Stochastic Models Of Dynamic Balance State For The Morphological Patterns Of Cryolithozone Landscapes

The paper deals with mathematical modeling of a morphological pattern for a broad spectrum of cryolithozone landscapes in a state of a dynamic balance. The state of the dynamic balance means that all the elements of this morphological pattern are in continuous changing while its general parameters a...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Alexey Victorov S., Olga Trapeznikova N.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2019
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/818
https://doi.org/10.24057/2071-9388-2018-68
id ftjges:oai:oai.gesj.elpub.ru:article/818
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic Morphological pattern
mathematical modeling
dynamic balance
thermokarst lake
khasyrei (alas);landscapes of the cryolithozone
spellingShingle Morphological pattern
mathematical modeling
dynamic balance
thermokarst lake
khasyrei (alas);landscapes of the cryolithozone
Alexey Victorov S.
Olga Trapeznikova N.
Stochastic Models Of Dynamic Balance State For The Morphological Patterns Of Cryolithozone Landscapes
topic_facet Morphological pattern
mathematical modeling
dynamic balance
thermokarst lake
khasyrei (alas);landscapes of the cryolithozone
description The paper deals with mathematical modeling of a morphological pattern for a broad spectrum of cryolithozone landscapes in a state of a dynamic balance. The state of the dynamic balance means that all the elements of this morphological pattern are in continuous changing while its general parameters as a whole are stable. Two contradirectional processes at the same territory is a precondition for a state of dynamic balance.We developed a morphological pattern model for lacustrine thermokarst plains with fluvial erosion on the base of the mathematical morphology of landscape using the random process theory. The contra-directional processes here include thermokarst lakes appearing and increasing in size from one side and drainage of the lakes by fluvial erosion, from the other. Thus, the regularities of the structure and dynamics of each landscape morphological pattern are theoretically substantiated. The results of the mathematical modeling were empirically verified at some key sites.
format Article in Journal/Newspaper
author Alexey Victorov S.
Olga Trapeznikova N.
author_facet Alexey Victorov S.
Olga Trapeznikova N.
author_sort Alexey Victorov S.
title Stochastic Models Of Dynamic Balance State For The Morphological Patterns Of Cryolithozone Landscapes
title_short Stochastic Models Of Dynamic Balance State For The Morphological Patterns Of Cryolithozone Landscapes
title_full Stochastic Models Of Dynamic Balance State For The Morphological Patterns Of Cryolithozone Landscapes
title_fullStr Stochastic Models Of Dynamic Balance State For The Morphological Patterns Of Cryolithozone Landscapes
title_full_unstemmed Stochastic Models Of Dynamic Balance State For The Morphological Patterns Of Cryolithozone Landscapes
title_sort stochastic models of dynamic balance state for the morphological patterns of cryolithozone landscapes
publisher Russian Geographical Society
publishDate 2019
url https://ges.rgo.ru/jour/article/view/818
https://doi.org/10.24057/2071-9388-2018-68
genre Arctic
Permafrost and Periglacial Processes
The Cryosphere
The Cryosphere Discussions
Thermokarst
genre_facet Arctic
Permafrost and Periglacial Processes
The Cryosphere
The Cryosphere Discussions
Thermokarst
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 12, No 3 (2019); 6-15
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/818/389
Burn C.R., Smith M. W. (1990). Development of Thermokarst Lakes During the Holocene at Sites Near Mayo, Yukon Territory. Permafrost and Periglacial Processes, v. 1, pp. 161-176.
Dneprovskaya V. P., Bryksina N. A., Polishchuk Yu. M. (2009). Study of Thermokarst Changes in Discontinuous Zone of West-Siberian Permafrost Based on Space Images. Issledovanie Zemli iz Kosmosa. 4. pp. 88-96 (in Russian).
Günther F., Overduin P., Baranskaya A., Opel T. and Grigoriev M. N. (2013). Observing Muostakh Island disappear: erosion of a ground-ice-rich coast in response to summer warming and sea ice reduction on the East Siberian shelf // The Cryosphere Discussions, 7, pp. 4101-4176.
Kipotin S.N., Polishchuk Yu. M., Bryksina N. A. (2009). Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting. International Journal of Environmental Studies. v 66, 4, pp. 423-431.
Kravtsova V.I., Bystrova A.G. (2009). Changes in thermokarst lake size in different regions of Russia for the last 30 years, Kriosfera Zemli, v.15, 2, pp. 16-26.
Liu L., Schaefer K., Gusmeroli A., Grosse G., Jones B. M., Zhang T., Parsekian A. D., and Zebker H. A. (2013). Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska//The Cryosphere Discuss., 7, pp. 5793–5822.
Mamai I.I. (2005). Landscape dynamics and functioning. Moscow, MSU publishing house, 138 p. (in Russian).
Melnikov V.P. ed. (2012). Kompleksnyy monitoring severotayezhnykh geosistem Zapadnoy Sibiri (Comprehensive monitoring of the northern taiga geosystems of Western Siberia) Academician publ. house “GEO”, 207 p.
Morgenstern A., Grosse, G., Günther F., Fedorova I., and Schirrmeister L. (2011). Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta, The Cryosphere, 5, рр. 849-867.
Morgenstern A., Ulrich M., Günther F., Boike J. and Schirrmeister L. (2012). Evolution of a Thermokarst Basin in Ice-Rich Permafrost, Siberian Lena Delta. // Melnikov, P.I. (ed.). Tenth International Conference on Permafrost. Vol. 4: Proceedings of the Tenth International Conference on Permafrost Salekhard, Yamal-Nenets Autonomous District, Russia. Coedited by D.S. Drozdov and V.E. Romanovsky. The Northern Publisher, Salekhard, Russia, pp.
-407.
Muster S., Riley W.J., Roth K., Langer M., Cresto Aleina F., Koven C.D., Lange S., Bartsch A., Grosse G., Wilson C.J., Jones B.M. and Boike J. (2019). Size Distributions of Arctic Waterbodies Reveal Consistent Relations in Their Statistical Moments in Space and Time. Front. Earth Sci. 7:5. doi:10.3389/feart.2019.00005.
Novikova N.M., Kust G.S., Kuzmina Zh.V., Trofimova G.U., Dikareva T.V., Avetian S.A., Rozov S.U., Deruzhinskaya V.O., Safonicheva L.F., Lubeznov U.E. (1998). Contemporary Plant and Soil Cover Changes in The Amu-Darya and Syr-Darya River Deltas. Ecological Research and Monitoring of the Aral Sea Deltas: A Basis for Restoration. UNESCO Aral Sea Project 1992-1996 Final Scientific Reports. Paris, 1998. pp. 55-80.
Polishuk Y.M., Polishuk V.Y. (2014). Geo-simulation approach to modelling spatial objects and its application to creating thermokarst lake model using remote sensing data. BIOCLIMLAND (Biota, Climate, Landscapes). 1. pp. 53-69.
Victorov A.S., Kapralova V.N. (2013). Quantitative assessment of natural risks based on satellite observation data (a case study of thermokarst plains). Izvestiya, Atmospheric and Oceanic Physics, Vol. 49(9), pp. 1069–1073.
Victorov A.S. (2005). Mathematical Models of Thermokarst Erosion Plains. \ GIS and Spatial Analysis. Proceedings of IAMG2005, Toronto, Canada. v. 1, pp 62-67.
Viktorov A.S. (1995). The Mathematical Model of Thermokarst Lakes Surface as One of the Bases of the Space Survey Interpretation. Issledovanie Zemli iz Kosmosa. 5. pp. 42-50 (in Russian).
Viktorov A.S. (1998). The general problems of the mathematical morphology of landscape. Moscow. Tratek. p.191.
Viktorov A.S. (2007). Risk Assessment Based on the Mathematical Model of Diffuse Exogenous Geological Processes. Mathematical Geology. V. 39(8). pp. 735-748.
Viktorov A.S., Kapralova V.N., Orlov T.V., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Panchenko E.N., Sadkov S.A. (2017). Consistent patterns of the size distribution of thermokarst lakes. Doklady Earth Sciences. v. 474(2). pp. 692-694.
Vinogradov B.V. (1990). The Mapping of Ecosystem Dynamics: A Quantitative Approach. Mapping Sciences and Remote Sensing. 27(1), pp. 68-76. DOI:10.1080/07493878.1990.10 641790/.
https://ges.rgo.ru/jour/article/view/818
doi:10.24057/2071-9388-2018-68
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2018-68
https://doi.org/10.3389/feart.2019.00005
https://doi.org/10.1080/07493878.1990.10
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 12
container_issue 3
container_start_page 6
op_container_end_page 15
_version_ 1766302452310605824
spelling ftjges:oai:oai.gesj.elpub.ru:article/818 2023-05-15T14:28:17+02:00 Stochastic Models Of Dynamic Balance State For The Morphological Patterns Of Cryolithozone Landscapes Alexey Victorov S. Olga Trapeznikova N. 2019-10-03 application/pdf https://ges.rgo.ru/jour/article/view/818 https://doi.org/10.24057/2071-9388-2018-68 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/818/389 Burn C.R., Smith M. W. (1990). Development of Thermokarst Lakes During the Holocene at Sites Near Mayo, Yukon Territory. Permafrost and Periglacial Processes, v. 1, pp. 161-176. Dneprovskaya V. P., Bryksina N. A., Polishchuk Yu. M. (2009). Study of Thermokarst Changes in Discontinuous Zone of West-Siberian Permafrost Based on Space Images. Issledovanie Zemli iz Kosmosa. 4. pp. 88-96 (in Russian). Günther F., Overduin P., Baranskaya A., Opel T. and Grigoriev M. N. (2013). Observing Muostakh Island disappear: erosion of a ground-ice-rich coast in response to summer warming and sea ice reduction on the East Siberian shelf // The Cryosphere Discussions, 7, pp. 4101-4176. Kipotin S.N., Polishchuk Yu. M., Bryksina N. A. (2009). Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting. International Journal of Environmental Studies. v 66, 4, pp. 423-431. Kravtsova V.I., Bystrova A.G. (2009). Changes in thermokarst lake size in different regions of Russia for the last 30 years, Kriosfera Zemli, v.15, 2, pp. 16-26. Liu L., Schaefer K., Gusmeroli A., Grosse G., Jones B. M., Zhang T., Parsekian A. D., and Zebker H. A. (2013). Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska//The Cryosphere Discuss., 7, pp. 5793–5822. Mamai I.I. (2005). Landscape dynamics and functioning. Moscow, MSU publishing house, 138 p. (in Russian). Melnikov V.P. ed. (2012). Kompleksnyy monitoring severotayezhnykh geosistem Zapadnoy Sibiri (Comprehensive monitoring of the northern taiga geosystems of Western Siberia) Academician publ. house “GEO”, 207 p. Morgenstern A., Grosse, G., Günther F., Fedorova I., and Schirrmeister L. (2011). Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta, The Cryosphere, 5, рр. 849-867. Morgenstern A., Ulrich M., Günther F., Boike J. and Schirrmeister L. (2012). Evolution of a Thermokarst Basin in Ice-Rich Permafrost, Siberian Lena Delta. // Melnikov, P.I. (ed.). Tenth International Conference on Permafrost. Vol. 4: Proceedings of the Tenth International Conference on Permafrost Salekhard, Yamal-Nenets Autonomous District, Russia. Coedited by D.S. Drozdov and V.E. Romanovsky. The Northern Publisher, Salekhard, Russia, pp. -407. Muster S., Riley W.J., Roth K., Langer M., Cresto Aleina F., Koven C.D., Lange S., Bartsch A., Grosse G., Wilson C.J., Jones B.M. and Boike J. (2019). Size Distributions of Arctic Waterbodies Reveal Consistent Relations in Their Statistical Moments in Space and Time. Front. Earth Sci. 7:5. doi:10.3389/feart.2019.00005. Novikova N.M., Kust G.S., Kuzmina Zh.V., Trofimova G.U., Dikareva T.V., Avetian S.A., Rozov S.U., Deruzhinskaya V.O., Safonicheva L.F., Lubeznov U.E. (1998). Contemporary Plant and Soil Cover Changes in The Amu-Darya and Syr-Darya River Deltas. Ecological Research and Monitoring of the Aral Sea Deltas: A Basis for Restoration. UNESCO Aral Sea Project 1992-1996 Final Scientific Reports. Paris, 1998. pp. 55-80. Polishuk Y.M., Polishuk V.Y. (2014). Geo-simulation approach to modelling spatial objects and its application to creating thermokarst lake model using remote sensing data. BIOCLIMLAND (Biota, Climate, Landscapes). 1. pp. 53-69. Victorov A.S., Kapralova V.N. (2013). Quantitative assessment of natural risks based on satellite observation data (a case study of thermokarst plains). Izvestiya, Atmospheric and Oceanic Physics, Vol. 49(9), pp. 1069–1073. Victorov A.S. (2005). Mathematical Models of Thermokarst Erosion Plains. \ GIS and Spatial Analysis. Proceedings of IAMG2005, Toronto, Canada. v. 1, pp 62-67. Viktorov A.S. (1995). The Mathematical Model of Thermokarst Lakes Surface as One of the Bases of the Space Survey Interpretation. Issledovanie Zemli iz Kosmosa. 5. pp. 42-50 (in Russian). Viktorov A.S. (1998). The general problems of the mathematical morphology of landscape. Moscow. Tratek. p.191. Viktorov A.S. (2007). Risk Assessment Based on the Mathematical Model of Diffuse Exogenous Geological Processes. Mathematical Geology. V. 39(8). pp. 735-748. Viktorov A.S., Kapralova V.N., Orlov T.V., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Panchenko E.N., Sadkov S.A. (2017). Consistent patterns of the size distribution of thermokarst lakes. Doklady Earth Sciences. v. 474(2). pp. 692-694. Vinogradov B.V. (1990). The Mapping of Ecosystem Dynamics: A Quantitative Approach. Mapping Sciences and Remote Sensing. 27(1), pp. 68-76. DOI:10.1080/07493878.1990.10 641790/. https://ges.rgo.ru/jour/article/view/818 doi:10.24057/2071-9388-2018-68 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 12, No 3 (2019); 6-15 2542-1565 2071-9388 Morphological pattern mathematical modeling dynamic balance thermokarst lake khasyrei (alas);landscapes of the cryolithozone info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjges https://doi.org/10.24057/2071-9388-2018-68 https://doi.org/10.3389/feart.2019.00005 https://doi.org/10.1080/07493878.1990.10 2021-05-21T07:34:48Z The paper deals with mathematical modeling of a morphological pattern for a broad spectrum of cryolithozone landscapes in a state of a dynamic balance. The state of the dynamic balance means that all the elements of this morphological pattern are in continuous changing while its general parameters as a whole are stable. Two contradirectional processes at the same territory is a precondition for a state of dynamic balance.We developed a morphological pattern model for lacustrine thermokarst plains with fluvial erosion on the base of the mathematical morphology of landscape using the random process theory. The contra-directional processes here include thermokarst lakes appearing and increasing in size from one side and drainage of the lakes by fluvial erosion, from the other. Thus, the regularities of the structure and dynamics of each landscape morphological pattern are theoretically substantiated. The results of the mathematical modeling were empirically verified at some key sites. Article in Journal/Newspaper Arctic Permafrost and Periglacial Processes The Cryosphere The Cryosphere Discussions Thermokarst Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 12 3 6 15