial mapping and the geostatistical analysis suggest that Hg concentration in the entire area of Vanadzor and its kindergartens has a natural origin, besides a certain anthropogenic impact on some urban sites. According to geoaccumulation index (Igeo), uncontaminated or moderately contaminated levels were detected only in 2 samples from industrial area and 5 samples from residential area, the remaining samples were classified as uncontaminated. In all kindergartens and the 22.15 sq.km of the city (270 samples) are characterized by low level potential ecological risk, whereas 3.85 sq.km (85 samples) correspond to moderate and for 1 sampling site high level of potential ecological risk. A non-carcinogenic health risk assessed for children and adults indicates health hazards neither in Vanadzor entire areas nor in kindergartens. The hazard index (HI) in each urban functional area is less than allowable level (HI <1) for children and adults. Obtained results are indicative and offer the ability for better management of urban soil and urban planning in terms of Hg pollution regulation in different functional areas.
author2 This research was done in the frames of a thematic state project “Assessment of mercury contamination risks in Armenia's area” № 15T-1E017 financed by the State Committee for Science MES RA.
format Article in Journal/Newspaper
author Lilit Sahakyan
Gevorg Tepanosyan
Gayane Melkonyan
Nairuhi Maghakyan
Armen Saghatelyan
author_facet Lilit Sahakyan
Gevorg Tepanosyan
Gayane Melkonyan
Nairuhi Maghakyan
Armen Saghatelyan
author_sort Lilit Sahakyan
title Mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of Vanadzor (Armenia)
title_short Mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of Vanadzor (Armenia)
title_full Mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of Vanadzor (Armenia)
title_fullStr Mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of Vanadzor (Armenia)
title_full_unstemmed Mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of Vanadzor (Armenia)
title_sort mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of vanadzor (armenia)
publisher Russian Geographical Society
publishDate 2019
url https://ges.rgo.ru/jour/article/view/918
https://doi.org/10.24057/2071-9388-2019-121
genre Arctic
genre_facet Arctic
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 12, No 4 (2019); 252-271
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/918/427
Ajmone-Marsan F. and Biasioli M. (2010). Trace elements in soils of urban areas. Water Air Soil Pollut 1(4), 121–143, DOI:10.1007/s11270-010-0372-6
AMAP/UNEP (2013). Technical Background Report for the Global Mercury Assessment. Arctic Monitoringand Assessment Programme Oslo, Norway/UNEP ChemicalsBranch.
Alloway B. (2013). Heavy Metals in Soils Trace Metals and Metalloids in Soils and their Bioavailability Chapter 15 Mercury. In: Environmental Pollution 411-428, DOI:10.1007/978-94-007-4470-7_15
Barbieri M. (2016). The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J Geol Geophys 5(1) 1-4, DOI:10.4172/2381-8719.1000237
Beckers F., Rinklebe J. (2017). Cycling of Mercury in the Environment: Sources, Fate, and Human Health Implications -A Review. Crit Rev Environ Sci Technol 3389, DOI:10.1080/10643389.2017.1326277
Bernhoft R. (2012). Mercury toxicity and treatment: A review of the literature. J Environ Public Health 10., DOI:10.1155/2012/460508
Birke M. and Rauch U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area. Environ Geochem Health (22) 233–248. DOI:10.1023/A:1026554308673
Bityukova L., Shogenova A., Birke M. (2000). Urban geochemistry: A study of element distributions in the soils of Tallinn (Estonia). Environ Geochem Health 22, 173–193. DOI:10.1023/A:1006754326260
Butakov E V., Kuznetsov P V., Kholodova MS, Grebenshchikova VI (2017). Mercury in soils of the agro-industrial zone of Zima city (Irkutsk oblast). Eurasian Soil Sci 50, 1354–1361. DOI:10.1134/S1064229317110035
Chen X., Xia X., Wu S. et al (2010). Mercury in urban soils with various types of land use in Beijing, China. Environ Pollut 158, 48–54. DOI:10.1016/j.envpol.2009.08.028
Christoforidis A. and Stamatis N. (2009). Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 151, 257–263. DOI:10.1016/j.geoderma.2009.04.016
Crnković D., Ristić M., Antonović D. (2006). Distribution of heavy metals and arsenic in soils of Belgrade (Serbia and Montenegro). Soil Sediment Contam 15, 581–589. DOI:10.1080/15320380600959073
DEQ (2015). Remediation and Redevelopment Division Michigan Department of Environmental Quality Part 201 Generic Exposure Assumption Values Update Subjects:Technical support document. Michigan.
Driscoll T., Mason P., Chan M. et al (2013). Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ Sci Technol 47, 4967−4983. DOI:10.1021/es305071v
Fang F, Wang Q, Li J (2004). Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: Source, cycle, and fate. Sci Total Environ 330, 159–170. DOI:10.1016/j.scitotenv.2004.04.006
Golovin A. (2000). Assessment of damage to the environment from pollution by toxic metals. IMGRE (34):
Gray E, Theodorakos M, Fey L, Krabbenhoft P (2015). Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ Geochem Health 37, 35–48. DOI:10.1007/s10653-014-9628-1
Hakanson L (1980). An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14, 975–1001. DOI:10.1016/0043-1354(80)90143-8
Karakhanian A., Trifonov V, Philip H. et al (2004). Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran, Tectonophysics 380 (3-4) 189–219, DOI:10.1016/j.tecto.2003.09.020
Kelepertzis E, Argyraki A (2015). Mercury in the urban topsoil of Athens, Greece. Sustain. 7(4), 4049–4062. DOI:10.3390/su7044049
Kosheleva N, Kasimov N, Dorjgotov D et al (2010). Assessment of Heavy Metal Pollution of Soils in Industrial Cities of Mongolia, Geography, Environment, Sustainability; 3(2) 51-65. DOI:10.24057/2071-9388-2010-3-2-51-65
Kotova T.V., Malkhazova S.M., Tikunov V.S., Bandrova T (2017). Visualization of public health dynamics. Geography Environment Sustainability, 10 (4), 27–42. DOI:10.24057/2071-9388-2017-10-4-27-42
Kumar M, Gogoi A, Kumari D, et al (2017). Review of Perspective, Problems, Challenges, and Future Scenario of Metal Contamination in the Urban Environment. J Hazardous, Toxic, Radioact Waste, 21(4) 04017007-7, DOI:10.1061/(ASCE)HZ.2153-5515.0000351
Kumpiene J, Brännvall E (2011). Spatial variability of topsoil contamination with trace elements in preschools in Vilnius, Lithuania. J Geochemical Explor 108(1) 15–20. DOI:10.1016/J.GEXPLO.2010.08.003
Laker M. (2005). Urban soils: Land use, Land Cover and Land Sciences. In: Encyclopedia of Life Support Systems (EOLSS)
Li F, Zhang J, Jiang W, et al (2017). Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environ Geochem Health, 39 (4), 923–934. DOI:10.1007/s10653-016-9864-7.
Li P, Feng XB, Qiu GL, et al (2009). Mercury pollution in Asia: A review of the contaminated sites. J Hazard Mater 168, 591–601. DOI:10.1016/j.jhazmat.2009.03.031.
Li XH, Cheng HX, Zhao CD, Xu XB (2010). Mercury contamination in the topsoil and subsoil of urban areas of Beijing, China. Bull Environ Contam Toxicol. 85, 224–228 DOI:10.1007/s00128-010-0042-9
Lymberidi E (2005). Zero Mercury Key issues and policy recommendations for the EU Strategy on Mercury. European Environmental Bureau,UK,133.
Mamtani R, Stern P, Dawood I, Cheema S (2011). Metals and disease: a global primary health care perspective. J Toxicol 1-10, DOI:10.1155/2011/319136.
Manta D, Angelone M, Bellanca A (2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ, 300, 229–243.
McGrath D (1995) Organic micropollutant and trace element pollution of Irish soils. Sci Total Environ, 164(2), 125–133. DOI:10.1016/0048-9697(95)04451-6.
Mielke, H., Alexander J (2011). Children, soils, and health: how do polluted soils influence children’s health? In: Mapping the Chemical Environment of Urban Areas. Wiley-Blackwell, 134–150.
Moller K.M., Hartwell J.G., Simon-friedt B.R., et al (2018). Soil contaminant concentrations at urban agricultural sites in New Orleans , Louisiana : A comparison of two analytical methods. J Agric Food Syst Community Dev, 8(2), 139–149, DOI:10.5304/jafscd.2018.082.010.
Morton-Bermea O, Hernández-Álvarez E, Ordoñez-Godinez SL (2016). Mercury and other trace elements contamination of the urban area of Mexico City: Use of ficus benjamina as biomonitor.
Müller G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geo J 2, 108– 118.
Nazarpour A, Ghanavati N, Watts MJ (2017). Spatial distribution and human health risk assessment of mercury in street dust resulting from various land-use in Ahvaz, Iran. Environ Geochem Health 1–12. DOI:10.1007/s10653-017-0016-5.
Nazaryan G. (2009). Geo Alaverdi, Еnvironment and development of the city. Yerevan.
Nezhad K.(2014). Cadmium and mercury in topsoils of Babagorogor watershed, western Iran. In: Distribution, relationship with soil characteristics and multivariate analysis of contamination sources. Geoderma, 177–185. DOI:10.1016/j.geoderma.2013.12.021.
Pan L, Wang Y, Ma J, et al (2018). A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ Sci Pollut Res, (25), 1055–1069. DOI:10.1007/s11356-017-0513-1.
RAIS (2018) The Risk Assessment Information System Risk Exposure Models for Chemicals User’s Guide. Available at: https://rais.ornl.gov/tools/rais_chemical_risk_guide.html [Accessed 25 Nov. 2019]
Reimann C, de Caritat P (1998). Chemical Elements in the Environment. Springer Berlin Heidelberg.
Rice K, Walker E, Wu M. et al (2014). Environmental mercury and its toxic effects. J. Prev. Med. Public Heal. 47.
Rodrigues S, Pereira M. Duarte A. et al (2006) Mercury in urban soils: A comparison of local spatial variability in six European cities. Sci Total Environ 368 (2-3), 926–936. DOI:10.1016/j.scitotenv.2006.04.008
Saleem M (2014). Non-carcinogenic and carcinogenic health risk assessment of selected metals in soil around a natural water reservoir, Pakistan. Ecotoxicol Environ Saf, 108, 42–51. DOI:10.1016/j.ecoenv.2014.06.017.
Sastry R, Orlemann J, Koval P. (2001). Mercury Contamination from Metal Scrap Processing Facilities – A Study by Ohio EPA.
Selin NE (2009). Global Biogeochemical Cycling of Mercury: A Review Methylmercury: the toxic form of mercury, CH 3 Hg +. Annu. Rev. Environ. Resour 34, 43–63 DOI:10.1146/annurev.environ.051308.084314.
Soliman N, Nasr S, Okbah M. (2015). Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. J Environ Heal Sci Eng 13, 70. DOI:10.1186/s40201-015-0223-x.
State Committee of the Real Estate Cadastre (2007). Center of Geodesy and Cartography National Atlas of Armenia. Yerevan.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2019-121
https://doi.org/10.1007/s11270-010-0372-6
https://doi.org/10.1007/978-94-007-4470-7_15
https://doi.org/10.4172/2381-8719.1000237
https://doi.org/10.1080/10643389.2017.1326277
https://doi.org/10.1155/20
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 12
container_issue 4
container_start_page 252
op_container_end_page 271
_version_ 1766302631540555776
spelling ftjges:oai:oai.gesj.elpub.ru:article/918 2023-05-15T14:28:28+02:00 Mercury soil contents and associated ecological and health risks in kindergartens and functional areas of the city of Vanadzor (Armenia) Lilit Sahakyan Gevorg Tepanosyan Gayane Melkonyan Nairuhi Maghakyan Armen Saghatelyan This research was done in the frames of a thematic state project “Assessment of mercury contamination risks in Armenia's area” № 15T-1E017 financed by the State Committee for Science MES RA. 2019-12-31 application/pdf https://ges.rgo.ru/jour/article/view/918 https://doi.org/10.24057/2071-9388-2019-121 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/918/427 Ajmone-Marsan F. and Biasioli M. (2010). Trace elements in soils of urban areas. Water Air Soil Pollut 1(4), 121–143, DOI:10.1007/s11270-010-0372-6 AMAP/UNEP (2013). Technical Background Report for the Global Mercury Assessment. Arctic Monitoringand Assessment Programme Oslo, Norway/UNEP ChemicalsBranch. Alloway B. (2013). Heavy Metals in Soils Trace Metals and Metalloids in Soils and their Bioavailability Chapter 15 Mercury. In: Environmental Pollution 411-428, DOI:10.1007/978-94-007-4470-7_15 Barbieri M. (2016). The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J Geol Geophys 5(1) 1-4, DOI:10.4172/2381-8719.1000237 Beckers F., Rinklebe J. (2017). Cycling of Mercury in the Environment: Sources, Fate, and Human Health Implications -A Review. Crit Rev Environ Sci Technol 3389, DOI:10.1080/10643389.2017.1326277 Bernhoft R. (2012). Mercury toxicity and treatment: A review of the literature. J Environ Public Health 10., DOI:10.1155/2012/460508 Birke M. and Rauch U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area. Environ Geochem Health (22) 233–248. DOI:10.1023/A:1026554308673 Bityukova L., Shogenova A., Birke M. (2000). Urban geochemistry: A study of element distributions in the soils of Tallinn (Estonia). Environ Geochem Health 22, 173–193. DOI:10.1023/A:1006754326260 Butakov E V., Kuznetsov P V., Kholodova MS, Grebenshchikova VI (2017). Mercury in soils of the agro-industrial zone of Zima city (Irkutsk oblast). Eurasian Soil Sci 50, 1354–1361. DOI:10.1134/S1064229317110035 Chen X., Xia X., Wu S. et al (2010). Mercury in urban soils with various types of land use in Beijing, China. Environ Pollut 158, 48–54. DOI:10.1016/j.envpol.2009.08.028 Christoforidis A. and Stamatis N. (2009). Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 151, 257–263. DOI:10.1016/j.geoderma.2009.04.016 Crnković D., Ristić M., Antonović D. (2006). Distribution of heavy metals and arsenic in soils of Belgrade (Serbia and Montenegro). Soil Sediment Contam 15, 581–589. DOI:10.1080/15320380600959073 DEQ (2015). Remediation and Redevelopment Division Michigan Department of Environmental Quality Part 201 Generic Exposure Assumption Values Update Subjects:Technical support document. Michigan. Driscoll T., Mason P., Chan M. et al (2013). Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ Sci Technol 47, 4967−4983. DOI:10.1021/es305071v Fang F, Wang Q, Li J (2004). Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: Source, cycle, and fate. Sci Total Environ 330, 159–170. DOI:10.1016/j.scitotenv.2004.04.006 Golovin A. (2000). Assessment of damage to the environment from pollution by toxic metals. IMGRE (34): Gray E, Theodorakos M, Fey L, Krabbenhoft P (2015). Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ Geochem Health 37, 35–48. DOI:10.1007/s10653-014-9628-1 Hakanson L (1980). An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14, 975–1001. DOI:10.1016/0043-1354(80)90143-8 Karakhanian A., Trifonov V, Philip H. et al (2004). Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran, Tectonophysics 380 (3-4) 189–219, DOI:10.1016/j.tecto.2003.09.020 Kelepertzis E, Argyraki A (2015). Mercury in the urban topsoil of Athens, Greece. Sustain. 7(4), 4049–4062. DOI:10.3390/su7044049 Kosheleva N, Kasimov N, Dorjgotov D et al (2010). Assessment of Heavy Metal Pollution of Soils in Industrial Cities of Mongolia, Geography, Environment, Sustainability; 3(2) 51-65. DOI:10.24057/2071-9388-2010-3-2-51-65 Kotova T.V., Malkhazova S.M., Tikunov V.S., Bandrova T (2017). Visualization of public health dynamics. Geography Environment Sustainability, 10 (4), 27–42. DOI:10.24057/2071-9388-2017-10-4-27-42 Kumar M, Gogoi A, Kumari D, et al (2017). Review of Perspective, Problems, Challenges, and Future Scenario of Metal Contamination in the Urban Environment. J Hazardous, Toxic, Radioact Waste, 21(4) 04017007-7, DOI:10.1061/(ASCE)HZ.2153-5515.0000351 Kumpiene J, Brännvall E (2011). Spatial variability of topsoil contamination with trace elements in preschools in Vilnius, Lithuania. J Geochemical Explor 108(1) 15–20. DOI:10.1016/J.GEXPLO.2010.08.003 Laker M. (2005). Urban soils: Land use, Land Cover and Land Sciences. In: Encyclopedia of Life Support Systems (EOLSS) Li F, Zhang J, Jiang W, et al (2017). Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environ Geochem Health, 39 (4), 923–934. DOI:10.1007/s10653-016-9864-7. Li P, Feng XB, Qiu GL, et al (2009). Mercury pollution in Asia: A review of the contaminated sites. J Hazard Mater 168, 591–601. DOI:10.1016/j.jhazmat.2009.03.031. Li XH, Cheng HX, Zhao CD, Xu XB (2010). Mercury contamination in the topsoil and subsoil of urban areas of Beijing, China. Bull Environ Contam Toxicol. 85, 224–228 DOI:10.1007/s00128-010-0042-9 Lymberidi E (2005). Zero Mercury Key issues and policy recommendations for the EU Strategy on Mercury. European Environmental Bureau,UK,133. Mamtani R, Stern P, Dawood I, Cheema S (2011). Metals and disease: a global primary health care perspective. J Toxicol 1-10, DOI:10.1155/2011/319136. Manta D, Angelone M, Bellanca A (2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ, 300, 229–243. McGrath D (1995) Organic micropollutant and trace element pollution of Irish soils. Sci Total Environ, 164(2), 125–133. DOI:10.1016/0048-9697(95)04451-6. Mielke, H., Alexander J (2011). Children, soils, and health: how do polluted soils influence children’s health? In: Mapping the Chemical Environment of Urban Areas. Wiley-Blackwell, 134–150. Moller K.M., Hartwell J.G., Simon-friedt B.R., et al (2018). Soil contaminant concentrations at urban agricultural sites in New Orleans , Louisiana : A comparison of two analytical methods. J Agric Food Syst Community Dev, 8(2), 139–149, DOI:10.5304/jafscd.2018.082.010. Morton-Bermea O, Hernández-Álvarez E, Ordoñez-Godinez SL (2016). Mercury and other trace elements contamination of the urban area of Mexico City: Use of ficus benjamina as biomonitor. Müller G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geo J 2, 108– 118. Nazarpour A, Ghanavati N, Watts MJ (2017). Spatial distribution and human health risk assessment of mercury in street dust resulting from various land-use in Ahvaz, Iran. Environ Geochem Health 1–12. DOI:10.1007/s10653-017-0016-5. Nazaryan G. (2009). Geo Alaverdi, Еnvironment and development of the city. Yerevan. Nezhad K.(2014). Cadmium and mercury in topsoils of Babagorogor watershed, western Iran. In: Distribution, relationship with soil characteristics and multivariate analysis of contamination sources. Geoderma, 177–185. DOI:10.1016/j.geoderma.2013.12.021. Pan L, Wang Y, Ma J, et al (2018). A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ Sci Pollut Res, (25), 1055–1069. DOI:10.1007/s11356-017-0513-1. RAIS (2018) The Risk Assessment Information System Risk Exposure Models for Chemicals User’s Guide. Available at: https://rais.ornl.gov/tools/rais_chemical_risk_guide.html [Accessed 25 Nov. 2019] Reimann C, de Caritat P (1998). Chemical Elements in the Environment. Springer Berlin Heidelberg. Rice K, Walker E, Wu M. et al (2014). Environmental mercury and its toxic effects. J. Prev. Med. Public Heal. 47. Rodrigues S, Pereira M. Duarte A. et al (2006) Mercury in urban soils: A comparison of local spatial variability in six European cities. Sci Total Environ 368 (2-3), 926–936. DOI:10.1016/j.scitotenv.2006.04.008 Saleem M (2014). Non-carcinogenic and carcinogenic health risk assessment of selected metals in soil around a natural water reservoir, Pakistan. Ecotoxicol Environ Saf, 108, 42–51. DOI:10.1016/j.ecoenv.2014.06.017. Sastry R, Orlemann J, Koval P. (2001). Mercury Contamination from Metal Scrap Processing Facilities – A Study by Ohio EPA. Selin NE (2009). Global Biogeochemical Cycling of Mercury: A Review Methylmercury: the toxic form of mercury, CH 3 Hg +. Annu. Rev. Environ. Resour 34, 43–63 DOI:10.1146/annurev.environ.051308.084314. Soliman N, Nasr S, Okbah M. (2015). Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. J Environ Heal Sci Eng 13, 70. DOI:10.1186/s40201-015-0223-x. State Committee of the Real Estate Cadastre (2007). Center of Geodesy and Cartography National Atlas of Armenia. Yerevan. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 12, No 4 (2019); 252-271 2542-1565 2071-9388 Mercury;Soil pollution;Urban functional area;health risk;kindergartens info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjges https://doi.org/10.24057/2071-9388-2019-121 https://doi.org/10.1007/s11270-010-0372-6 https://doi.org/10.1007/978-94-007-4470-7_15 https://doi.org/10.4172/2381-8719.1000237 https://doi.org/10.1080/10643389.2017.1326277 https://doi.org/10.1155/20 2021-05-21T07:34:36Z Mercury is a widespread environmental pollutant becoming a crucial health concern as a result of natural and anthropogenic releases. Understanding Hg distribution pattern between different functional urban areas is needed for urban pollution control and health impact assessment. Therefore, in this paper urban soil Hg spatial distribution, pollution level evaluation, and mercury-induced health risks were studied, for different urban functional areas (355 samples) and kindergartens (18 samples) of Vanadzor. Geospatial mapping and the geostatistical analysis suggest that Hg concentration in the entire area of Vanadzor and its kindergartens has a natural origin, besides a certain anthropogenic impact on some urban sites. According to geoaccumulation index (Igeo), uncontaminated or moderately contaminated levels were detected only in 2 samples from industrial area and 5 samples from residential area, the remaining samples were classified as uncontaminated. In all kindergartens and the 22.15 sq.km of the city (270 samples) are characterized by low level potential ecological risk, whereas 3.85 sq.km (85 samples) correspond to moderate and for 1 sampling site high level of potential ecological risk. A non-carcinogenic health risk assessed for children and adults indicates health hazards neither in Vanadzor entire areas nor in kindergartens. The hazard index (HI) in each urban functional area is less than allowable level (HI <1) for children and adults. Obtained results are indicative and offer the ability for better management of urban soil and urban planning in terms of Hg pollution regulation in different functional areas. Article in Journal/Newspaper Arctic Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 12 4 252 271