Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling

This study compares three popular approaches to quantify the urban heat island (UHI) effect in Moscow megacity in a summer season (June-August 2015). The first approach uses the measurements of the near-surface air temperature obtained from weather stations, the second is based on remote sensing fro...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Mikhail Varentsov I., Mikhail Grishchenko Y., Hendrik Wouters
Other Authors: The major research (supercomputer modeling, processing of the satellite images, data management and analysis) performed by M.I. Varentsov and M.Yu. Grishchenko was funded by the grant program of Russian Science Foundation (project No. 17-77-20070 “An initial assessment and projection of the bioclimatic comfort in Russian cities in XXI century against the context of climate change”). The work of Hendrik Wouters (discussing and interpreting the results, participation in writing the paper) was funded by the European Research Council (ERC) under Grant Agreement No. 715254 (DRY–2–DRY). The research was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University. The authors are grateful to the administration and stuff of the Federal State Budgetary Institution “Central Administration of Hydrological and Environmental Monitoring” and to the administration and stuff of the Вudgetary Environmental Protection Institution “Mosecomonitoring” for providing the data of meteorological observations used in the study.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2019
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/903
https://doi.org/10.24057/2071-9388-2019-10
id ftjges:oai:oai.gesj.elpub.ru:article/903
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic urban heat island;UHI;SUHI;urban climate;mesoscale modelling;remote sensing;thermal satellite images;land surface temperature;Moscow;MODIS;COSMO
spellingShingle urban heat island;UHI;SUHI;urban climate;mesoscale modelling;remote sensing;thermal satellite images;land surface temperature;Moscow;MODIS;COSMO
Mikhail Varentsov I.
Mikhail Grishchenko Y.
Hendrik Wouters
Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling
topic_facet urban heat island;UHI;SUHI;urban climate;mesoscale modelling;remote sensing;thermal satellite images;land surface temperature;Moscow;MODIS;COSMO
description This study compares three popular approaches to quantify the urban heat island (UHI) effect in Moscow megacity in a summer season (June-August 2015). The first approach uses the measurements of the near-surface air temperature obtained from weather stations, the second is based on remote sensing from thermal imagery of MODIS satellites, and the third is based on the numerical simulations with the mesoscale atmospheric model COSMO-CLM coupled with the urban canopy scheme TERRA_URB. The first approach allows studying the canopy-layer UHI (CLUHI, or anomaly of a near- surface air temperature), while the second allows studying the surface UHI (SUHI, or anomaly of a land surface temperature), and both types of the UHI could be simulated by the atmospheric model. These approaches were compared in the daytime, evening and nighttime conditions. The results of the study highlight a substantial difference between the SUHI and CLUHI in terms of the diurnal variation and spatial structure. The strongest differences are found at the daytime, at which the SUHI reaches the maximal intensity (up to 10°С) whereas the CLUHI reaches the minimum intensity (1.5°С). However, there is a stronger consistency between CLUHU and SUHI at night, when their intensities converge to 5–6°С. In addition, the nighttime CLUHI and SUHI have similar monocentric spatial structure with a temperature maximum in the city center. The presented findings should be taken into account when interpreting and comparing the results of UHI studies, based on the different approaches. The mesoscale model reproduces the CLUHI-SUHI relationships and provides good agreement with in situ observations on the CLUHI spatiotemporal variations (with near-zero biases for daytime and nighttime CLUHI intensity and correlation coefficients more than 0.8 for CLUHI spatial patterns). However, the agreement of the simulated SUHI with the remote sensing data is lower than agreement of the simulated CLUHI with in situ measurements. Specifically, the model tends to overestimate the daytime SUHI intensity. These results indicate a need for further in-depth investigation of the model behavior and SUHI–CLUHI relationships in general.
author2 The major research (supercomputer modeling, processing of the satellite images, data management and analysis) performed by M.I. Varentsov and M.Yu. Grishchenko was funded by the grant program of Russian Science Foundation (project No. 17-77-20070 “An initial assessment and projection of the bioclimatic comfort in Russian cities in XXI century against the context of climate change”). The work of Hendrik Wouters (discussing and interpreting the results, participation in writing the paper) was funded by the European Research Council (ERC) under Grant Agreement No. 715254 (DRY–2–DRY). The research was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University. The authors are grateful to the administration and stuff of the Federal State Budgetary Institution “Central Administration of Hydrological and Environmental Monitoring” and to the administration and stuff of the Вudgetary Environmental Protection Institution “Mosecomonitoring” for providing the data of meteorological observations used in the study.
format Article in Journal/Newspaper
author Mikhail Varentsov I.
Mikhail Grishchenko Y.
Hendrik Wouters
author_facet Mikhail Varentsov I.
Mikhail Grishchenko Y.
Hendrik Wouters
author_sort Mikhail Varentsov I.
title Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling
title_short Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling
title_full Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling
title_fullStr Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling
title_full_unstemmed Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling
title_sort simultaneous assessment of the summer urban heat island in moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling
publisher Russian Geographical Society
publishDate 2019
url https://ges.rgo.ru/jour/article/view/903
https://doi.org/10.24057/2071-9388-2019-10
genre Arctic
genre_facet Arctic
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 12, No 4 (2019); 74-95
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/903/415
Baldina E. A., Grishchenko M. Yu. (2014). Interpretation of multi-temporal space imagery in thermal infrared band. Moscow University Vestnik. Series 5. Geography, 3, pp. 35-42 (in Russian with English summary).
Bohnenstengel S. I., Evans S., Clark P. A., and Belcher S. E. (2011). Simulations of the London urban heat island. Quarterly Journal of the Royal Meteorological Society, 137(659), pp. 1625–1640, DOI:10.1002/qj.855.
Buechley R. W., Van Bruggen J., and Truppi L. E. (1972). Heat island = death island? Environmental Research, 5(1), pp. 85–92, DOI:10.1016/0013-9351(72)90022-9.
Cheval S. and Dumitrescu A. (2015). The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images. Theoretical and Applied Climatology, 121(3–4), pp. 631–640, DOI:10.1007/s00704-014-1250-8.
Cheval S. and Dumitrescu A. (2017). Rapid daily and sub-daily temperature variations in an urban environment. Climate Research, 73(3), pp. 233–246. DOI:10.3354/cr01481.
Choi Y.-Y., Suh M.-S., and Park K.-H. (2014). Assessment of Surface Urban Heat Islands over Three Megacities in East Asia Using Land Surface Temperature Data Retrieved from COMS. Remote Sensing, 6(6), pp. 5852–5867, DOI:10.3390/rs6065852.
Chrysoulakis N., Grimmond S., Feigenwinter C., Lindberg F., Gastellu-Etchegorry J.-P., Marconcini M., Mitraka Z., Stagakis S., Crawford B., Olofson F., Landier L., Morrison W., and Parlow E. (2018). Urban energy exchanges monitoring from space. Scientific Reports, 8(1), p. 11498, DOI:10.1038/s41598-018-29873-x.
Cox W. (2018). Demographia World Urban Areas (World Agglomerations). Wendel Cox Consultancy, Illinois (14th Annual Edition). Belleville, Illinois. URL: http://www.demographia.com/db-worldua.pdf.
Davies M., Steadman P., and Oreszczyn T. (2008). Strategies for the modification of the urban climate and the consequent impact on building energy use. Energy Policy, 36(12), pp. 4548–4551, DOI:10.1016/j.enpol.2008.09.013.
Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C. M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Holm E. V., Isaksen L., Kållberg P., Köhler M., Matricardi M., Mcnally A. P., Monge-Sanz B. M., Morcrette J. J., Park B. K., Peubey C., de Rosnay P., Tavolato C., Thepaut J. N., and Vitart F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), pp. 553–597, DOI:10.1002/qj.828.
Doms G., Förstner J., Heise E., Herzog H.-J., Mironov D., Raschendorfer M., Reinhardt T., Ritter B., Schrodin R., Schulz J.-P., and Vogel G. (2011). A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization. Deutscher Wetterdienst.
Dousset B., Gourmelon F., Laaidi K., Zeghnoun A., Giraudet E., Bretin P., Mauri E., and Vandentorren S. (2011). Satellite monitoring of summer heat waves in the Paris metropolitan area. International Journal of Climatology, 31(2), pp. 313–323, DOI:10.1002/joc.2222.
Droste A. M., Steeneveld G. J., and Holtslag A. A. M. (2018). Introducing the urban wind island effect. Environmental Research Letters, 13(9), p. 94007. DOI:10.1088/1748-9326/aad8ef.
Emelina S. V., Konstantinov P. I., Malinina E. P., and Rubinshtein K. G. (2014). Evaluation of the informativeness of several biometeorological indices for three areas of the European part of Russia. Russian Meteorology and Hydrology, 39(7), pp. 448–457, DOI:10.3103/S1068373914070036.
Esau I. and Miles V. (2016). Warmer urban climates for development of green spaces in northern Siberian cities. Geography, Environment, Sustainability, 9(4), pp. 48–62, DOI:10.24057/2071-9388-2016-9-4-48-62.
Flanner M. G. (2009). Integrating anthropogenic heat flux with global climate models. Geophysical Research Letters, 36(2), L02801, DOI:10.1029/2008GL036465.
GCOS (2010). Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update). GCOS Rep. 138, 186 pp. URL: https://library.wmo.int/doc_num.php?explnum_id=3851.
Gornyy V. I., Lyalko V. I., Kritsuk S. G., Latypov I. S., Tronin A. A., Filippovich V. E., Stankevich S. A., Brovkina O. V., Kiselev A. V., Davidan T. A., Lubsky N. S., and Krylova A. B. (2016). Forecast of Saint-Petersburg and Kiev thermal replies on climate change (on the basis of EOS and Landsat satellite imagery). Current Problems in Remote Sensing of the Earth from Space, 13(2), pp. 176–191, DOI:10.21046/2070-7401-2016-13-2-176-191. (in Russian with English summary).
Grishchenko M. Y. and Ermilova Y. V. (2018). Mapping of the built-up areas of Russian Arctic biggest cities using satellite imagery of various spatial resolution. Geodesy and Cartography, 933(3), pp. 23–34, DOI:10.22389/0016-7126-2018-933-3-23-34. (in Russian with English summary).
Grishchenko M. Y. (2012). ETM+ thermal infrared imagery application for Moscow urban heat island study. Current Problems in Remote Sensing of the Earth from Space, 9(4), pp. 95–101. (in Russian with English summary).
Ho H. C., Knudby A., Xu Y., Hodul M., and Aminipouri M. (2016). A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area. Science of The Total Environment, 544, pp. 929–938, DOI:10.1016/j.scitotenv.2015.12.021.
Hu L., Brunsell N.A., Monaghan A.J., Barlage M., and Wilhelmi O.V. (2014). How can we use MODIS land surface temperature to validate long-term urban model simulations? Journal of Geophysical Research Atmospheres, 119(6), pp. 3185–3201, DOI:10.1002/2013JD021101.
Kislov A.V., ed. (2017). Climate of Moscow in conditions of global warming. Moscow, Russia: Publishing house of Moscow University. 288 pp. (in Russian).
Krayenhoff E. S., Moustaoui M., Broadbent A. M., Gupta V., and Georgescu M. (2018). Diurnal interaction between urban expansion, climate change and adaptation in US cities. Nature Climate Change, 8(12), pp. 1097–1103, DOI:10.1038/s41558-018-0320-9.
Konstantinov P. I., Grishchenko M. Y., and Varentsov M. I. (2015). Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast). Izvestiya -Atmospheric and Ocean Physics, 51(9), pp. 992–998, DOI:10.1134/S000143381509011X.
Konstantinov P., Varentsov M., and Esau I. (2018). A high density urban temperature network deployed in several cities of Eurasian Arctic. Environmental Research Letters, 13(7), p. 75007, DOI:10.1088/1748-9326/aacb84.
Lemonsu A. and Masson V. (2002). Simulation of a summer urban breeze over Paris. Boundary-Layer Meteorology, 104(3), pp. 463–490, DOI:10.1023/A:1016509614936.
Lokoshchenko M. A. (2014). Urban “heat island” in Moscow. Urban Climate, 10, Part 3, pp. 550–562, DOI:10.1016/j.uclim.2014.01.008.
Mariani L., Parisi S. G., Cola G., Lafortezza R., Colangelo G., and Sanesi G. (2016). Climatological analysis of the mitigating effect of vegetation on the urban heat island of Milan, Italy. Science of the Total Environment, 569–570, pp. 762–773, DOI:10.1016/j.scitotenv.2016.06.111.
Martilli A., Clappier A., and Rotach M. W. (2002). An urban surface exchange parameterization for mesoscale models. Boundary-Layer Meteorology, 104, pp. 261–304, DOI:10.1023/A:1016099921195.
Masson V. (2000). A physically based scheme for the urban energy budget in atmospheric models. Boundary Layer Meteorology, 94(3), pp. 357–397, DOI:10.1023/A:1002463829265.
Miles V. and Esau I. (2017). Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs) in Northern West Siberian Cities. Remote Sensing, 9(10), p. 989, DOI:10.3390/rs9100989.
Muller C.L., Chapman L., Grimmond C.S.B., Young D.T., and Cai X. (2013). Sensors and the city: A review of urban meteorological networks. International Journal of Climatology, 33(7), pp. 1585–1600, DOI:10.1002/joc.3678.
Oke T.R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), pp. 1–24, DOI:10.1002/qj.49710845502.
Oke T. R. (1987). Boundary layer climates (2nd ed.). Routledge. 435 pp.
Peng S., Piao S., Ciais P., Friedlingstein P., Ottle C., Bréon F.-M., Nan H., Zhou L., and Myneni R.B. (2012). Surface Urban Heat Island Across 419 Global Big Cities. Environmental Science and Technology, 46(2), pp. 696−703, DOI:10.1021/es301245j.
Peterson T.C. (2003). Assessment of Urban Versus Rural In Situ Surface Temperatures in the Contiguous United States: No Difference Found. Journal of Climate, 16(18), pp. 2941–2959, DOI:10.1175/1520-0442(2003)016<2941:AOUVRI>2.0.CO;2.
Rockel B., Will A., and Hense A. (2008). The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift, 17(4), pp. 347–348, DOI:10.1127/0941-2948/2008/0309.
Ryu Y.-H., and Baik J.-J. (2012). Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity. Journal of Applied Meteorology and Climatology, 51(5), pp. 842–854, DOI:10.1175/JAMC-D-11-098.1.
Samsonov T.E., Konstantinov P.I., and Varentsov M.I. (2015). Object-oriented approach to urban canyon analysis and its applications in meteorological modeling. Urban Climate, 13, pp. 122–139, DOI:10.1016/j.uclim.2015.07.007.
Samsonov T.E. and Trigub K. S. (2018). Mapping of local climate zones of Moscow city. Geodesy and Cartography, 936(6), pp. 4–25, DOI:10.22389/0016-7126-2018-936-6-14-25 (in Russian with English summary).
Shen H., Huang L., Zhang L., Wu P., and Zeng C. (2016). Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote Sensing of Environment, 172, 109–125, DOI:10.1016/j.rse.2015.11.005.
Sheng L., Tang X., You H., Gu Q., and Hu H. (2017). Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecological Indicators, 72, pp. 738–746, DOI:10.1016/j.ecolind.2016.09.009.
Sobrino J.A., Oltra-Carrió R., Sòria G., Bianchi R., and Paganini M. (2012). Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sensing of Environment, 117, pp. 50–56, DOI:10.1016/j.rse.2011.04.042.
Stewart I. D. and Kennedy C. A. (2017). Metabolic heat production by human and animal populations in cities. International Journal of Biometeorology, 61(7), pp. 1159–1171, DOI:10.1007/s00484-016-1296-7.
Stewart I.D. and Oke T.R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), pp. 1879–1900. DOI:10.1175/BAMS-D-11-00019.1.
Sun H., Chen Y., and Zhan W. (2015). Comparing surface-and canopy-layer urban heat islands over Beijing using MODIS data. International Journal of Remote Sensing, 36(21), pp. 5448–5465, DOI:10.1080/01431161.2015.1101504.
Tan J., Zheng Y., Tang X., Guo C., Li L., Song G., Zhen X., Yuan D., Kalkstein A. J., Li F., and Chen H. (2010a). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), pp. 75–84, DOI:10.1007/s00484-009-0256-x
Tan K.C., Lim H.S., MatJafri M.Z., and Abdullah K. (2010b). Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), pp. 1509–1521, DOI:10.1007/s12665-009-0286-z.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2019-10
https://doi.org/10.1002/qj.855
https://doi.org/10.1007/s00704-014-1250-8
https://doi.org/10.3354/cr01481
https://doi.org/10.3390/rs6065852
https://doi.org/10.1038/s41598-018-29873-x
https://doi.org/10
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 12
container_issue 4
container_start_page 74
op_container_end_page 95
_version_ 1766302545288888320
spelling ftjges:oai:oai.gesj.elpub.ru:article/903 2023-05-15T14:28:22+02:00 Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling Mikhail Varentsov I. Mikhail Grishchenko Y. Hendrik Wouters The major research (supercomputer modeling, processing of the satellite images, data management and analysis) performed by M.I. Varentsov and M.Yu. Grishchenko was funded by the grant program of Russian Science Foundation (project No. 17-77-20070 “An initial assessment and projection of the bioclimatic comfort in Russian cities in XXI century against the context of climate change”). The work of Hendrik Wouters (discussing and interpreting the results, participation in writing the paper) was funded by the European Research Council (ERC) under Grant Agreement No. 715254 (DRY–2–DRY). The research was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University. The authors are grateful to the administration and stuff of the Federal State Budgetary Institution “Central Administration of Hydrological and Environmental Monitoring” and to the administration and stuff of the Вudgetary Environmental Protection Institution “Mosecomonitoring” for providing the data of meteorological observations used in the study. 2019-12-30 application/pdf https://ges.rgo.ru/jour/article/view/903 https://doi.org/10.24057/2071-9388-2019-10 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/903/415 Baldina E. A., Grishchenko M. Yu. (2014). Interpretation of multi-temporal space imagery in thermal infrared band. Moscow University Vestnik. Series 5. Geography, 3, pp. 35-42 (in Russian with English summary). Bohnenstengel S. I., Evans S., Clark P. A., and Belcher S. E. (2011). Simulations of the London urban heat island. Quarterly Journal of the Royal Meteorological Society, 137(659), pp. 1625–1640, DOI:10.1002/qj.855. Buechley R. W., Van Bruggen J., and Truppi L. E. (1972). Heat island = death island? Environmental Research, 5(1), pp. 85–92, DOI:10.1016/0013-9351(72)90022-9. Cheval S. and Dumitrescu A. (2015). The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images. Theoretical and Applied Climatology, 121(3–4), pp. 631–640, DOI:10.1007/s00704-014-1250-8. Cheval S. and Dumitrescu A. (2017). Rapid daily and sub-daily temperature variations in an urban environment. Climate Research, 73(3), pp. 233–246. DOI:10.3354/cr01481. Choi Y.-Y., Suh M.-S., and Park K.-H. (2014). Assessment of Surface Urban Heat Islands over Three Megacities in East Asia Using Land Surface Temperature Data Retrieved from COMS. Remote Sensing, 6(6), pp. 5852–5867, DOI:10.3390/rs6065852. Chrysoulakis N., Grimmond S., Feigenwinter C., Lindberg F., Gastellu-Etchegorry J.-P., Marconcini M., Mitraka Z., Stagakis S., Crawford B., Olofson F., Landier L., Morrison W., and Parlow E. (2018). Urban energy exchanges monitoring from space. Scientific Reports, 8(1), p. 11498, DOI:10.1038/s41598-018-29873-x. Cox W. (2018). Demographia World Urban Areas (World Agglomerations). Wendel Cox Consultancy, Illinois (14th Annual Edition). Belleville, Illinois. URL: http://www.demographia.com/db-worldua.pdf. Davies M., Steadman P., and Oreszczyn T. (2008). Strategies for the modification of the urban climate and the consequent impact on building energy use. Energy Policy, 36(12), pp. 4548–4551, DOI:10.1016/j.enpol.2008.09.013. Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C. M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Holm E. V., Isaksen L., Kållberg P., Köhler M., Matricardi M., Mcnally A. P., Monge-Sanz B. M., Morcrette J. J., Park B. K., Peubey C., de Rosnay P., Tavolato C., Thepaut J. N., and Vitart F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), pp. 553–597, DOI:10.1002/qj.828. Doms G., Förstner J., Heise E., Herzog H.-J., Mironov D., Raschendorfer M., Reinhardt T., Ritter B., Schrodin R., Schulz J.-P., and Vogel G. (2011). A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization. Deutscher Wetterdienst. Dousset B., Gourmelon F., Laaidi K., Zeghnoun A., Giraudet E., Bretin P., Mauri E., and Vandentorren S. (2011). Satellite monitoring of summer heat waves in the Paris metropolitan area. International Journal of Climatology, 31(2), pp. 313–323, DOI:10.1002/joc.2222. Droste A. M., Steeneveld G. J., and Holtslag A. A. M. (2018). Introducing the urban wind island effect. Environmental Research Letters, 13(9), p. 94007. DOI:10.1088/1748-9326/aad8ef. Emelina S. V., Konstantinov P. I., Malinina E. P., and Rubinshtein K. G. (2014). Evaluation of the informativeness of several biometeorological indices for three areas of the European part of Russia. Russian Meteorology and Hydrology, 39(7), pp. 448–457, DOI:10.3103/S1068373914070036. Esau I. and Miles V. (2016). Warmer urban climates for development of green spaces in northern Siberian cities. Geography, Environment, Sustainability, 9(4), pp. 48–62, DOI:10.24057/2071-9388-2016-9-4-48-62. Flanner M. G. (2009). Integrating anthropogenic heat flux with global climate models. Geophysical Research Letters, 36(2), L02801, DOI:10.1029/2008GL036465. GCOS (2010). Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update). GCOS Rep. 138, 186 pp. URL: https://library.wmo.int/doc_num.php?explnum_id=3851. Gornyy V. I., Lyalko V. I., Kritsuk S. G., Latypov I. S., Tronin A. A., Filippovich V. E., Stankevich S. A., Brovkina O. V., Kiselev A. V., Davidan T. A., Lubsky N. S., and Krylova A. B. (2016). Forecast of Saint-Petersburg and Kiev thermal replies on climate change (on the basis of EOS and Landsat satellite imagery). Current Problems in Remote Sensing of the Earth from Space, 13(2), pp. 176–191, DOI:10.21046/2070-7401-2016-13-2-176-191. (in Russian with English summary). Grishchenko M. Y. and Ermilova Y. V. (2018). Mapping of the built-up areas of Russian Arctic biggest cities using satellite imagery of various spatial resolution. Geodesy and Cartography, 933(3), pp. 23–34, DOI:10.22389/0016-7126-2018-933-3-23-34. (in Russian with English summary). Grishchenko M. Y. (2012). ETM+ thermal infrared imagery application for Moscow urban heat island study. Current Problems in Remote Sensing of the Earth from Space, 9(4), pp. 95–101. (in Russian with English summary). Ho H. C., Knudby A., Xu Y., Hodul M., and Aminipouri M. (2016). A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area. Science of The Total Environment, 544, pp. 929–938, DOI:10.1016/j.scitotenv.2015.12.021. Hu L., Brunsell N.A., Monaghan A.J., Barlage M., and Wilhelmi O.V. (2014). How can we use MODIS land surface temperature to validate long-term urban model simulations? Journal of Geophysical Research Atmospheres, 119(6), pp. 3185–3201, DOI:10.1002/2013JD021101. Kislov A.V., ed. (2017). Climate of Moscow in conditions of global warming. Moscow, Russia: Publishing house of Moscow University. 288 pp. (in Russian). Krayenhoff E. S., Moustaoui M., Broadbent A. M., Gupta V., and Georgescu M. (2018). Diurnal interaction between urban expansion, climate change and adaptation in US cities. Nature Climate Change, 8(12), pp. 1097–1103, DOI:10.1038/s41558-018-0320-9. Konstantinov P. I., Grishchenko M. Y., and Varentsov M. I. (2015). Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast). Izvestiya -Atmospheric and Ocean Physics, 51(9), pp. 992–998, DOI:10.1134/S000143381509011X. Konstantinov P., Varentsov M., and Esau I. (2018). A high density urban temperature network deployed in several cities of Eurasian Arctic. Environmental Research Letters, 13(7), p. 75007, DOI:10.1088/1748-9326/aacb84. Lemonsu A. and Masson V. (2002). Simulation of a summer urban breeze over Paris. Boundary-Layer Meteorology, 104(3), pp. 463–490, DOI:10.1023/A:1016509614936. Lokoshchenko M. A. (2014). Urban “heat island” in Moscow. Urban Climate, 10, Part 3, pp. 550–562, DOI:10.1016/j.uclim.2014.01.008. Mariani L., Parisi S. G., Cola G., Lafortezza R., Colangelo G., and Sanesi G. (2016). Climatological analysis of the mitigating effect of vegetation on the urban heat island of Milan, Italy. Science of the Total Environment, 569–570, pp. 762–773, DOI:10.1016/j.scitotenv.2016.06.111. Martilli A., Clappier A., and Rotach M. W. (2002). An urban surface exchange parameterization for mesoscale models. Boundary-Layer Meteorology, 104, pp. 261–304, DOI:10.1023/A:1016099921195. Masson V. (2000). A physically based scheme for the urban energy budget in atmospheric models. Boundary Layer Meteorology, 94(3), pp. 357–397, DOI:10.1023/A:1002463829265. Miles V. and Esau I. (2017). Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs) in Northern West Siberian Cities. Remote Sensing, 9(10), p. 989, DOI:10.3390/rs9100989. Muller C.L., Chapman L., Grimmond C.S.B., Young D.T., and Cai X. (2013). Sensors and the city: A review of urban meteorological networks. International Journal of Climatology, 33(7), pp. 1585–1600, DOI:10.1002/joc.3678. Oke T.R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), pp. 1–24, DOI:10.1002/qj.49710845502. Oke T. R. (1987). Boundary layer climates (2nd ed.). Routledge. 435 pp. Peng S., Piao S., Ciais P., Friedlingstein P., Ottle C., Bréon F.-M., Nan H., Zhou L., and Myneni R.B. (2012). Surface Urban Heat Island Across 419 Global Big Cities. Environmental Science and Technology, 46(2), pp. 696−703, DOI:10.1021/es301245j. Peterson T.C. (2003). Assessment of Urban Versus Rural In Situ Surface Temperatures in the Contiguous United States: No Difference Found. Journal of Climate, 16(18), pp. 2941–2959, DOI:10.1175/1520-0442(2003)016<2941:AOUVRI>2.0.CO;2. Rockel B., Will A., and Hense A. (2008). The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift, 17(4), pp. 347–348, DOI:10.1127/0941-2948/2008/0309. Ryu Y.-H., and Baik J.-J. (2012). Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity. Journal of Applied Meteorology and Climatology, 51(5), pp. 842–854, DOI:10.1175/JAMC-D-11-098.1. Samsonov T.E., Konstantinov P.I., and Varentsov M.I. (2015). Object-oriented approach to urban canyon analysis and its applications in meteorological modeling. Urban Climate, 13, pp. 122–139, DOI:10.1016/j.uclim.2015.07.007. Samsonov T.E. and Trigub K. S. (2018). Mapping of local climate zones of Moscow city. Geodesy and Cartography, 936(6), pp. 4–25, DOI:10.22389/0016-7126-2018-936-6-14-25 (in Russian with English summary). Shen H., Huang L., Zhang L., Wu P., and Zeng C. (2016). Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote Sensing of Environment, 172, 109–125, DOI:10.1016/j.rse.2015.11.005. Sheng L., Tang X., You H., Gu Q., and Hu H. (2017). Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecological Indicators, 72, pp. 738–746, DOI:10.1016/j.ecolind.2016.09.009. Sobrino J.A., Oltra-Carrió R., Sòria G., Bianchi R., and Paganini M. (2012). Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sensing of Environment, 117, pp. 50–56, DOI:10.1016/j.rse.2011.04.042. Stewart I. D. and Kennedy C. A. (2017). Metabolic heat production by human and animal populations in cities. International Journal of Biometeorology, 61(7), pp. 1159–1171, DOI:10.1007/s00484-016-1296-7. Stewart I.D. and Oke T.R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), pp. 1879–1900. DOI:10.1175/BAMS-D-11-00019.1. Sun H., Chen Y., and Zhan W. (2015). Comparing surface-and canopy-layer urban heat islands over Beijing using MODIS data. International Journal of Remote Sensing, 36(21), pp. 5448–5465, DOI:10.1080/01431161.2015.1101504. Tan J., Zheng Y., Tang X., Guo C., Li L., Song G., Zhen X., Yuan D., Kalkstein A. J., Li F., and Chen H. (2010a). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), pp. 75–84, DOI:10.1007/s00484-009-0256-x Tan K.C., Lim H.S., MatJafri M.Z., and Abdullah K. (2010b). Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), pp. 1509–1521, DOI:10.1007/s12665-009-0286-z. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 12, No 4 (2019); 74-95 2542-1565 2071-9388 urban heat island;UHI;SUHI;urban climate;mesoscale modelling;remote sensing;thermal satellite images;land surface temperature;Moscow;MODIS;COSMO info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjges https://doi.org/10.24057/2071-9388-2019-10 https://doi.org/10.1002/qj.855 https://doi.org/10.1007/s00704-014-1250-8 https://doi.org/10.3354/cr01481 https://doi.org/10.3390/rs6065852 https://doi.org/10.1038/s41598-018-29873-x https://doi.org/10 2021-05-21T07:34:11Z This study compares three popular approaches to quantify the urban heat island (UHI) effect in Moscow megacity in a summer season (June-August 2015). The first approach uses the measurements of the near-surface air temperature obtained from weather stations, the second is based on remote sensing from thermal imagery of MODIS satellites, and the third is based on the numerical simulations with the mesoscale atmospheric model COSMO-CLM coupled with the urban canopy scheme TERRA_URB. The first approach allows studying the canopy-layer UHI (CLUHI, or anomaly of a near- surface air temperature), while the second allows studying the surface UHI (SUHI, or anomaly of a land surface temperature), and both types of the UHI could be simulated by the atmospheric model. These approaches were compared in the daytime, evening and nighttime conditions. The results of the study highlight a substantial difference between the SUHI and CLUHI in terms of the diurnal variation and spatial structure. The strongest differences are found at the daytime, at which the SUHI reaches the maximal intensity (up to 10°С) whereas the CLUHI reaches the minimum intensity (1.5°С). However, there is a stronger consistency between CLUHU and SUHI at night, when their intensities converge to 5–6°С. In addition, the nighttime CLUHI and SUHI have similar monocentric spatial structure with a temperature maximum in the city center. The presented findings should be taken into account when interpreting and comparing the results of UHI studies, based on the different approaches. The mesoscale model reproduces the CLUHI-SUHI relationships and provides good agreement with in situ observations on the CLUHI spatiotemporal variations (with near-zero biases for daytime and nighttime CLUHI intensity and correlation coefficients more than 0.8 for CLUHI spatial patterns). However, the agreement of the simulated SUHI with the remote sensing data is lower than agreement of the simulated CLUHI with in situ measurements. Specifically, the model tends to overestimate the daytime SUHI intensity. These results indicate a need for further in-depth investigation of the model behavior and SUHI–CLUHI relationships in general. Article in Journal/Newspaper Arctic Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 12 4 74 95