Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta

This study aims to evaluate the biofiltration ability of higher aquatic vegetation of the Selenga delta as a barrier for heavy metals and metalloids (HMM) flows into the Lake Baikal. Main aquatic vegetation species have been collected from deltaic channels and inner lakes: Nuphar pumila, Potamogeton...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: G. Shinkareva L., M. Lychagin Yu., M. Tarasov K., J. Pietroń, M. Chichaeva A., S. Chalov R.
Other Authors: Work was done with financial support of following grants: “Comprehensive assessment of the impact of the Selenga basin on Lake Baikal” (RGS, No. 06/2015-И),“Development of the atlasmonograph “The Selenga Basin: hydrological and landscape-geochemical analysis” (RGS, 13/2016-P), Spatio-temporal analysis of the migration of chemical elements and compounds in natural and anthropogenic landscapes” (No. 14-27-00083), RGS-RFBR “Geochemical barrier zones in freshwater river deltas of Russia” (No. 23/2017 / RGSRFBR), RFBR “Long-term river variability the influx of water, sediment and chemicals into Lake Baikal” (No. 17-29-05027). In addition, the work was supported by WSP Sverige AB (project K3502010). The field visits were also done as a part of expedition Selenga-Baikal and the Baikal expedition of the Russian Geographical Society in 2011-2018.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2019
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/827
https://doi.org/10.24057/2071-9388-2019-103
id ftjges:oai:oai.gesj.elpub.ru:article/827
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic biogeochemistry;deltaic environment;heavy metals and metalloids in aquatic systems;macrophytes;hyperspectral images
spellingShingle biogeochemistry;deltaic environment;heavy metals and metalloids in aquatic systems;macrophytes;hyperspectral images
G. Shinkareva L.
M. Lychagin Yu.
M. Tarasov K.
J. Pietroń
M. Chichaeva A.
S. Chalov R.
Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta
topic_facet biogeochemistry;deltaic environment;heavy metals and metalloids in aquatic systems;macrophytes;hyperspectral images
description This study aims to evaluate the biofiltration ability of higher aquatic vegetation of the Selenga delta as a barrier for heavy metals and metalloids (HMM) flows into the Lake Baikal. Main aquatic vegetation species have been collected from deltaic channels and inner lakes: Nuphar pumila, Potamogeton perfoliatus, P. pectinatus, P. natans, P. friesii, Butomus umbellatus, Myriophyllum spicatum, Ceratophyllum demersum, Phragmites australis. Analysis of the obtained data showed that regardless of the place of growth hydatophytes spiked water-milfoil (M. spicatum) and the fennel-leaved pondweed (P. pectinatus) most actively accumulate metals. Opposite tendencies were found for helophytes reed (Ph. australis) and flowering rush (B. umbellatus), which concentrate the least amount of elements. This supports previous findings that the ability to concentrate HMM increases in the series of surface – floating – submerged plants. Regarding river water, the studied macrophyte species are enriched with Mn and Co, regarding suspended matter – Mo, Mn and B, regarding bottom sediments – Mn, Mo and As. We identified two associations of chemical elements: S-association with the predominant suspended form of migration (Be, V, Co, Ni, W, Pb, Bi, Mn, Fe and Al) and D-association with the predominant dissolved form of migration (B, U, Mo, Cr, Cu, Zn, As, Cd, Sn and Sb). Due to these associations three groups of macrophytes were distinguished – flowering rush and reed with a low HMM content; small yellow pond-lily and common floating pondweed with a moderate accumulation of S-association and weak accumulation of D-association elements; and clasping-leaved pondweed, fennel-leaved pondweed, and pondweed Friesii accumulating elements of both S and D groups. The results suggest that macrophytes retain more than 60% of the total Mn flux that came into the delta, more than 10% – W, As, and from 3 to 10% B, Fe, Co, Mo, Cd, V, Ni, Bi, Be, Cu, Zn, Cr, U, Al. The largest contribution is made by the group of hydatophytes (spiked water-milfoil and pondweed), which account for 74 to 96% of the total mass of substances accumulated by aquatic plants.
author2 Work was done with financial support of following grants: “Comprehensive assessment of the impact of the Selenga basin on Lake Baikal” (RGS, No. 06/2015-И),“Development of the atlasmonograph “The Selenga Basin: hydrological and landscape-geochemical analysis” (RGS, 13/2016-P), Spatio-temporal analysis of the migration of chemical elements and compounds in natural and anthropogenic landscapes” (No. 14-27-00083), RGS-RFBR “Geochemical barrier zones in freshwater river deltas of Russia” (No. 23/2017 / RGSRFBR), RFBR “Long-term river variability the influx of water, sediment and chemicals into Lake Baikal” (No. 17-29-05027). In addition, the work was supported by WSP Sverige AB (project K3502010). The field visits were also done as a part of expedition Selenga-Baikal and the Baikal expedition of the Russian Geographical Society in 2011-2018.
format Article in Journal/Newspaper
author G. Shinkareva L.
M. Lychagin Yu.
M. Tarasov K.
J. Pietroń
M. Chichaeva A.
S. Chalov R.
author_facet G. Shinkareva L.
M. Lychagin Yu.
M. Tarasov K.
J. Pietroń
M. Chichaeva A.
S. Chalov R.
author_sort G. Shinkareva L.
title Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta
title_short Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta
title_full Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta
title_fullStr Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta
title_full_unstemmed Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta
title_sort biogeochemical specialization of macrophytes and their role as a biofilter in the selenga delta
publisher Russian Geographical Society
publishDate 2019
url https://ges.rgo.ru/jour/article/view/827
https://doi.org/10.24057/2071-9388-2019-103
genre Butomus umbellatus
genre_facet Butomus umbellatus
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 12, No 3 (2019); 240-263
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/827/394
Baldantoni D., Alfani A., Di Tommasi P., Bartoli G. and Virzo De Santo A. (2004). Assessment of macro and microelement accumulation capability of two aquatic plants. Environmental Pollution, 130, pp. 149-156. doi:10.1016/j.envpol.2003.12.015
Brekhovskikh V.F., Volkova Z.V. and Savenko A.V. (2009). Higher aquatic vegetation and accumulation processes in the delta of the river Volga. Arid ecosystems, 15(3(39)), pp. 34- 45. (In Russian)
Carbiener R., Trémolières M., Mercier J. L. and Ortscheit A. (1990). Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetatio, 86(1), pp. 71-88. doi:10.1007/BF00045135
Chalov S., Bazilova V. and Tarasov M. (2017). The balance of suspended sediment in the Selenga delta at the end of the 20th - beginning of the 21st centuries: modeling according to LANDSAT images. Water resources, 44(3), pp. 332-339. (In Russian). doi:10.7868/S0321059617030075
Chalov S., Jarsjö J., Kasimov N., Romanchenko A., Pietroń J., Thorslund J. and Promakhova E. (2015). Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environmental Earth Sciences, 72(2), pp. 663-680. doi:10.1007/s12665-014-3106-z
Chalov S., Thorslund J., Kasimov N., Aybullatov D., Ilyicheva E., Karthe D., Kositsky A., Lychagin M., Nittrouer J., Pavlov M., Pietron J., Shinkareva G., Tarasov M., Garmaev E., Akhtman Y. and Jarsjö J. (2017). The Selenga River delta: a geochemical barrier protecting Lake Baikal waters. Regional environmental change, 17(7), pp. 2039-2053. doi:10.1007/s10113-016-0996-1
Chaplin G. and Valentine J. (2009). Macroinvertebrate production in the submerged aquatic vegetation of the Mobile–Tensaw Delta: effects of an exotic species at the base of an estuarine food web. Estuaries and Coasts, 32(2), pp. 319-332. doi:10.1007/s12237-008-9117-9
Chepinoga V. (2012). Wetland vegetation database of Baikal Siberia (WETBS). Biodiversity & Ecology, 4, p. 311. doi:10.7809/b-e.00107
Chepinoga V. and Rosbach S. (2012). Aquatic vegetation of Lemnetea class on the territory of Baikal Siberia. Russian vegetation, 21, pp. 106-123. (In Russian)
Coops H., Hanganu J., Tudor M. and Oosterberg W. (1999). Classification of Danube Delta lakes based on aquatic vegetation and turbidity. Hydrobiologia, 415, pp. 187-191. doi:10.1023/A:1003856927865
Cubero-Castan M., Constantin D., Barbieux K., Nouchi V., Akhtman Y. and Merminod B. (2015). A new smoothness based strategy for semi-supervised atmospheric correction: application to the Léman-Baïkal campaign. 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, EPFL-CONF, pp. 1-4. doi:10.1109/WHISPERS.2015.8075379
Cui B., Tang N., Zhao X. and Bai J. (2009). A management-oriented valuation method to determine ecological water requirement for wetlands in the Yellow River Delta of China. Journal for Nature Conservation, 17(3), pp. 129-141. doi:10.1016/j.jnc.2009.01.003
Dgebuadze Y., Dorofeyuk N. and Krylov A. (2010). Contributions of Russian Scientists to the Research of Aquatic Ecosystems in Mongolia. Mongolian Journal of Biological Sciences, 8(1), pp. 59-69. doi:10.22353/mjbs.2010.08.07
Dong T., Il'icheva E., Nittrouer J. and Pavolv M. (2013). Morphology and sediment transport dynamics of the Selenga River delta, Lake Baikal, Russia. In AGU Fall Meeting Abstracts.
Favas P., Pratas J. and Prasad M. (2012). Accumulation of arsenic by aquatic plants in largescale field conditions: opportunities for phytoremediation and bioindication. Science of the Total Environment, 433, pp. 390-397. doi:10.1016/j.scitotenv.2012.06.091
Favas P., Pratas J., Varun M., D'Souza R. and Paul M. (2014). Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Science of the Total Environment, 470, pp. 993-1002. doi:10.1016/j.scitotenv.2013.10.067
Guittonny-Philippe A., Masotti V., Höhener P., Boudenne J., Viglione J. and Laffont-Schwob I. (2014). Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: A review to overcome obstacles and suggest potential solutions. Environment International, 64, pp. 1-16. doi:10.1016/j.envint.2013.11.016
Il'icheva E. (2015). Runoff in the river delta Selenga. Materials of the XV meeting of geographers of Siberia and the Far East. Ulan-Ude. Irkutsk: Institute of Geography named after V.B. Sochava SB RAS. pp. 91-93. (In Russian)
Iqbal I. (2010). The Bengal Delta: Ecology, state and social change, 1840–1943. Springer. Jarsjö J., Chalov S., Pietroń J., Alekseenko, A. and Thorslund, J. (2017). Patterns of soil contamination, erosion and river loading of metals in a gold mining region of northern Mongolia. Regional environmental change, 17(7), pp. 1991-2005. doi:10.1007/s10113-017-1169-6
Kabata-Pendias A. and Pendias H. (1984). Trace elements in soils and plants. Boca Raton: CRC Press.
Kasimov N., Kosheleva N., Lychagin M. et al. (2019). Environmental Atlas-monograph “Selenga-Baikal”. Moscow: Faculty of Geography, MSU. Available at: https://www.researchgate.net/publication/335567904_Environmental_Atlas-monograph_SelengaBaikal. (In Russian)
Katanskaya V. (1981). Higher aquatic vegetation of the continental reservoirs of the USSR. Study methods. Leningrad: Nauka. (In Russian)
Keskinkan O., Goksu M., Basibuyuk M. and Forster C. (2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 92 (2), pp. 197-200. doi:10.1016/j.biortech.2003.07.011
Khazheeva Z. and Pronin N. (2007). The influence of Canadian Elodea on the chemical composition of water and bottom sediments in the Selenga river delta. Bulletin of BSU, 3, pp. 177-179. (In Russian)
Khedr A. and El-Demerdash M. (1997). Distribution of aquatic plants in relation to environmental factors in the Nile Delta. Aquatic Botany, 56(1), pp. 75-86. doi:10.1016/S0304-3770(96)01090-X
Korytny L., Il’icheva E., Pavlov M. and Amosova I. (2012). Hydrologo-morphological approach to regionalization of the Selenga river basin. Geography and Natural Resources, 33(3), pp. 212-217. doi:10.1134/S1875372812030055
Kröger R., Moore M., Locke M., Cullum R., Steinriede Jr., R., Testa III S., Bryant C. and Cooper C. (2009). Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches. Agricultural Water Management, 96(7), pp. 1175-1179. doi:10.1016/j.agwat.2009.03.002
Lane C.R., Anenkhonov O., Liu H., Autrey B.C. and Chepinoga V. (2015). Classification and inventory of freshwater wetlands and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using high-resolution satellite imagery. Wetlands Ecology and Management, 23(2), pp. 195-214. doi:10.1007/s11273-014-9369-z
Leto C., Tuttolomondo T., La Bella S., Leone R. and Licata M. (2013). Effects of plant species in a horizontal subsurface flow constructed wetland–phytoremediation of treated urban wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy). Ecological Engineering, 61, pp. 282-291. doi:10.1016/j.ecoleng.2013.09.014
Lychagina N., Kasimov N. and Lychagin M. (1998). Biogeochemistry of macrophytes of the Volga delta. Moscow: Geography Department of Moscow State University. (In Russian)
Malsy M, Heinen M, aus der Beek T. and Flörke M. (2013). Water resources and socioeconomic development in a water scarce region on the example of Mongolia. Geo-Öko, 34 (1-2), pp. 27-49
Nepf H. (2012). Flow and transport in regions with aquatic vegetation. Annual review of fluid mechanics, 44, pp. 123-142. doi:10.1146/annurev-fluid-120710-101048
Outridge P. and Noller B. (1991). Accumulation of toxic trace elements by freshwater vascular plants. Reviews of Environmental Contamination and Toxicology. New York: Springer. doi:10.1007/978-1-4612-3196-7_1
Pakusina A., Platonova T., Lobarev S. and Smirenski S. (2018). Chemical and Ecological Characteristics of Lakes Located in the Muraviovka Park. Asian Journal of Water, Environment and Pollution, 15(4), pp. 27-34. doi:10.3233/AJW-180054
Patel D. and Kanungo V. (2010). Phytoremediation potential of duckweed (Lemna minor L. a tiny aquatic plant) in the removal of pollutants from domestic wastewater with special reference to nutrients. Bioscan, 5(3), pp. 355-358.
Pietroń J. (2017). Sediment transport from source to sink in the Lake Baikal basin: Impacts of hydroclimatic change and mining (Doctoral dissertation, Department of Physical Geography, Stockholm University).
Pietroń J., Chalov S., Chalova A., Alekseenko A. and Jarsjö J. (2017). Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin. Catena, 152, pp. 82-93. doi:10.1016/j.catena.2017.01.008
Pietroń J., Nittrouer J., Chalov S., Dong T., Kasimov N., Shinkareva G. and Jarsjö J. (2018). Sedimentation patterns in the Selenga River delta under changing hydroclimatic conditions. Hydrological processes, 32(2), pp. 278-292. doi:10.1002/hyp.11414
Quan W., Han J., Shen A., Ping X., Qian P., Li C., Shi L. and Chen Y. (2007). Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Marine Environmental Research, 64, pp. 21-37. doi:10.1016/j.marenvres.2006.12.005
Rai P. (2009). Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology, 39(9), pp. 697- 753. doi:10.1080/10643380801910058
Reay P. (1972). The accumulation of arsenic from arsenic-rich natural waters by aquatic plants. Journal of applied ecology, 9(2), pp. 557-565. doi:10.2307/2402453
Rogozin A. (1981). The history of the relief development of the Selenginsky coast zone of the Lake Baikal. Fishery value of the coastal zone of the Lake Baikal. Irkutsk. pp. 3-18. (In Russian)
Sawidis T., Chettri M., Papaionnou A., Zachariadis G. and Stratis J. (2001). A study of metal distribution from lignite fuels using trees as biological monitors. Ecotoxicology and Environmental Safety, 48, pp. 27-35. doi:10.1006/eesa.2000.2001
State report “The state of the Lake Baikal and measures for its protection in 2013”. (2014). Irkutsk: Siberian branch of the Federal State-Funded Scientific-Practical Enterprise “Rosgeolfond”. (In Russian)
Sviridenko B., Murashko Yu., Sviridenko T., Efremov A. and Tokar O. (2017). Content of heavy metals in ecotopes of hydromacrophytes of the West Siberian plain. Bulletin of Surgut State University, (4), pp. 81-96. (In Russian)
Sun H., Wang Z., Gao P. and Liu P. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta physiologiae plantarum, 35(2), pp. 355-364. doi:10.1007/s11738-012-1078-8
Thorslund J., Jarsjö J., Belozerova E. and Chalov S. (2012). Assessment of the gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. Journal of Environmental Monitoring, 14, pp. 2780-2792. doi:10.1039/C2EM30643C
Thorslund J., Jarsjö J., Jaramillo F., Jawitz J., Manzoni S., Basu N., Chalov S., Cohen M., Creed I., Goldenberg R. and Hylin A. (2017). Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 108, pp. 489-497. doi:10.1016/j.ecoleng.2017.07.012
Tkachenko A. (2011). Geochemistry of aquatic landscapes of the Volga estuary region. PhD thesis synopsis. Moscow: Lomonosov Moscow State University (In Russian)
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2019-103
https://doi.org/10.1016/j.envpol.2003.12.015
https://doi.org/10.1007/BF00045135
https://doi.org/10.7868/S0321059617030075
https://doi.org/10.1007/s12665-014-3106-z
https://doi.org/10.1007/s10113-016-09
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 12
container_issue 3
container_start_page 240
op_container_end_page 263
_version_ 1766382475171332096
spelling ftjges:oai:oai.gesj.elpub.ru:article/827 2023-05-15T15:47:34+02:00 Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta G. Shinkareva L. M. Lychagin Yu. M. Tarasov K. J. Pietroń M. Chichaeva A. S. Chalov R. Work was done with financial support of following grants: “Comprehensive assessment of the impact of the Selenga basin on Lake Baikal” (RGS, No. 06/2015-И),“Development of the atlasmonograph “The Selenga Basin: hydrological and landscape-geochemical analysis” (RGS, 13/2016-P), Spatio-temporal analysis of the migration of chemical elements and compounds in natural and anthropogenic landscapes” (No. 14-27-00083), RGS-RFBR “Geochemical barrier zones in freshwater river deltas of Russia” (No. 23/2017 / RGSRFBR), RFBR “Long-term river variability the influx of water, sediment and chemicals into Lake Baikal” (No. 17-29-05027). In addition, the work was supported by WSP Sverige AB (project K3502010). The field visits were also done as a part of expedition Selenga-Baikal and the Baikal expedition of the Russian Geographical Society in 2011-2018. 2019-10-14 application/pdf https://ges.rgo.ru/jour/article/view/827 https://doi.org/10.24057/2071-9388-2019-103 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/827/394 Baldantoni D., Alfani A., Di Tommasi P., Bartoli G. and Virzo De Santo A. (2004). Assessment of macro and microelement accumulation capability of two aquatic plants. Environmental Pollution, 130, pp. 149-156. doi:10.1016/j.envpol.2003.12.015 Brekhovskikh V.F., Volkova Z.V. and Savenko A.V. (2009). Higher aquatic vegetation and accumulation processes in the delta of the river Volga. Arid ecosystems, 15(3(39)), pp. 34- 45. (In Russian) Carbiener R., Trémolières M., Mercier J. L. and Ortscheit A. (1990). Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetatio, 86(1), pp. 71-88. doi:10.1007/BF00045135 Chalov S., Bazilova V. and Tarasov M. (2017). The balance of suspended sediment in the Selenga delta at the end of the 20th - beginning of the 21st centuries: modeling according to LANDSAT images. Water resources, 44(3), pp. 332-339. (In Russian). doi:10.7868/S0321059617030075 Chalov S., Jarsjö J., Kasimov N., Romanchenko A., Pietroń J., Thorslund J. and Promakhova E. (2015). Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environmental Earth Sciences, 72(2), pp. 663-680. doi:10.1007/s12665-014-3106-z Chalov S., Thorslund J., Kasimov N., Aybullatov D., Ilyicheva E., Karthe D., Kositsky A., Lychagin M., Nittrouer J., Pavlov M., Pietron J., Shinkareva G., Tarasov M., Garmaev E., Akhtman Y. and Jarsjö J. (2017). The Selenga River delta: a geochemical barrier protecting Lake Baikal waters. Regional environmental change, 17(7), pp. 2039-2053. doi:10.1007/s10113-016-0996-1 Chaplin G. and Valentine J. (2009). Macroinvertebrate production in the submerged aquatic vegetation of the Mobile–Tensaw Delta: effects of an exotic species at the base of an estuarine food web. Estuaries and Coasts, 32(2), pp. 319-332. doi:10.1007/s12237-008-9117-9 Chepinoga V. (2012). Wetland vegetation database of Baikal Siberia (WETBS). Biodiversity & Ecology, 4, p. 311. doi:10.7809/b-e.00107 Chepinoga V. and Rosbach S. (2012). Aquatic vegetation of Lemnetea class on the territory of Baikal Siberia. Russian vegetation, 21, pp. 106-123. (In Russian) Coops H., Hanganu J., Tudor M. and Oosterberg W. (1999). Classification of Danube Delta lakes based on aquatic vegetation and turbidity. Hydrobiologia, 415, pp. 187-191. doi:10.1023/A:1003856927865 Cubero-Castan M., Constantin D., Barbieux K., Nouchi V., Akhtman Y. and Merminod B. (2015). A new smoothness based strategy for semi-supervised atmospheric correction: application to the Léman-Baïkal campaign. 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, EPFL-CONF, pp. 1-4. doi:10.1109/WHISPERS.2015.8075379 Cui B., Tang N., Zhao X. and Bai J. (2009). A management-oriented valuation method to determine ecological water requirement for wetlands in the Yellow River Delta of China. Journal for Nature Conservation, 17(3), pp. 129-141. doi:10.1016/j.jnc.2009.01.003 Dgebuadze Y., Dorofeyuk N. and Krylov A. (2010). Contributions of Russian Scientists to the Research of Aquatic Ecosystems in Mongolia. Mongolian Journal of Biological Sciences, 8(1), pp. 59-69. doi:10.22353/mjbs.2010.08.07 Dong T., Il'icheva E., Nittrouer J. and Pavolv M. (2013). Morphology and sediment transport dynamics of the Selenga River delta, Lake Baikal, Russia. In AGU Fall Meeting Abstracts. Favas P., Pratas J. and Prasad M. (2012). Accumulation of arsenic by aquatic plants in largescale field conditions: opportunities for phytoremediation and bioindication. Science of the Total Environment, 433, pp. 390-397. doi:10.1016/j.scitotenv.2012.06.091 Favas P., Pratas J., Varun M., D'Souza R. and Paul M. (2014). Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Science of the Total Environment, 470, pp. 993-1002. doi:10.1016/j.scitotenv.2013.10.067 Guittonny-Philippe A., Masotti V., Höhener P., Boudenne J., Viglione J. and Laffont-Schwob I. (2014). Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: A review to overcome obstacles and suggest potential solutions. Environment International, 64, pp. 1-16. doi:10.1016/j.envint.2013.11.016 Il'icheva E. (2015). Runoff in the river delta Selenga. Materials of the XV meeting of geographers of Siberia and the Far East. Ulan-Ude. Irkutsk: Institute of Geography named after V.B. Sochava SB RAS. pp. 91-93. (In Russian) Iqbal I. (2010). The Bengal Delta: Ecology, state and social change, 1840–1943. Springer. Jarsjö J., Chalov S., Pietroń J., Alekseenko, A. and Thorslund, J. (2017). Patterns of soil contamination, erosion and river loading of metals in a gold mining region of northern Mongolia. Regional environmental change, 17(7), pp. 1991-2005. doi:10.1007/s10113-017-1169-6 Kabata-Pendias A. and Pendias H. (1984). Trace elements in soils and plants. Boca Raton: CRC Press. Kasimov N., Kosheleva N., Lychagin M. et al. (2019). Environmental Atlas-monograph “Selenga-Baikal”. Moscow: Faculty of Geography, MSU. Available at: https://www.researchgate.net/publication/335567904_Environmental_Atlas-monograph_SelengaBaikal. (In Russian) Katanskaya V. (1981). Higher aquatic vegetation of the continental reservoirs of the USSR. Study methods. Leningrad: Nauka. (In Russian) Keskinkan O., Goksu M., Basibuyuk M. and Forster C. (2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 92 (2), pp. 197-200. doi:10.1016/j.biortech.2003.07.011 Khazheeva Z. and Pronin N. (2007). The influence of Canadian Elodea on the chemical composition of water and bottom sediments in the Selenga river delta. Bulletin of BSU, 3, pp. 177-179. (In Russian) Khedr A. and El-Demerdash M. (1997). Distribution of aquatic plants in relation to environmental factors in the Nile Delta. Aquatic Botany, 56(1), pp. 75-86. doi:10.1016/S0304-3770(96)01090-X Korytny L., Il’icheva E., Pavlov M. and Amosova I. (2012). Hydrologo-morphological approach to regionalization of the Selenga river basin. Geography and Natural Resources, 33(3), pp. 212-217. doi:10.1134/S1875372812030055 Kröger R., Moore M., Locke M., Cullum R., Steinriede Jr., R., Testa III S., Bryant C. and Cooper C. (2009). Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches. Agricultural Water Management, 96(7), pp. 1175-1179. doi:10.1016/j.agwat.2009.03.002 Lane C.R., Anenkhonov O., Liu H., Autrey B.C. and Chepinoga V. (2015). Classification and inventory of freshwater wetlands and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using high-resolution satellite imagery. Wetlands Ecology and Management, 23(2), pp. 195-214. doi:10.1007/s11273-014-9369-z Leto C., Tuttolomondo T., La Bella S., Leone R. and Licata M. (2013). Effects of plant species in a horizontal subsurface flow constructed wetland–phytoremediation of treated urban wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy). Ecological Engineering, 61, pp. 282-291. doi:10.1016/j.ecoleng.2013.09.014 Lychagina N., Kasimov N. and Lychagin M. (1998). Biogeochemistry of macrophytes of the Volga delta. Moscow: Geography Department of Moscow State University. (In Russian) Malsy M, Heinen M, aus der Beek T. and Flörke M. (2013). Water resources and socioeconomic development in a water scarce region on the example of Mongolia. Geo-Öko, 34 (1-2), pp. 27-49 Nepf H. (2012). Flow and transport in regions with aquatic vegetation. Annual review of fluid mechanics, 44, pp. 123-142. doi:10.1146/annurev-fluid-120710-101048 Outridge P. and Noller B. (1991). Accumulation of toxic trace elements by freshwater vascular plants. Reviews of Environmental Contamination and Toxicology. New York: Springer. doi:10.1007/978-1-4612-3196-7_1 Pakusina A., Platonova T., Lobarev S. and Smirenski S. (2018). Chemical and Ecological Characteristics of Lakes Located in the Muraviovka Park. Asian Journal of Water, Environment and Pollution, 15(4), pp. 27-34. doi:10.3233/AJW-180054 Patel D. and Kanungo V. (2010). Phytoremediation potential of duckweed (Lemna minor L. a tiny aquatic plant) in the removal of pollutants from domestic wastewater with special reference to nutrients. Bioscan, 5(3), pp. 355-358. Pietroń J. (2017). Sediment transport from source to sink in the Lake Baikal basin: Impacts of hydroclimatic change and mining (Doctoral dissertation, Department of Physical Geography, Stockholm University). Pietroń J., Chalov S., Chalova A., Alekseenko A. and Jarsjö J. (2017). Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin. Catena, 152, pp. 82-93. doi:10.1016/j.catena.2017.01.008 Pietroń J., Nittrouer J., Chalov S., Dong T., Kasimov N., Shinkareva G. and Jarsjö J. (2018). Sedimentation patterns in the Selenga River delta under changing hydroclimatic conditions. Hydrological processes, 32(2), pp. 278-292. doi:10.1002/hyp.11414 Quan W., Han J., Shen A., Ping X., Qian P., Li C., Shi L. and Chen Y. (2007). Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Marine Environmental Research, 64, pp. 21-37. doi:10.1016/j.marenvres.2006.12.005 Rai P. (2009). Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology, 39(9), pp. 697- 753. doi:10.1080/10643380801910058 Reay P. (1972). The accumulation of arsenic from arsenic-rich natural waters by aquatic plants. Journal of applied ecology, 9(2), pp. 557-565. doi:10.2307/2402453 Rogozin A. (1981). The history of the relief development of the Selenginsky coast zone of the Lake Baikal. Fishery value of the coastal zone of the Lake Baikal. Irkutsk. pp. 3-18. (In Russian) Sawidis T., Chettri M., Papaionnou A., Zachariadis G. and Stratis J. (2001). A study of metal distribution from lignite fuels using trees as biological monitors. Ecotoxicology and Environmental Safety, 48, pp. 27-35. doi:10.1006/eesa.2000.2001 State report “The state of the Lake Baikal and measures for its protection in 2013”. (2014). Irkutsk: Siberian branch of the Federal State-Funded Scientific-Practical Enterprise “Rosgeolfond”. (In Russian) Sviridenko B., Murashko Yu., Sviridenko T., Efremov A. and Tokar O. (2017). Content of heavy metals in ecotopes of hydromacrophytes of the West Siberian plain. Bulletin of Surgut State University, (4), pp. 81-96. (In Russian) Sun H., Wang Z., Gao P. and Liu P. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta physiologiae plantarum, 35(2), pp. 355-364. doi:10.1007/s11738-012-1078-8 Thorslund J., Jarsjö J., Belozerova E. and Chalov S. (2012). Assessment of the gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. Journal of Environmental Monitoring, 14, pp. 2780-2792. doi:10.1039/C2EM30643C Thorslund J., Jarsjö J., Jaramillo F., Jawitz J., Manzoni S., Basu N., Chalov S., Cohen M., Creed I., Goldenberg R. and Hylin A. (2017). Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 108, pp. 489-497. doi:10.1016/j.ecoleng.2017.07.012 Tkachenko A. (2011). Geochemistry of aquatic landscapes of the Volga estuary region. PhD thesis synopsis. Moscow: Lomonosov Moscow State University (In Russian) Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 12, No 3 (2019); 240-263 2542-1565 2071-9388 biogeochemistry;deltaic environment;heavy metals and metalloids in aquatic systems;macrophytes;hyperspectral images info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjges https://doi.org/10.24057/2071-9388-2019-103 https://doi.org/10.1016/j.envpol.2003.12.015 https://doi.org/10.1007/BF00045135 https://doi.org/10.7868/S0321059617030075 https://doi.org/10.1007/s12665-014-3106-z https://doi.org/10.1007/s10113-016-09 2021-05-21T07:34:48Z This study aims to evaluate the biofiltration ability of higher aquatic vegetation of the Selenga delta as a barrier for heavy metals and metalloids (HMM) flows into the Lake Baikal. Main aquatic vegetation species have been collected from deltaic channels and inner lakes: Nuphar pumila, Potamogeton perfoliatus, P. pectinatus, P. natans, P. friesii, Butomus umbellatus, Myriophyllum spicatum, Ceratophyllum demersum, Phragmites australis. Analysis of the obtained data showed that regardless of the place of growth hydatophytes spiked water-milfoil (M. spicatum) and the fennel-leaved pondweed (P. pectinatus) most actively accumulate metals. Opposite tendencies were found for helophytes reed (Ph. australis) and flowering rush (B. umbellatus), which concentrate the least amount of elements. This supports previous findings that the ability to concentrate HMM increases in the series of surface – floating – submerged plants. Regarding river water, the studied macrophyte species are enriched with Mn and Co, regarding suspended matter – Mo, Mn and B, regarding bottom sediments – Mn, Mo and As. We identified two associations of chemical elements: S-association with the predominant suspended form of migration (Be, V, Co, Ni, W, Pb, Bi, Mn, Fe and Al) and D-association with the predominant dissolved form of migration (B, U, Mo, Cr, Cu, Zn, As, Cd, Sn and Sb). Due to these associations three groups of macrophytes were distinguished – flowering rush and reed with a low HMM content; small yellow pond-lily and common floating pondweed with a moderate accumulation of S-association and weak accumulation of D-association elements; and clasping-leaved pondweed, fennel-leaved pondweed, and pondweed Friesii accumulating elements of both S and D groups. The results suggest that macrophytes retain more than 60% of the total Mn flux that came into the delta, more than 10% – W, As, and from 3 to 10% B, Fe, Co, Mo, Cd, V, Ni, Bi, Be, Cu, Zn, Cr, U, Al. The largest contribution is made by the group of hydatophytes (spiked water-milfoil and pondweed), which account for 74 to 96% of the total mass of substances accumulated by aquatic plants. Article in Journal/Newspaper Butomus umbellatus Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 12 3 240 263