INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS

Complicated folded structures were recently recorded by radar survey in the lower portions of the Antarctic and Greenland ice sheets. From a geological point of view the Antarctic and Greenland ice sheets are considered as geological features, while the ice is classified as sedimentary or metamorphi...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Alexey Markov N., Pavel Тalalay G., Dorthe Dahl-Jensen
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2015
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/71
https://doi.org/10.24057/2071-9388-2015-8-1-4-15
id ftjges:oai:oai.gesj.elpub.ru:article/71
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic evolution and dynamics of ice sheets
analogies of the glaciological;geological and atmospheric objects
spellingShingle evolution and dynamics of ice sheets
analogies of the glaciological;geological and atmospheric objects
Alexey Markov N.
Pavel Тalalay G.
Dorthe Dahl-Jensen
INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS
topic_facet evolution and dynamics of ice sheets
analogies of the glaciological;geological and atmospheric objects
description Complicated folded structures were recently recorded by radar survey in the lower portions of the Antarctic and Greenland ice sheets. From a geological point of view the Antarctic and Greenland ice sheets are considered as geological features, while the ice is classified as sedimentary or metamorphic rock. In this regard the genesis of the ice sheets is analyzed from the perspective of geodynamics and metamorphism, and complicated folded structures on radar profiles are interpreted as tectonic and metamorphic structures. This study considers the processes of three kinds of tectonic structures: glacial diapirs, glacial diapir folds and glacial intrusions. Radar profiles not only capture ice flow structure but can also detect the thermobaric field in ice sheet, and in this case the complicated folded structures are interpreted as representative of recorded metastable boundaries of ice recrystallization.
format Article in Journal/Newspaper
author Alexey Markov N.
Pavel Тalalay G.
Dorthe Dahl-Jensen
author_facet Alexey Markov N.
Pavel Тalalay G.
Dorthe Dahl-Jensen
author_sort Alexey Markov N.
title INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS
title_short INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS
title_full INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS
title_fullStr INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS
title_full_unstemmed INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS
title_sort interpretations of complicated folded structures at the lower parts of antarctic and greenland ice sheets
publisher Russian Geographical Society
publishDate 2015
url https://ges.rgo.ru/jour/article/view/71
https://doi.org/10.24057/2071-9388-2015-8-1-4-15
geographic Antarctic
Greenland
The Antarctic
geographic_facet Antarctic
Greenland
The Antarctic
genre Antarc*
Antarctic
Greenland
Ice Sheet
Polar Research
The Cryosphere
genre_facet Antarc*
Antarctic
Greenland
Ice Sheet
Polar Research
The Cryosphere
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 8, No 1 (2015); 4-15
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/71/71
A fanas’yeva, M.A., N.Yu. Bardina, O.A. Bogatikov, I.I. Vishnevskaya, V.N. Gavrilova, M.N. Gurova, V.I. Kovalenko, N.N. Kononkova, L.N. Lipchanskaya, V.B. Naumov, V.S. Popov, V.I. Chernov, E.V. Sharkov, B.P. Yurgenson, V.V. Yarmolyuk (2001). Petrografiya i petrologiya magmaticheskikh, metamorficheskikh i metasomaticheskikh gornykh porod [Petrography and petrology of igneous, metamorphic and metasomatic rocks]. Moscow, Logos. [In Russian].
A lsop, G.I., J.P. Brown, I. Davison (1996). Salt tectonics. Spec. Publ. of the Geol. Soc. London.
Bell, R.E., F. Ferraccioli, T.T. Creyts, D. Braaten, H. Corr, I. Das, D. Damaske, N. Frearson, T.A. Jordan, K. Rose, M. Studinger, and M.J. Wolovick (2011). Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base, Science, 331 (6024), 1592–1595, doi:10.1126/science.1200109.
Box, J.E. and K. Ski (2007). Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics. J. Glaciol. 53 (181), 257–265.
Bucher, K. and R. Grapes (2011). Petrogenesis of Metamorphic Rocks. 8th ed., Berlin, Heidelberg, Springer.
Budd, W.F. (1969). The Dynamics of Ice Masses, Issued by the Antarctic Division, Department of Supply, ANARE Scientific Reports, Series A (IV), Glaciology Publication, 108, Melbourn.
C avitte, M.G.P., D.D. Blankenship, D.A. Young, M.J. Siegert, and E. Le Meur (2013). Radar stratigraphy connecting Lake Vostok and Dome C., East Antarctica, constrains the EPICA/DMC ice core time scale. The Cryosphere Discuss., 7, 321–342, doi:10.5194/tcd-7-321-2013.
C horley, R.J., S.A. Schumm and D.E. Sugden (1984). Geomorphology, London, Methuen.
C uffey, K.M., and W.S.B. Paterson (2010). The Physics of Glaciers, 4th ed., Butterworth-Heineman / Elsevier, Burlington.
Fujita, S., S. Mae, and T. Matsuoka (1993). Dielectric anisotropy in ice Ih at 9.7 GHz. Ann. Glaciol., 17, 276–280.
Fujita, S., H. Maeno, S. Uratsuka, T. Furukawa, S. Mae, Y. Fujii, and O. Watanabe (1999). Nature of radio echo layering in the Antarctic ice sheet detected by a two-frequency experiment. J. Geophys. Res. 104 (B6), 13013–13024.
Fujita, S., T. Matsuoka, T. Ishida, K. Matsuoka and S. Mae (2000). A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In: Physics of Ice Core Records, ed. T. Hondoh, Hokkaido University Press: Sapporo, Japan, 185–212.
Gerya, T.V., L.L. Perchuk, D.D. van Reenen, and C.A. Smit (2000). Two-dimensional numerical modeling of pressure-temperature-time paths for the exhumation of some granulite facies terrains in the Precambrian. Journ. Geodynamics, 30, 17–35.
Khain, V.Ye., and M.G. Lomize (1995). Geotektonika s osnovami geodinamiki [Geotektonika and the basics of geodynamics]. Moscow State University Press. [In Russian with English summary].
Kudryashov, B.B., N.I. Vasiliev, R.N. Vostretsov, A.N. Dmitriev, V.M. Zubkov, A.V. Krasilev, P.G. Talalay, N.I. Barkov, V.Ya. Lipenkov, and J.R. Petit (2002). Deep ice coring at Vostok Station (East Antarctica) by electromechanical drill. Mem. of National Institute of Polar Research, 49, 91–102.
L avryushin, Yu.A. (1976). Stroenie i formirovanie osnovnikh moren materikivykh oledenenyi [Structure and formation of the main moraines of continental glaciation]. Moscow, Nauka. [In Russian].
Мatcheret, Yu.Yu. (2006). Radiozondirivanie lednikov [Radio sounding of glaciers]. Moscow, Nauchnyi Mir. [In Russian].
M atsuoka, K. T. Furukawa, S. Fujita, H. Maeno, S. Uratsuka, R. Naruse, and O. Watanabe (2003). Crystal orientation fabrics within the Antarctic ice sheet revealed by a multipolarization plane and dual-frequency radar survey, Journ. Geoph. Res., Earth Surface, 108, B10, 2499, doi:10.1029/2003JB002425.
NEEM community members (2013). Eemian interglacial reconstructed from a Greenland folded ice core, Nature, 493, 489–494, doi:10.1038/nature11789.
P attyn, F. (2010). Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model, 21. Earth Planet. Sci. Lett., 295 (3–4), 451–461, doi:10.1016/j.epsl.2010.04.025.
P opov, S.V., V.Ya. Lipenkov, V.V. Yenaliyeva, A.V. Preobrazhenskaya (2007). Vnutrenniye izokhronnyye poverkhnosti v rayone ozera Vostok, Vostochnaya Antarktida [Internal isochronous surface in region of Lake Vostok, East Antarctica), Problemy Arktiki i Antarktiki, 76, 89–95. [In Russian with English summary].
S erpukhov, V.I., T.V. Bilibina, A.I. Shalimov, I.F. Pustovalov, P.M. Borkovskyi, V.N. Morakhovskyi, K.N. Andreyanovskaya, I.A. Markov, and Yu.K. Dzevanovskyi (1976). Kurs obshchey geologii [Course of general geology]. Moscow, Nedra. [In Russian].
S cheidegger, A.E. (2004). Morphotectonics, Springer Verlag, Berlin.
W olovick M.J., R.E. Bell, T.T. Creyts, and N. Frearson (2013). Identification and control of subglacial water networks under Dome A, Antarctica, Journ. Geoph. Res.: Earth Surface, 118, 1–15, doi:10.1002/2012JF002555, 2013.
W right, A. and M.J. Siegert (2011). The identification and physiographical setting of Antarctic subglacial lakes: An update based on recent discoveries. In: Antarctic subglacial aquatic environments. Eds.: M.J. Siegert, M.C. Kennicutt II, and R.A. Bindschadler. Geophys. Monogr. Ser., 192, 1–7.
Zotikov, I. (1963). Bottom melting in the central zone of the ice shield of the Antarctic continent and its influence upon the present balance of the ice mass. Bull. Int. Assoc. Scient. Hydrol. 8 (1), 36.
https://ges.rgo.ru/jour/article/view/71
doi:10.24057/2071-9388-2015-8-1-4-15
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2015-8-1-4-15
https://doi.org/10.1126/science.1200109
https://doi.org/10.5194/tcd-7-321-2013
https://doi.org/10.1029/2003JB002425
https://doi.org/10.1038/nature11789
https://doi.org/10.1016/j.epsl.2010.04.025 ;
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 8
container_issue 1
container_start_page 4
op_container_end_page 15
_version_ 1766064149548236800
spelling ftjges:oai:oai.gesj.elpub.ru:article/71 2023-05-15T13:35:19+02:00 INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS Alexey Markov N. Pavel Тalalay G. Dorthe Dahl-Jensen 2015-03-01 application/pdf https://ges.rgo.ru/jour/article/view/71 https://doi.org/10.24057/2071-9388-2015-8-1-4-15 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/71/71 A fanas’yeva, M.A., N.Yu. Bardina, O.A. Bogatikov, I.I. Vishnevskaya, V.N. Gavrilova, M.N. Gurova, V.I. Kovalenko, N.N. Kononkova, L.N. Lipchanskaya, V.B. Naumov, V.S. Popov, V.I. Chernov, E.V. Sharkov, B.P. Yurgenson, V.V. Yarmolyuk (2001). Petrografiya i petrologiya magmaticheskikh, metamorficheskikh i metasomaticheskikh gornykh porod [Petrography and petrology of igneous, metamorphic and metasomatic rocks]. Moscow, Logos. [In Russian]. A lsop, G.I., J.P. Brown, I. Davison (1996). Salt tectonics. Spec. Publ. of the Geol. Soc. London. Bell, R.E., F. Ferraccioli, T.T. Creyts, D. Braaten, H. Corr, I. Das, D. Damaske, N. Frearson, T.A. Jordan, K. Rose, M. Studinger, and M.J. Wolovick (2011). Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base, Science, 331 (6024), 1592–1595, doi:10.1126/science.1200109. Box, J.E. and K. Ski (2007). Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics. J. Glaciol. 53 (181), 257–265. Bucher, K. and R. Grapes (2011). Petrogenesis of Metamorphic Rocks. 8th ed., Berlin, Heidelberg, Springer. Budd, W.F. (1969). The Dynamics of Ice Masses, Issued by the Antarctic Division, Department of Supply, ANARE Scientific Reports, Series A (IV), Glaciology Publication, 108, Melbourn. C avitte, M.G.P., D.D. Blankenship, D.A. Young, M.J. Siegert, and E. Le Meur (2013). Radar stratigraphy connecting Lake Vostok and Dome C., East Antarctica, constrains the EPICA/DMC ice core time scale. The Cryosphere Discuss., 7, 321–342, doi:10.5194/tcd-7-321-2013. C horley, R.J., S.A. Schumm and D.E. Sugden (1984). Geomorphology, London, Methuen. C uffey, K.M., and W.S.B. Paterson (2010). The Physics of Glaciers, 4th ed., Butterworth-Heineman / Elsevier, Burlington. Fujita, S., S. Mae, and T. Matsuoka (1993). Dielectric anisotropy in ice Ih at 9.7 GHz. Ann. Glaciol., 17, 276–280. Fujita, S., H. Maeno, S. Uratsuka, T. Furukawa, S. Mae, Y. Fujii, and O. Watanabe (1999). Nature of radio echo layering in the Antarctic ice sheet detected by a two-frequency experiment. J. Geophys. Res. 104 (B6), 13013–13024. Fujita, S., T. Matsuoka, T. Ishida, K. Matsuoka and S. Mae (2000). A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In: Physics of Ice Core Records, ed. T. Hondoh, Hokkaido University Press: Sapporo, Japan, 185–212. Gerya, T.V., L.L. Perchuk, D.D. van Reenen, and C.A. Smit (2000). Two-dimensional numerical modeling of pressure-temperature-time paths for the exhumation of some granulite facies terrains in the Precambrian. Journ. Geodynamics, 30, 17–35. Khain, V.Ye., and M.G. Lomize (1995). Geotektonika s osnovami geodinamiki [Geotektonika and the basics of geodynamics]. Moscow State University Press. [In Russian with English summary]. Kudryashov, B.B., N.I. Vasiliev, R.N. Vostretsov, A.N. Dmitriev, V.M. Zubkov, A.V. Krasilev, P.G. Talalay, N.I. Barkov, V.Ya. Lipenkov, and J.R. Petit (2002). Deep ice coring at Vostok Station (East Antarctica) by electromechanical drill. Mem. of National Institute of Polar Research, 49, 91–102. L avryushin, Yu.A. (1976). Stroenie i formirovanie osnovnikh moren materikivykh oledenenyi [Structure and formation of the main moraines of continental glaciation]. Moscow, Nauka. [In Russian]. Мatcheret, Yu.Yu. (2006). Radiozondirivanie lednikov [Radio sounding of glaciers]. Moscow, Nauchnyi Mir. [In Russian]. M atsuoka, K. T. Furukawa, S. Fujita, H. Maeno, S. Uratsuka, R. Naruse, and O. Watanabe (2003). Crystal orientation fabrics within the Antarctic ice sheet revealed by a multipolarization plane and dual-frequency radar survey, Journ. Geoph. Res., Earth Surface, 108, B10, 2499, doi:10.1029/2003JB002425. NEEM community members (2013). Eemian interglacial reconstructed from a Greenland folded ice core, Nature, 493, 489–494, doi:10.1038/nature11789. P attyn, F. (2010). Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model, 21. Earth Planet. Sci. Lett., 295 (3–4), 451–461, doi:10.1016/j.epsl.2010.04.025. P opov, S.V., V.Ya. Lipenkov, V.V. Yenaliyeva, A.V. Preobrazhenskaya (2007). Vnutrenniye izokhronnyye poverkhnosti v rayone ozera Vostok, Vostochnaya Antarktida [Internal isochronous surface in region of Lake Vostok, East Antarctica), Problemy Arktiki i Antarktiki, 76, 89–95. [In Russian with English summary]. S erpukhov, V.I., T.V. Bilibina, A.I. Shalimov, I.F. Pustovalov, P.M. Borkovskyi, V.N. Morakhovskyi, K.N. Andreyanovskaya, I.A. Markov, and Yu.K. Dzevanovskyi (1976). Kurs obshchey geologii [Course of general geology]. Moscow, Nedra. [In Russian]. S cheidegger, A.E. (2004). Morphotectonics, Springer Verlag, Berlin. W olovick M.J., R.E. Bell, T.T. Creyts, and N. Frearson (2013). Identification and control of subglacial water networks under Dome A, Antarctica, Journ. Geoph. Res.: Earth Surface, 118, 1–15, doi:10.1002/2012JF002555, 2013. W right, A. and M.J. Siegert (2011). The identification and physiographical setting of Antarctic subglacial lakes: An update based on recent discoveries. In: Antarctic subglacial aquatic environments. Eds.: M.J. Siegert, M.C. Kennicutt II, and R.A. Bindschadler. Geophys. Monogr. Ser., 192, 1–7. Zotikov, I. (1963). Bottom melting in the central zone of the ice shield of the Antarctic continent and its influence upon the present balance of the ice mass. Bull. Int. Assoc. Scient. Hydrol. 8 (1), 36. https://ges.rgo.ru/jour/article/view/71 doi:10.24057/2071-9388-2015-8-1-4-15 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 8, No 1 (2015); 4-15 2542-1565 2071-9388 evolution and dynamics of ice sheets analogies of the glaciological;geological and atmospheric objects info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjges https://doi.org/10.24057/2071-9388-2015-8-1-4-15 https://doi.org/10.1126/science.1200109 https://doi.org/10.5194/tcd-7-321-2013 https://doi.org/10.1029/2003JB002425 https://doi.org/10.1038/nature11789 https://doi.org/10.1016/j.epsl.2010.04.025 ; 2021-05-21T07:34:11Z Complicated folded structures were recently recorded by radar survey in the lower portions of the Antarctic and Greenland ice sheets. From a geological point of view the Antarctic and Greenland ice sheets are considered as geological features, while the ice is classified as sedimentary or metamorphic rock. In this regard the genesis of the ice sheets is analyzed from the perspective of geodynamics and metamorphism, and complicated folded structures on radar profiles are interpreted as tectonic and metamorphic structures. This study considers the processes of three kinds of tectonic structures: glacial diapirs, glacial diapir folds and glacial intrusions. Radar profiles not only capture ice flow structure but can also detect the thermobaric field in ice sheet, and in this case the complicated folded structures are interpreted as representative of recorded metastable boundaries of ice recrystallization. Article in Journal/Newspaper Antarc* Antarctic Greenland Ice Sheet Polar Research The Cryosphere Geography, Environment, Sustainability (E-Journal) Antarctic Greenland The Antarctic GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 8 1 4 15