Interrelation Between Glacier Summer Mass Balance And Runoff In Mountain River Basins

Measurements of summer mass balance Bs, made over the period 1946-2016, on 56 continental glaciers, located in the basins of mountain rivers in 14 countries, were analysed for the purpose of resolving several tasks: (a) constructing physically based interrelations between river flow Wbas and Bs; (b)...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: V. Konovalov, E. Rets, N. Pimankina
Other Authors: Institute of Geography RAS, in framework of scientific themes № 01482018-0008 and № 0148-2019-0004, RFBR № 16-35-60042, grants, MON RK, № АР05133077
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2019
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/661
https://doi.org/10.24057/2071-9388-2018-26
id ftjges:oai:oai.gesj.elpub.ru:article/661
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic summer mass balance
glacier runoff
glaciers representativeness
extremes and norm
multi-year series
statistical averaging
spellingShingle summer mass balance
glacier runoff
glaciers representativeness
extremes and norm
multi-year series
statistical averaging
V. Konovalov
E. Rets
N. Pimankina
Interrelation Between Glacier Summer Mass Balance And Runoff In Mountain River Basins
topic_facet summer mass balance
glacier runoff
glaciers representativeness
extremes and norm
multi-year series
statistical averaging
description Measurements of summer mass balance Bs, made over the period 1946-2016, on 56 continental glaciers, located in the basins of mountain rivers in 14 countries, were analysed for the purpose of resolving several tasks: (a) constructing physically based interrelations between river flow Wbas and Bs; (b) estimating the representativeness of local measurement of Bs for enhancement of hydrological computations and for control of modelled values Wbas; and (c) use of time series of Bs for the evaluation of norms and extrema of Wbas. Results of the study of the outlined problem serve as the basis for making the transition of local glaciological characteristics to the basin-wide level by using the relationship between runoff and summer balance of glaciers. It includes also analysis and conclusions on the spatial and temporal homogeneity of averaging glaciological mass balance data by the sampling method.
author2 Institute of Geography RAS, in framework of scientific themes № 01482018-0008 and № 0148-2019-0004
RFBR № 16-35-60042, grants
MON RK, № АР05133077
format Article in Journal/Newspaper
author V. Konovalov
E. Rets
N. Pimankina
author_facet V. Konovalov
E. Rets
N. Pimankina
author_sort V. Konovalov
title Interrelation Between Glacier Summer Mass Balance And Runoff In Mountain River Basins
title_short Interrelation Between Glacier Summer Mass Balance And Runoff In Mountain River Basins
title_full Interrelation Between Glacier Summer Mass Balance And Runoff In Mountain River Basins
title_fullStr Interrelation Between Glacier Summer Mass Balance And Runoff In Mountain River Basins
title_full_unstemmed Interrelation Between Glacier Summer Mass Balance And Runoff In Mountain River Basins
title_sort interrelation between glacier summer mass balance and runoff in mountain river basins
publisher Russian Geographical Society
publishDate 2019
url https://ges.rgo.ru/jour/article/view/661
https://doi.org/10.24057/2071-9388-2018-26
genre Annals of Glaciology
Arctic
Arctic and Alpine Research
Journal of Glaciology
The Cryosphere
genre_facet Annals of Glaciology
Arctic
Arctic and Alpine Research
Journal of Glaciology
The Cryosphere
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 12, No 1 (2019); 23-33
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/661/353
https://ges.rgo.ru/jour/article/downloadSuppFile/661/278
Aktru Glacier. (1987). Lednik Aktru. Leningrad: Gidrometeoizdat. (in Russian)
Alexeev G.A. (1971). Objective methods of smoothing and normalization of correlation dependencies. Leningrad: Hydrometeoizdat. (in Russian with English summary)
Bodo B.A. (2000). Monthly Discharges for 2400 Rivers and Streams of the former Soviet Union [FSU].
Borovikova L.N, Denisov Yu.M, Trofimova E.B. and Shentsis I.D. (1972). Mathematical modelling of mountain rivers runoff process. Leningrad: Hydrometeoizdat. (in Russian)
Braithwaite R.J. (2009). After six decades of monitoring glacier mass balance, we still need data but it should be richer data. Annals of Glaciology, 50, pp. 191-197.
Cogley J.G., Hock R., Rasmussen L.A., Arendt A.A., Bauder A, Braithwaite R.J., Jansson P., Kaser G., Möller M., Nicholson L. and Zemp M. (2011). Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris.
Dahlke H.E., Lyon S.W., Stedinger J.R., Rosqvist G., and Jansson P. (2012). Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter? Hydrology and Earth System Sciences, 16, pp. 2123–2141. Available at: http://www.hydrol-earth-syst-sci.net/16/2123/2012/.doi:10.5194/hess-16-2123-2012
Davaze L., Rabatel A., Arnaud Y., Sirguey P., Six D., Letreguilly A., and Dumont M. (2018). Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data. The Cryosphere, 12, pp. 271-286. doi: https://doi.org/10.5194/tc-12-271-2018
Dyurgerov M. and Meier M.F. (2005). Glaciers and the Changing Earth System: A 2004 Snapshot. Occasional Paper 58: Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO.
Dzhankuat Glacier. (1978). Lednik Djankuat. Leningrad: Gidrometeoizdat. (in Russian)
Escher-Vetter H. and Reinwarth O. (1994). Two decades of runoff measurements (1974 to 1993) at the Pegelstation Vernagtbach/Oetztal Alps. Zeitschrift für Gletscherkunde und Glazialgeologie, Bd. 30 (1-2), pp. 53-98.
Fluctuations of Glaciers Database. (2017). World Glacier Monitoring Service, Zurich, Switzerland. DOI:10.5904/wgms-fog-2017-10. Available at: http://dx.doi.org/10.5904/wgms-fog-2017-10
Fountain A.G., Hoffman M.J., Granshaw F., and Riedel J. (2009). The ‘benchmark glacier’ concept – does it work? Lessons from the North Cascade Range, USA. Annals of Glaciology, 50, pp. 163-168.
Kamnyanskiy G.M. (2001). Total on measurement of mass balance on the Abramov Glacier in 1967-1988). Proceeding of SANIGMI, 161(242), pp. 122-131. (in Russian)
Konovalov V.G. (2014). Modelling and reconstruction the parameters of rivers runoff and glaciers mass balance on the Northern Caucasus. Ice and Snow. 3, pp. 16-30. (in Russian with English summary)
Konovalov V.G. (2015). New approach to estimate water output from regional populations of mountain glaciers in Asia. GES. Geography, Environment, Sustainability, 8(2), pp. 13-29.
Konovalov V.G. and Pimankina N.V. (2016). Spatial and temporal change the components of water balance on the Northern side of ZailiiskyAlatau. Ice and Snow, 56 (4), pp. 453-471. (in Russian with English summary)
Kotlyakov V.M., Osipova G.B., Popovnin V.V. and Cvetkov D.G. (1997). The last publications of the World Glaciers Monitoring Service: Traditions and Progress. MGI, 82, pp. 122-136. (in Russian)
Kotlyakov V.M. (ed). (1984). Glaciological Dictionary. Leningrad: Gidrometeoizdat. (in Russian)
Kotlyakov V.M., and Smolyarova N.A. (1990). Elsevier’s Dictionary of Glaciology in Four Languages. Amsterdam: Elsevier.
Krimmel R.M. (2000). Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, 1986-1991 Balance Years. U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4006, 77 p.
Mernild S.H., Lipscomb W.H., Bahr D.B., Radić V. and Zemp M. (2013). Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties. The Cryosphere, 7, pp. 1565-1577. DOI: https://doi.org/10.5194/tc-7-1565-2013
Oosterbaan R.J. (1994). Frequency and regression analysis of hydrologic data. Part I : Frequency analysis. Chapter 6 in: H.P.Ritzema (Ed.), Drainage Principles and Applications, Publication 16, second revised edition. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. ISBN 90 70754 3 39.
Rets E., Chizhova J., Budantseva N., Frolova N., Kireeva M., Loshakova N., Tokarev I., Vasil’chuk Y. (2017). Evaluation of glacier melt contribution to runoff in the north Caucasus alpine catchments using isotopic methods and energy balance modeling. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 11, 3, pp. 4–19. https://doi.org/10.24057/2071-93882017-10-3-4-19
Rets E.P., Dzhamalov R.G., Kireeva M.B., Frolova N.L., Durmanov I.N., Telegina A.A., Telegina E.A., Grigoriev V.Y. (2018). RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY, 11, 3, pp. 61-70. https://doi.org/10.24057/2071-9388-2018-11-3-61-70
Rets E.P., Frolova N.L. and Popovnin V.V. (2011). Modelling the melting of mountain glacier surface. Ice and Snow, 4, pp. 42-31.
RGI Consortium. (2017). A Dataset of Global Glacier Outlines: Version 6.0. DOI: https://doi.org/10.7265/N5-RGI-60.
NWIS Site Information for Alaska: Site Inventory Official Website. [online]
Available at: https://waterdata.usgs.gov/ak/nwis/inventory/?site_no=15478040&agency_cd=USGS [Accessed 29 Nov. 2018].
Vilesov E.N. and Uvarov V.N. (2001). Evolution of present day glaciation in Zailiisky Alatau over the 20 century. Almaty: Kazak University. (in Russian with English summary).
WaSiM-ETH. Official Website. [online] WaSiM model. (2015). Available at: http://www.wasim.ch/en/the_model.html [Accessed 06 June. 2018].
Zemp M., Hoelzle M. and Haeberli W. (2009). Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Annals of Glaciology, 50, pp. 101-111.
Zemp M., Frey H., Gärtner-Roer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger F., Ahlstrøm A.P., Anderson B., Bajracharya S., Baroni C., Braun L.N., Cáceres B.E., Casassa G., Cobos G., Dávila L.R., Delgado Granados H., Demuth M., Espizua L., Fischer A., Fujita K., Gadek B., Ghazanfar A., Hagen J.O., Holmlund P., Karimi N., Li Z., Pelto M., Pitte P., Popovnin V.V., Portocarrero C.A., Prinz R., Sangewar C.V., Severskiy I., Sigurðsson O., Soruco A., Usubaliev R., Vincent C. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), pp. 745-761. DOI:10.3189/2015JoG15J017
https://ges.rgo.ru/jour/article/view/661
doi:10.24057/2071-9388-2018-26
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2018-26
https://doi.org/10.5194/tc-12-271-2018
https://doi.org/10.5904/wgms-fog-2017-10
https://doi.org/10.5194/tc-7-1565-2013
https://doi.org/10.24057/2071-93882017-10-3-4-19
https://doi.org/10.24057/2071-9388
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 12
container_issue 1
container_start_page 23
op_container_end_page 33
_version_ 1766003551114362880
spelling ftjges:oai:oai.gesj.elpub.ru:article/661 2023-05-15T13:29:50+02:00 Interrelation Between Glacier Summer Mass Balance And Runoff In Mountain River Basins V. Konovalov E. Rets N. Pimankina Institute of Geography RAS, in framework of scientific themes № 01482018-0008 and № 0148-2019-0004 RFBR № 16-35-60042, grants MON RK, № АР05133077 2019-03-28 application/pdf https://ges.rgo.ru/jour/article/view/661 https://doi.org/10.24057/2071-9388-2018-26 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/661/353 https://ges.rgo.ru/jour/article/downloadSuppFile/661/278 Aktru Glacier. (1987). Lednik Aktru. Leningrad: Gidrometeoizdat. (in Russian) Alexeev G.A. (1971). Objective methods of smoothing and normalization of correlation dependencies. Leningrad: Hydrometeoizdat. (in Russian with English summary) Bodo B.A. (2000). Monthly Discharges for 2400 Rivers and Streams of the former Soviet Union [FSU]. Borovikova L.N, Denisov Yu.M, Trofimova E.B. and Shentsis I.D. (1972). Mathematical modelling of mountain rivers runoff process. Leningrad: Hydrometeoizdat. (in Russian) Braithwaite R.J. (2009). After six decades of monitoring glacier mass balance, we still need data but it should be richer data. Annals of Glaciology, 50, pp. 191-197. Cogley J.G., Hock R., Rasmussen L.A., Arendt A.A., Bauder A, Braithwaite R.J., Jansson P., Kaser G., Möller M., Nicholson L. and Zemp M. (2011). Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris. Dahlke H.E., Lyon S.W., Stedinger J.R., Rosqvist G., and Jansson P. (2012). Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter? Hydrology and Earth System Sciences, 16, pp. 2123–2141. Available at: http://www.hydrol-earth-syst-sci.net/16/2123/2012/.doi:10.5194/hess-16-2123-2012 Davaze L., Rabatel A., Arnaud Y., Sirguey P., Six D., Letreguilly A., and Dumont M. (2018). Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data. The Cryosphere, 12, pp. 271-286. doi: https://doi.org/10.5194/tc-12-271-2018 Dyurgerov M. and Meier M.F. (2005). Glaciers and the Changing Earth System: A 2004 Snapshot. Occasional Paper 58: Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO. Dzhankuat Glacier. (1978). Lednik Djankuat. Leningrad: Gidrometeoizdat. (in Russian) Escher-Vetter H. and Reinwarth O. (1994). Two decades of runoff measurements (1974 to 1993) at the Pegelstation Vernagtbach/Oetztal Alps. Zeitschrift für Gletscherkunde und Glazialgeologie, Bd. 30 (1-2), pp. 53-98. Fluctuations of Glaciers Database. (2017). World Glacier Monitoring Service, Zurich, Switzerland. DOI:10.5904/wgms-fog-2017-10. Available at: http://dx.doi.org/10.5904/wgms-fog-2017-10 Fountain A.G., Hoffman M.J., Granshaw F., and Riedel J. (2009). The ‘benchmark glacier’ concept – does it work? Lessons from the North Cascade Range, USA. Annals of Glaciology, 50, pp. 163-168. Kamnyanskiy G.M. (2001). Total on measurement of mass balance on the Abramov Glacier in 1967-1988). Proceeding of SANIGMI, 161(242), pp. 122-131. (in Russian) Konovalov V.G. (2014). Modelling and reconstruction the parameters of rivers runoff and glaciers mass balance on the Northern Caucasus. Ice and Snow. 3, pp. 16-30. (in Russian with English summary) Konovalov V.G. (2015). New approach to estimate water output from regional populations of mountain glaciers in Asia. GES. Geography, Environment, Sustainability, 8(2), pp. 13-29. Konovalov V.G. and Pimankina N.V. (2016). Spatial and temporal change the components of water balance on the Northern side of ZailiiskyAlatau. Ice and Snow, 56 (4), pp. 453-471. (in Russian with English summary) Kotlyakov V.M., Osipova G.B., Popovnin V.V. and Cvetkov D.G. (1997). The last publications of the World Glaciers Monitoring Service: Traditions and Progress. MGI, 82, pp. 122-136. (in Russian) Kotlyakov V.M. (ed). (1984). Glaciological Dictionary. Leningrad: Gidrometeoizdat. (in Russian) Kotlyakov V.M., and Smolyarova N.A. (1990). Elsevier’s Dictionary of Glaciology in Four Languages. Amsterdam: Elsevier. Krimmel R.M. (2000). Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, 1986-1991 Balance Years. U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4006, 77 p. Mernild S.H., Lipscomb W.H., Bahr D.B., Radić V. and Zemp M. (2013). Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties. The Cryosphere, 7, pp. 1565-1577. DOI: https://doi.org/10.5194/tc-7-1565-2013 Oosterbaan R.J. (1994). Frequency and regression analysis of hydrologic data. Part I : Frequency analysis. Chapter 6 in: H.P.Ritzema (Ed.), Drainage Principles and Applications, Publication 16, second revised edition. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. ISBN 90 70754 3 39. Rets E., Chizhova J., Budantseva N., Frolova N., Kireeva M., Loshakova N., Tokarev I., Vasil’chuk Y. (2017). Evaluation of glacier melt contribution to runoff in the north Caucasus alpine catchments using isotopic methods and energy balance modeling. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 11, 3, pp. 4–19. https://doi.org/10.24057/2071-93882017-10-3-4-19 Rets E.P., Dzhamalov R.G., Kireeva M.B., Frolova N.L., Durmanov I.N., Telegina A.A., Telegina E.A., Grigoriev V.Y. (2018). RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY, 11, 3, pp. 61-70. https://doi.org/10.24057/2071-9388-2018-11-3-61-70 Rets E.P., Frolova N.L. and Popovnin V.V. (2011). Modelling the melting of mountain glacier surface. Ice and Snow, 4, pp. 42-31. RGI Consortium. (2017). A Dataset of Global Glacier Outlines: Version 6.0. DOI: https://doi.org/10.7265/N5-RGI-60. NWIS Site Information for Alaska: Site Inventory Official Website. [online] Available at: https://waterdata.usgs.gov/ak/nwis/inventory/?site_no=15478040&agency_cd=USGS [Accessed 29 Nov. 2018]. Vilesov E.N. and Uvarov V.N. (2001). Evolution of present day glaciation in Zailiisky Alatau over the 20 century. Almaty: Kazak University. (in Russian with English summary). WaSiM-ETH. Official Website. [online] WaSiM model. (2015). Available at: http://www.wasim.ch/en/the_model.html [Accessed 06 June. 2018]. Zemp M., Hoelzle M. and Haeberli W. (2009). Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Annals of Glaciology, 50, pp. 101-111. Zemp M., Frey H., Gärtner-Roer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger F., Ahlstrøm A.P., Anderson B., Bajracharya S., Baroni C., Braun L.N., Cáceres B.E., Casassa G., Cobos G., Dávila L.R., Delgado Granados H., Demuth M., Espizua L., Fischer A., Fujita K., Gadek B., Ghazanfar A., Hagen J.O., Holmlund P., Karimi N., Li Z., Pelto M., Pitte P., Popovnin V.V., Portocarrero C.A., Prinz R., Sangewar C.V., Severskiy I., Sigurðsson O., Soruco A., Usubaliev R., Vincent C. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), pp. 745-761. DOI:10.3189/2015JoG15J017 https://ges.rgo.ru/jour/article/view/661 doi:10.24057/2071-9388-2018-26 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 12, No 1 (2019); 23-33 2542-1565 2071-9388 summer mass balance glacier runoff glaciers representativeness extremes and norm multi-year series statistical averaging info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjges https://doi.org/10.24057/2071-9388-2018-26 https://doi.org/10.5194/tc-12-271-2018 https://doi.org/10.5904/wgms-fog-2017-10 https://doi.org/10.5194/tc-7-1565-2013 https://doi.org/10.24057/2071-93882017-10-3-4-19 https://doi.org/10.24057/2071-9388 2021-05-21T07:34:00Z Measurements of summer mass balance Bs, made over the period 1946-2016, on 56 continental glaciers, located in the basins of mountain rivers in 14 countries, were analysed for the purpose of resolving several tasks: (a) constructing physically based interrelations between river flow Wbas and Bs; (b) estimating the representativeness of local measurement of Bs for enhancement of hydrological computations and for control of modelled values Wbas; and (c) use of time series of Bs for the evaluation of norms and extrema of Wbas. Results of the study of the outlined problem serve as the basis for making the transition of local glaciological characteristics to the basin-wide level by using the relationship between runoff and summer balance of glaciers. It includes also analysis and conclusions on the spatial and temporal homogeneity of averaging glaciological mass balance data by the sampling method. Article in Journal/Newspaper Annals of Glaciology Arctic Arctic and Alpine Research Journal of Glaciology The Cryosphere Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 12 1 23 33