EXOGENOUS DRIVERS Of SURfACE URBAN HEAT ISLANDS IN NORTHERN wEST SIBERIA
Urban temperature anomalies, frequently referred to as the urban heat islands (UHIs), are of the most distinct and influential climatic factors with significant impact on urban life and environment. However, UHIs in high latitudes are still studied only fragmentary. There is a knowledge gap related...
Published in: | GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY |
---|---|
Main Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Russian Geographical Society
2018
|
Subjects: | |
Online Access: | https://ges.rgo.ru/jour/article/view/478 https://doi.org/10.24057/2071-9388-2018-11-3-83-99 |
_version_ | 1828683084472516608 |
---|---|
author | I. Esau V. Miles |
author_facet | I. Esau V. Miles |
author_sort | I. Esau |
collection | Geography, Environment, Sustainability |
container_issue | 3 |
container_start_page | 83 |
container_title | GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY |
container_volume | 11 |
description | Urban temperature anomalies, frequently referred to as the urban heat islands (UHIs), are of the most distinct and influential climatic factors with significant impact on urban life and environment. However, UHIs in high latitudes are still studied only fragmentary. There is a knowledge gap related to the urban temperature distinction with respect to local temperature anomalies of natural surface types. This study extends upon our recent high latitude regional-scale climatic survey in 28 cities in the Northern West Siberia (NWS) region. Based on MODIS land surface temperature (LST) products covering 15 years between 2001 and 2015, it was revealed that all 28 cities have significant surface urban heat islands (SUHIs). The strong statistical dependence (r = 0.73) on endogenous factors such as city size and the population was found. It was suggested that exogenous factors such as the background LC types could be significant as well. This study presents the analysis of the exogenous factors shaping the apparent SUHI intensities. The major contribution to the SUHI was revealed for water, sparse vegetation, grassland, and shrubland. There are no clear dependence between the partial SUHI intensity and the area fraction occupied by the given LC type. The mechanisms and pathways of the SUHI maintenance cannot be inferred solely from the remote sensing data. Further understanding requires numerical experiments with turbulence-resolving models. |
format | Article in Journal/Newspaper |
genre | Arctic Polar Geography The Cryosphere The Cryosphere Discussions Siberia |
genre_facet | Arctic Polar Geography The Cryosphere The Cryosphere Discussions Siberia |
id | ftjges:oai:oai.gesj.elpub.ru:article/478 |
institution | Open Polar |
language | English |
op_collection_id | ftjges |
op_container_end_page | 99 |
op_doi | https://doi.org/10.24057/2071-9388-2018-11-3-83-9910.1088/17489326/11/11/110.5194/tc-2018-150 |
op_relation | https://ges.rgo.ru/jour/article/view/478/331 Atlaskina K., Berninger F., de Leeuw G. (2015). Satellite observations of changes in snowcovered land surface albedo during spring in the Northern Hemisphere. The Cryosphere. Vol. 9. P. 1879-1893. Barichivich J., Briffa K.R., Myneni R., van der Schrier G., Dorigo W., Tucker C.J., Osborn T.J., Melvin T.M. (2014). Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. Remote Sens. Vol. 6. P. 1390-1431. Bonan G.B., Pollard D., Thompson S.L. (1992). Effects of boreal forest vegetation on global climate. Nature. Vol. 359. P. 716-718. Bonan G.B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science. Vol. 320. P. 1444-1449. Brunsell N.A., Mechem D.B., Anderson M.C. (2011). Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning. Atmos. Chem. Phys. Vol. 11. P. 34033416. Chen X., Su Z., Ma Y., Cleverly J., Liddell M. (2017). An Accurate Estimate of Monthly Mean Land Surface Temperatures from MODIS Clear-Sky Retrievals. J. Hydrometeorol. Vol. 18. P. 2827-2847. Comiso J. C. (2003). Warming Trends in the Arctic from Clear Sky Satellite Observations. J. Climate. Vol. 16. P. 3498-3510. Clinton N., Gong P. (2013). MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Env. Vol. 134. P. 294-304. Davy R., Esau I., Chernokulsky A., Outten S., Zilitinkevich S. (2017). Diurnal asymmetry to the observed global warming. Int. J. Climatol. Vol. 37. P. 79-93. Davy R., Esau I. (2014). Surface air temperature variability in global climate models. Atmos. Sci. Letters. Vol. 15. P. 13-20. Davy R., Esau I. (2016). Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nature Comm. Vol. 7. Art. ID. 11690. Dudorova N., Belan B. (2015). Thermal balance of the underlying surface in Tomsk during 2004-2005. Atmos. Ocean Optics. Vol. 28. No. 4. P. 318-327. Esau I., Davy R., Outten S. (2012). Complementary explanation of temperature response in the lower atmosphere. Env. Res. Letters. Vol. 7. Art. ID. 044026. Esau I., Miles V. (2016). Warmer urban climates for development of green spaces in northern Siberian cities. Geogr. Env. Sustain. Vol. 9. P. 48-62. Esau I., Miles V.V., Davy R., Miles M.W., Kurchatova A. (2016). Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia. Atmos. Chem. Phys. Vol. 16. P. 9563-9577. Flanner M.G. (2009). Integrating Anthropogenic Heat Flux with Global Climate Models. Geophys. Res. Lett. Vol. 36. No. 2. Art. ID. L02801. He J. F., Liu J. Y., Zhuang D. F., Zhang W., Liu M. L. (2007). Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theor. Appl. Climatol. // Vol. 90. P. 217-226. Hachem S., Duguay C. R., Allard M. (2012). Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. The Cryosphere. Vol. 6. P. 51-69. Heleniak T.E. (2009). The role of attachment to place in migration decisions of the population of the Russian North. Polar Geography. Vol. 32. P. 31-60. Hinkel K.M., Nelson F.E. (2007). Anthropogenic heat island at Barrow, Alaska, during winter: 2001-2005. J. Geophys. Res. Vol. 112. Art. ID. D06118 Hu Y., Jia G. (2010). Influence of land use change on urban heat island derived from multisensor data. Int. J. Climatol. Vol. 30. P. 1382-1395. Grebenets V.I., Streletskiy D., Shiklomanov N. (2012). Geotechnical safety issues in the cities of polar regions. Geography Env. Sustainability. Vol. 5. P. 104-119. Imhoff M.L., Zhang P., Wolfe R.E., Bounoua L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing Env. Vol. 114. P. 504-513. Jin M., Dickinson R. E. (2010). Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Enviromen. Res. Lett. Vol. 5. ID. 044004 Khrustalyov L., Davidova I. (2007). Forecast of climate warming and account of it at estimation of foundation reliability for buildings in permafrost zone. Earth Cryosphere. Vol. 11. P. 68-75. (in Russian) Konstantinov P.I., Grishchenko M.Y., Varentsov M.I. (2015). Mapping Urban Heat Islands of Arctic Cities Using Combined Data on Field Measurements and Satellite Images Based on the Example of the City of Apatity (Murmansk Oblast). Izvestiya, Atmos. Ocean. Phys. Vol. 51. P. 992-998. Konstantinov P., Varentsov M., Esau I. (2018). A high density urban temperature network deployed in several cities of Eurasian Arctic. Environ. Res. Lett. Vol. 13. ID. 075007. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift. Vol. 15. P. 259-263. Lapenis A., Shvidenko A., Shepaschenko D., Nilsson S., Aiyyer A. (2005). Acclimation of Russian forests to recent changes in climate. Global Change Biology. Vol. 11. P. 2090-2102. Lee X., Goulden M.L., Hollinger D.Y. et al. (2011). Observed increase in local cooling effect of deforestation at higher latitudes. Nature. Vol. 479. P. 384-387. Lemonsu A., Bélair S., Mailhot J., Benjamin M., Morneau G., Harvey B., Chagnon F., Jean M., Voogt J. (2008). Overview and First Results of the Montreal Urban Snow Experiment 2005. J. Appl. Meteorol. Climatol. Vol. 47. P. 59-75. Li Z.-L., Tang B.-H., Wu H., Ren H., Yan G., Wan Z., Trigo I.F., Sobrino J.A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing Env. Vol. 131. P. 14-37. Li Y., Zhao M., Motesharrei S., Mu Q., Kalnay E., Li S. (2015). Local cooling and warming effects of forests based on satellite observations. Nature Comm. Vol. 6. Art. ID. 6603. Li B., Liu Z., Nan Y., Li S., Yang Y. (2018). Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia. Sustainability. Vol. 10. ID. 2637 Lowry W. P. (1977). Empirical Estimation of Urban Effects on Climate: A Problem Analysis. J. Appl. Meteorol. Vol. 16. P. 129-135. Magee N., Curtis J., Wendler G. (1999). The Urban Heat Island Effect at Fairbanks, Alaska. Theor. Appl. Climatol. Vol. 64. P. 39-47. Makhrovskaya A.V., Vaytens M.Y., Panov L.K., Belinskiy A.Y. (1977). Urban planning and construction in the kola north (Part I). Polar Geography. Vol. 1. P. 205-216. Metz M., Andreo V., Neteler M. (2017). A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data. Remote Sens. Vol. 9. P. 1333 Miles V.V., Esau I. (2016). Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern West Siberia. Environ. Res. Lett. https://doi.org/10.1088/17489326/11/11/1 15002 Miles V., Esau I. (2017). Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs) in Northern West Siberian Cities. Remote Sensing. Vol. 9. Art. ID. 989 Mokhov I.I. (2009). Links between urban heat island intensity and its size and urban population. Doklady RAS. Vol. 427. P. 530-533. Mori K., Sato T. (2015). Evaluating the Role of Snow Cover in Urban Canopy Layer on the Urban Heat Island in Sapporo, Japan with a Regional Climate Model. J. Meteorol. Soc. Japan. Vol. 93. P. 581-592. Muster S., Langer M., Abnizova A., Young K., Boike J. (2015). Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote Sens. Environ. V. 168. P. 1-12. Nielsen-Englyst P., Høyer J.L., Madsen K.S., Dybkjær G., Tonboe R., Alerskans E. (2018). In situ observed relationships between skin temperatures and 2m air temperatures in the Arctic. The Cryosphere Discussions. https://doi.org/10.5194/tc-2018-150 Oke T.R. (1973). City size and the urban heat island. Atmos. Env. Vol. 7. P. 769-779. Peng S., Piao S., Ciais P., Friedlingstein P., Ottle C., Bréon F.-M., Nan H., Zhou L., Myneni R.B. (2012). Surface Urban Heat Island Across 419 Global Big Cities. Env. Sci. Technol. Vol. 46. P. 796703. Schwarz N., Lautenbach S., Seppelt R. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Env. Vol. 115. P. 3175-3186. Shastri H., Barik B., Ghosh S., Venkataraman C., Sadavarte P. (2017). Flip flop of day-night and summer-winter surface urban heat island intensity in India. Scientific Reports. Vol. 7. ID. 40178 Shiklomanov N.I., Streletskiy D.A., Swales T.W., Kokorev V.A. (2016). Climate change and stability of urban infrastructure in Russian permafrost regions: prognostic assessment based on GCM climate projections. Geograph. Rev. P. 1-18. |
op_rights | Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
op_source | GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 11, No 3 (2018); 83-99 2542-1565 2071-9388 |
publishDate | 2018 |
publisher | Russian Geographical Society |
record_format | openpolar |
spelling | ftjges:oai:oai.gesj.elpub.ru:article/478 2025-04-06T14:41:39+00:00 EXOGENOUS DRIVERS Of SURfACE URBAN HEAT ISLANDS IN NORTHERN wEST SIBERIA I. Esau V. Miles 2018-09-29 application/pdf https://ges.rgo.ru/jour/article/view/478 https://doi.org/10.24057/2071-9388-2018-11-3-83-99 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/478/331 Atlaskina K., Berninger F., de Leeuw G. (2015). Satellite observations of changes in snowcovered land surface albedo during spring in the Northern Hemisphere. The Cryosphere. Vol. 9. P. 1879-1893. Barichivich J., Briffa K.R., Myneni R., van der Schrier G., Dorigo W., Tucker C.J., Osborn T.J., Melvin T.M. (2014). Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. Remote Sens. Vol. 6. P. 1390-1431. Bonan G.B., Pollard D., Thompson S.L. (1992). Effects of boreal forest vegetation on global climate. Nature. Vol. 359. P. 716-718. Bonan G.B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science. Vol. 320. P. 1444-1449. Brunsell N.A., Mechem D.B., Anderson M.C. (2011). Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning. Atmos. Chem. Phys. Vol. 11. P. 34033416. Chen X., Su Z., Ma Y., Cleverly J., Liddell M. (2017). An Accurate Estimate of Monthly Mean Land Surface Temperatures from MODIS Clear-Sky Retrievals. J. Hydrometeorol. Vol. 18. P. 2827-2847. Comiso J. C. (2003). Warming Trends in the Arctic from Clear Sky Satellite Observations. J. Climate. Vol. 16. P. 3498-3510. Clinton N., Gong P. (2013). MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Env. Vol. 134. P. 294-304. Davy R., Esau I., Chernokulsky A., Outten S., Zilitinkevich S. (2017). Diurnal asymmetry to the observed global warming. Int. J. Climatol. Vol. 37. P. 79-93. Davy R., Esau I. (2014). Surface air temperature variability in global climate models. Atmos. Sci. Letters. Vol. 15. P. 13-20. Davy R., Esau I. (2016). Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nature Comm. Vol. 7. Art. ID. 11690. Dudorova N., Belan B. (2015). Thermal balance of the underlying surface in Tomsk during 2004-2005. Atmos. Ocean Optics. Vol. 28. No. 4. P. 318-327. Esau I., Davy R., Outten S. (2012). Complementary explanation of temperature response in the lower atmosphere. Env. Res. Letters. Vol. 7. Art. ID. 044026. Esau I., Miles V. (2016). Warmer urban climates for development of green spaces in northern Siberian cities. Geogr. Env. Sustain. Vol. 9. P. 48-62. Esau I., Miles V.V., Davy R., Miles M.W., Kurchatova A. (2016). Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia. Atmos. Chem. Phys. Vol. 16. P. 9563-9577. Flanner M.G. (2009). Integrating Anthropogenic Heat Flux with Global Climate Models. Geophys. Res. Lett. Vol. 36. No. 2. Art. ID. L02801. He J. F., Liu J. Y., Zhuang D. F., Zhang W., Liu M. L. (2007). Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theor. Appl. Climatol. // Vol. 90. P. 217-226. Hachem S., Duguay C. R., Allard M. (2012). Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. The Cryosphere. Vol. 6. P. 51-69. Heleniak T.E. (2009). The role of attachment to place in migration decisions of the population of the Russian North. Polar Geography. Vol. 32. P. 31-60. Hinkel K.M., Nelson F.E. (2007). Anthropogenic heat island at Barrow, Alaska, during winter: 2001-2005. J. Geophys. Res. Vol. 112. Art. ID. D06118 Hu Y., Jia G. (2010). Influence of land use change on urban heat island derived from multisensor data. Int. J. Climatol. Vol. 30. P. 1382-1395. Grebenets V.I., Streletskiy D., Shiklomanov N. (2012). Geotechnical safety issues in the cities of polar regions. Geography Env. Sustainability. Vol. 5. P. 104-119. Imhoff M.L., Zhang P., Wolfe R.E., Bounoua L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing Env. Vol. 114. P. 504-513. Jin M., Dickinson R. E. (2010). Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Enviromen. Res. Lett. Vol. 5. ID. 044004 Khrustalyov L., Davidova I. (2007). Forecast of climate warming and account of it at estimation of foundation reliability for buildings in permafrost zone. Earth Cryosphere. Vol. 11. P. 68-75. (in Russian) Konstantinov P.I., Grishchenko M.Y., Varentsov M.I. (2015). Mapping Urban Heat Islands of Arctic Cities Using Combined Data on Field Measurements and Satellite Images Based on the Example of the City of Apatity (Murmansk Oblast). Izvestiya, Atmos. Ocean. Phys. Vol. 51. P. 992-998. Konstantinov P., Varentsov M., Esau I. (2018). A high density urban temperature network deployed in several cities of Eurasian Arctic. Environ. Res. Lett. Vol. 13. ID. 075007. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift. Vol. 15. P. 259-263. Lapenis A., Shvidenko A., Shepaschenko D., Nilsson S., Aiyyer A. (2005). Acclimation of Russian forests to recent changes in climate. Global Change Biology. Vol. 11. P. 2090-2102. Lee X., Goulden M.L., Hollinger D.Y. et al. (2011). Observed increase in local cooling effect of deforestation at higher latitudes. Nature. Vol. 479. P. 384-387. Lemonsu A., Bélair S., Mailhot J., Benjamin M., Morneau G., Harvey B., Chagnon F., Jean M., Voogt J. (2008). Overview and First Results of the Montreal Urban Snow Experiment 2005. J. Appl. Meteorol. Climatol. Vol. 47. P. 59-75. Li Z.-L., Tang B.-H., Wu H., Ren H., Yan G., Wan Z., Trigo I.F., Sobrino J.A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing Env. Vol. 131. P. 14-37. Li Y., Zhao M., Motesharrei S., Mu Q., Kalnay E., Li S. (2015). Local cooling and warming effects of forests based on satellite observations. Nature Comm. Vol. 6. Art. ID. 6603. Li B., Liu Z., Nan Y., Li S., Yang Y. (2018). Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia. Sustainability. Vol. 10. ID. 2637 Lowry W. P. (1977). Empirical Estimation of Urban Effects on Climate: A Problem Analysis. J. Appl. Meteorol. Vol. 16. P. 129-135. Magee N., Curtis J., Wendler G. (1999). The Urban Heat Island Effect at Fairbanks, Alaska. Theor. Appl. Climatol. Vol. 64. P. 39-47. Makhrovskaya A.V., Vaytens M.Y., Panov L.K., Belinskiy A.Y. (1977). Urban planning and construction in the kola north (Part I). Polar Geography. Vol. 1. P. 205-216. Metz M., Andreo V., Neteler M. (2017). A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data. Remote Sens. Vol. 9. P. 1333 Miles V.V., Esau I. (2016). Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern West Siberia. Environ. Res. Lett. https://doi.org/10.1088/17489326/11/11/1 15002 Miles V., Esau I. (2017). Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs) in Northern West Siberian Cities. Remote Sensing. Vol. 9. Art. ID. 989 Mokhov I.I. (2009). Links between urban heat island intensity and its size and urban population. Doklady RAS. Vol. 427. P. 530-533. Mori K., Sato T. (2015). Evaluating the Role of Snow Cover in Urban Canopy Layer on the Urban Heat Island in Sapporo, Japan with a Regional Climate Model. J. Meteorol. Soc. Japan. Vol. 93. P. 581-592. Muster S., Langer M., Abnizova A., Young K., Boike J. (2015). Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote Sens. Environ. V. 168. P. 1-12. Nielsen-Englyst P., Høyer J.L., Madsen K.S., Dybkjær G., Tonboe R., Alerskans E. (2018). In situ observed relationships between skin temperatures and 2m air temperatures in the Arctic. The Cryosphere Discussions. https://doi.org/10.5194/tc-2018-150 Oke T.R. (1973). City size and the urban heat island. Atmos. Env. Vol. 7. P. 769-779. Peng S., Piao S., Ciais P., Friedlingstein P., Ottle C., Bréon F.-M., Nan H., Zhou L., Myneni R.B. (2012). Surface Urban Heat Island Across 419 Global Big Cities. Env. Sci. Technol. Vol. 46. P. 796703. Schwarz N., Lautenbach S., Seppelt R. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Env. Vol. 115. P. 3175-3186. Shastri H., Barik B., Ghosh S., Venkataraman C., Sadavarte P. (2017). Flip flop of day-night and summer-winter surface urban heat island intensity in India. Scientific Reports. Vol. 7. ID. 40178 Shiklomanov N.I., Streletskiy D.A., Swales T.W., Kokorev V.A. (2016). Climate change and stability of urban infrastructure in Russian permafrost regions: prognostic assessment based on GCM climate projections. Geograph. Rev. P. 1-18. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 11, No 3 (2018); 83-99 2542-1565 2071-9388 Sustainable urban development Remote sensing MODIS Siberia Exogenous factors of urban climate info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2018 ftjges https://doi.org/10.24057/2071-9388-2018-11-3-83-9910.1088/17489326/11/11/110.5194/tc-2018-150 2025-03-10T11:35:07Z Urban temperature anomalies, frequently referred to as the urban heat islands (UHIs), are of the most distinct and influential climatic factors with significant impact on urban life and environment. However, UHIs in high latitudes are still studied only fragmentary. There is a knowledge gap related to the urban temperature distinction with respect to local temperature anomalies of natural surface types. This study extends upon our recent high latitude regional-scale climatic survey in 28 cities in the Northern West Siberia (NWS) region. Based on MODIS land surface temperature (LST) products covering 15 years between 2001 and 2015, it was revealed that all 28 cities have significant surface urban heat islands (SUHIs). The strong statistical dependence (r = 0.73) on endogenous factors such as city size and the population was found. It was suggested that exogenous factors such as the background LC types could be significant as well. This study presents the analysis of the exogenous factors shaping the apparent SUHI intensities. The major contribution to the SUHI was revealed for water, sparse vegetation, grassland, and shrubland. There are no clear dependence between the partial SUHI intensity and the area fraction occupied by the given LC type. The mechanisms and pathways of the SUHI maintenance cannot be inferred solely from the remote sensing data. Further understanding requires numerical experiments with turbulence-resolving models. Article in Journal/Newspaper Arctic Polar Geography The Cryosphere The Cryosphere Discussions Siberia Geography, Environment, Sustainability GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 11 3 83 99 |
spellingShingle | Sustainable urban development Remote sensing MODIS Siberia Exogenous factors of urban climate I. Esau V. Miles EXOGENOUS DRIVERS Of SURfACE URBAN HEAT ISLANDS IN NORTHERN wEST SIBERIA |
title | EXOGENOUS DRIVERS Of SURfACE URBAN HEAT ISLANDS IN NORTHERN wEST SIBERIA |
title_full | EXOGENOUS DRIVERS Of SURfACE URBAN HEAT ISLANDS IN NORTHERN wEST SIBERIA |
title_fullStr | EXOGENOUS DRIVERS Of SURfACE URBAN HEAT ISLANDS IN NORTHERN wEST SIBERIA |
title_full_unstemmed | EXOGENOUS DRIVERS Of SURfACE URBAN HEAT ISLANDS IN NORTHERN wEST SIBERIA |
title_short | EXOGENOUS DRIVERS Of SURfACE URBAN HEAT ISLANDS IN NORTHERN wEST SIBERIA |
title_sort | exogenous drivers of surface urban heat islands in northern west siberia |
topic | Sustainable urban development Remote sensing MODIS Siberia Exogenous factors of urban climate |
topic_facet | Sustainable urban development Remote sensing MODIS Siberia Exogenous factors of urban climate |
url | https://ges.rgo.ru/jour/article/view/478 https://doi.org/10.24057/2071-9388-2018-11-3-83-99 |