RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS

Based on observational data from 70 hydrological stations in the North Caucasus an evaluation of present values of mean annual runoff, minimum monthly winter and summer runoff was carried out. Series of maps was drawn. Significant changes in mean annual. minimum monthly and maximum runoff during las...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: E. Rets P., R. Dzhamalov G., M. Kireeva B., N. Frolova L., I. Durmanov N., A. Telegina A., E. Telegina A., V. Grigoriev Yu.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2018
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/476
https://doi.org/10.24057/2071-9388-2018-11-3-61-70
id ftjges:oai:oai.gesj.elpub.ru:article/476
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic Water resources
mean annual runoff
minimum monthly runoff
maximum discharge
climate change
hydrological hazards
North Caucasus
spellingShingle Water resources
mean annual runoff
minimum monthly runoff
maximum discharge
climate change
hydrological hazards
North Caucasus
E. Rets P.
R. Dzhamalov G.
M. Kireeva B.
N. Frolova L.
I. Durmanov N.
A. Telegina A.
E. Telegina A.
V. Grigoriev Yu.
RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS
topic_facet Water resources
mean annual runoff
minimum monthly runoff
maximum discharge
climate change
hydrological hazards
North Caucasus
description Based on observational data from 70 hydrological stations in the North Caucasus an evaluation of present values of mean annual runoff, minimum monthly winter and summer runoff was carried out. Series of maps was drawn. Significant changes in mean annual. minimum monthly and maximum runoff during last decades have been revealed in the North Caucasus. A rise in both amount of water availability and potential natural hazard is characteristic of the most of the North Caucasus that is considered to be caused by recent climate change. Mean annual runoff during 1978-2010 increased compared to 1945-1977 by 5-30 % in the foothills and by 30-70% in the plain area. An increase in winter minimum monthly runoff is as well most intensive in the plain part of study area (>100%). Within the foothills it amounts to 50-100%. In mountainous area long-term oscillation of winter minimum monthly discharge strongly depends on local factors, such as geological structure. The rate of the increase in summer minimum monthly discharge regularly grows from central foothill part of Northern Caucasus (30-50%) to the Western plain territory (70-100%). In Kuban river basin 30% of analyzed gauging stations show positive trend in maximum instantaneous discharge, while 9% negative. On the contrary, in the Eastern part – Terek river basin – negative trend in maximum instantaneous discharge is prevalent: 38% of gauging stations. Positive trend in Terek river basin is characteristic of 9.5% of analyzed gauging stations.
format Article in Journal/Newspaper
author E. Rets P.
R. Dzhamalov G.
M. Kireeva B.
N. Frolova L.
I. Durmanov N.
A. Telegina A.
E. Telegina A.
V. Grigoriev Yu.
author_facet E. Rets P.
R. Dzhamalov G.
M. Kireeva B.
N. Frolova L.
I. Durmanov N.
A. Telegina A.
E. Telegina A.
V. Grigoriev Yu.
author_sort E. Rets P.
title RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS
title_short RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS
title_full RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS
title_fullStr RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS
title_full_unstemmed RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS
title_sort recent trends of river runoff in the north caucasus
publisher Russian Geographical Society
publishDate 2018
url https://ges.rgo.ru/jour/article/view/476
https://doi.org/10.24057/2071-9388-2018-11-3-61-70
genre Annals of Glaciology
Arctic
Journal of Glaciology
The Cryosphere
genre_facet Annals of Glaciology
Arctic
Journal of Glaciology
The Cryosphere
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 11, No 3 (2018); 61-70
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/476/329
Alekseev G.V., Ananicheva M.D., Anisimov O.A., Ashik I.M., Bardin M. Yu., Bogdanova E.G. and others (2014). The second assessment report of Roshydromet on climate change and its consequences on the territory of the Russian Federation. State Scientific Center of the Russian Federation «Arctic and Antarctic Research Institute» Federal Service of Russia for Hydrometeorology and Environmental Monitoring.
Bazelyuk A.A. and Lurie P.M. (2014). Catastrophic floods in southern Russia: Causes and impact assessment. In: River flows: spatio-temporal variability and hazardous hydrological phenomena. Collection of works of the Third Conference Room Research and Education Center. November 13, 2014, Moscow, Department of hydrology. M.V. Lomonosov Moscow State University, IWP RAS, pp. 44-60.
Dzhamalov R., Frolova N., Kireeva M., Rets E. (2014). Present-day surface and subsurface water resources of European Russia: conditions, use and forecast Hydrology in Changing World: Environmental and Human Dimensions. Proc. of FRIEND-Water 2014, IAHS Publ 363, 2014. pp. 215-220.
Frolova N. L., Kireeva M. B., Magritсkiy D. V., Bolgov M. B., Kopylov V. N., Hall J., Semenov V. A., Kosolapov A. E., Dorozhkin E. V., Korobkina E. A., Rets E. P., Akutina Y., Dzhamalov R. G., Efremova N. A., Sazonov A. A., Agafonova S. A., Belyakova P. A. (2017). Hydrological hazards in Russia: origin, classification, changes and risk assessment. Natural Hazards, 88, 1, pp.103– 131.
Grishenko N.S., Shevchenko G.V. Marchenko A.A. (2003). Preventing harmful effects of water from the spring floods and rain floods on the territory of floodplains (lakes) of the Russian Federation. Proc. rep. Proc. Congress of workers in Water Resources. Moscow, 191192, 2003.
Kireeva M., Frolova N., Rets E. et al. (2015) The role of seasonal and occasional floods in the origin of extreme hydrological events. Proc. IAHS., 369, pp. 37–41.
Kotlyakov V. M., Koronkevich N. I., Desinov L. V., Dolgov S. V., and Vishnevskaya I. A. (2016). Catastrophic flood in the russian town krymsk (north caucasus, 6-7 july, 2012) - analysis of natural and anthropogenic causes. Journal of Contemporary Management. Academic Research Centre of Canada. 5, 4, pp. 1–11.
Lurie P. M. (2002). Water resources and water balance of the Caucasus. SPb .: Gidrometeoizdat. Malneva I. V. and Kononova N. K. (2012). The activity of mudflows on the territory of Russia and the near abroad in the 21st century. Geo Risk, (4), pp. 48-54.
Melnikova T.N. (2011). The maximum runoff of rain floods in the rivers of the North-Western Caucasus. Bulletin of the Adyghe State University. Series 4: Natural and Mathematical and Technical Sciences, 3.
Melnikova T.N. (2010). The norm of the annual flow of the rivers of the North-Western Caucasus and the features of its territorial distribution. Bulletin of the Adyghe State University. Series 4: Natural and Mathematical and Technical Sciences, 2. Resources of Surface Waters of the USSR (1973). Vol.8, Lenengrad. 446 (in Russian).
Rets E., Chizhova J., Budantseva N., Frolova N., Kireeva M., Loshakova N., Tokarev I., Vasil’chuk Y. (2017a). Evaluation of glacier melt contribution to runoff in the north Caucasus alpine catchments using isotopic methods and energy balance modeling. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 11, 3, pp. 4–19.
Rets E., Chizhova J. N., Loshakova N., Tokarev I., Kireeva M. B., Budantseva N. A., Vasil’chuk Y. K., Frolova N., Popovnin V., Toropov P., Terskaya E., Smirnov A. M., Belozerov E., and Karashova M. (2017b). Using isotope methods to study alpine headwater regions in the northern Caucasus and Tien Shan. Frontiers of the Earth Science 11, 3, pp. 531–543.
Rets E. and Kireeva M. (2010). Hazardous hydrological processes in mountainous areas under the impact of recent climate change: case study of Terek River basin. Global Change: Facing Risks and Threats to Water Resources: proc. of the Sixth World FRIEND Conference. IAHS Publ. 340. 2010. Pp. 126−134.
Semenov V.A. and Korshunov A.A. (2008). Zoning of Russia territory in terms of dangerous river floods in the context of recent climate change. Water resources management under extreme conditions conference proceedings. Electronic resource. Moscow 3-6 June.
Seynova I. B. (2008). Climatic and glaciological conditions of debris flow formation in the Central Caucasus at a stage of regress of the little ice age. In: Debris Flows: Disasters, Risk, Forecast, Protection (ed. by S. S. Chernomorets). Pyatigorsk, Russia., pp. 121–124
Shahgedanova M., Nosenko G., Kutuzov S., Rototaeva O., and Khromova T. (2014). Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography. The Cryosphere, 8(6), 2367-2379.
Shahgedanova M., Popovnin V., Aleynikov A., Petrakov D.A., Stokes C.R. (2007). Long-term change, interannual and intra-seasonal variability in climate and glacier mass balance in the central greater Caucasus. Annals of Glaciology, 46: 355–361.
Shiklomanov A.I., Lammers R.B., Rawlins M.A., Smith L.C., Pavelsky T.M. (2007). Temporal and spatial variations in maximum river discharge from a new Russian data set. Journal of Geophysical Research: Biogeosciences, 112(G4).
Toropov P.А., Aleshina М.А., Kislov А.V., Semenov V.А. (2018). Trends of climate change in the Black sea – Caspian region in the last 30 years. Moscow University Vestnik. Series 5. Geography, 2.
Vishnevskaya I.A., Desinov L.V., Dolgov S.V., Koronkevich N.I., Shaporenko S.I., Kireeva M.B., Frolova N.L., Rets E.P., Golubchikov S.N. (2016). Geographic and hydrological assessment of floods in the Russian Black Sea region. Izvestiya of the Russian Academy of Sciences. Geographic series, 1, pp. 131-146.
Voitkovskiy K.F. and Volodicheva N.A. (2004). Evolution of Elbrus glacial system. Geography, Society and Environment, 1: 377–395 (in Russian).
Zemp M., Frey H., Gärtner-Roer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger F., Ahlstrøm A.P., Anderson B., and Bajracharya S. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), pp.745-762.
https://ges.rgo.ru/jour/article/view/476
doi:10.24057/2071-9388-2018-11-3-61-70
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2018-11-3-61-70
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 11
container_issue 3
container_start_page 61
op_container_end_page 70
_version_ 1766003804373778432
spelling ftjges:oai:oai.gesj.elpub.ru:article/476 2023-05-15T13:29:51+02:00 RECENT TRENDS Of RIVER RUNOff IN THE NORTH CAUCASUS E. Rets P. R. Dzhamalov G. M. Kireeva B. N. Frolova L. I. Durmanov N. A. Telegina A. E. Telegina A. V. Grigoriev Yu. 2018-09-29 application/pdf https://ges.rgo.ru/jour/article/view/476 https://doi.org/10.24057/2071-9388-2018-11-3-61-70 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/476/329 Alekseev G.V., Ananicheva M.D., Anisimov O.A., Ashik I.M., Bardin M. Yu., Bogdanova E.G. and others (2014). The second assessment report of Roshydromet on climate change and its consequences on the territory of the Russian Federation. State Scientific Center of the Russian Federation «Arctic and Antarctic Research Institute» Federal Service of Russia for Hydrometeorology and Environmental Monitoring. Bazelyuk A.A. and Lurie P.M. (2014). Catastrophic floods in southern Russia: Causes and impact assessment. In: River flows: spatio-temporal variability and hazardous hydrological phenomena. Collection of works of the Third Conference Room Research and Education Center. November 13, 2014, Moscow, Department of hydrology. M.V. Lomonosov Moscow State University, IWP RAS, pp. 44-60. Dzhamalov R., Frolova N., Kireeva M., Rets E. (2014). Present-day surface and subsurface water resources of European Russia: conditions, use and forecast Hydrology in Changing World: Environmental and Human Dimensions. Proc. of FRIEND-Water 2014, IAHS Publ 363, 2014. pp. 215-220. Frolova N. L., Kireeva M. B., Magritсkiy D. V., Bolgov M. B., Kopylov V. N., Hall J., Semenov V. A., Kosolapov A. E., Dorozhkin E. V., Korobkina E. A., Rets E. P., Akutina Y., Dzhamalov R. G., Efremova N. A., Sazonov A. A., Agafonova S. A., Belyakova P. A. (2017). Hydrological hazards in Russia: origin, classification, changes and risk assessment. Natural Hazards, 88, 1, pp.103– 131. Grishenko N.S., Shevchenko G.V. Marchenko A.A. (2003). Preventing harmful effects of water from the spring floods and rain floods on the territory of floodplains (lakes) of the Russian Federation. Proc. rep. Proc. Congress of workers in Water Resources. Moscow, 191192, 2003. Kireeva M., Frolova N., Rets E. et al. (2015) The role of seasonal and occasional floods in the origin of extreme hydrological events. Proc. IAHS., 369, pp. 37–41. Kotlyakov V. M., Koronkevich N. I., Desinov L. V., Dolgov S. V., and Vishnevskaya I. A. (2016). Catastrophic flood in the russian town krymsk (north caucasus, 6-7 july, 2012) - analysis of natural and anthropogenic causes. Journal of Contemporary Management. Academic Research Centre of Canada. 5, 4, pp. 1–11. Lurie P. M. (2002). Water resources and water balance of the Caucasus. SPb .: Gidrometeoizdat. Malneva I. V. and Kononova N. K. (2012). The activity of mudflows on the territory of Russia and the near abroad in the 21st century. Geo Risk, (4), pp. 48-54. Melnikova T.N. (2011). The maximum runoff of rain floods in the rivers of the North-Western Caucasus. Bulletin of the Adyghe State University. Series 4: Natural and Mathematical and Technical Sciences, 3. Melnikova T.N. (2010). The norm of the annual flow of the rivers of the North-Western Caucasus and the features of its territorial distribution. Bulletin of the Adyghe State University. Series 4: Natural and Mathematical and Technical Sciences, 2. Resources of Surface Waters of the USSR (1973). Vol.8, Lenengrad. 446 (in Russian). Rets E., Chizhova J., Budantseva N., Frolova N., Kireeva M., Loshakova N., Tokarev I., Vasil’chuk Y. (2017a). Evaluation of glacier melt contribution to runoff in the north Caucasus alpine catchments using isotopic methods and energy balance modeling. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 11, 3, pp. 4–19. Rets E., Chizhova J. N., Loshakova N., Tokarev I., Kireeva M. B., Budantseva N. A., Vasil’chuk Y. K., Frolova N., Popovnin V., Toropov P., Terskaya E., Smirnov A. M., Belozerov E., and Karashova M. (2017b). Using isotope methods to study alpine headwater regions in the northern Caucasus and Tien Shan. Frontiers of the Earth Science 11, 3, pp. 531–543. Rets E. and Kireeva M. (2010). Hazardous hydrological processes in mountainous areas under the impact of recent climate change: case study of Terek River basin. Global Change: Facing Risks and Threats to Water Resources: proc. of the Sixth World FRIEND Conference. IAHS Publ. 340. 2010. Pp. 126−134. Semenov V.A. and Korshunov A.A. (2008). Zoning of Russia territory in terms of dangerous river floods in the context of recent climate change. Water resources management under extreme conditions conference proceedings. Electronic resource. Moscow 3-6 June. Seynova I. B. (2008). Climatic and glaciological conditions of debris flow formation in the Central Caucasus at a stage of regress of the little ice age. In: Debris Flows: Disasters, Risk, Forecast, Protection (ed. by S. S. Chernomorets). Pyatigorsk, Russia., pp. 121–124 Shahgedanova M., Nosenko G., Kutuzov S., Rototaeva O., and Khromova T. (2014). Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography. The Cryosphere, 8(6), 2367-2379. Shahgedanova M., Popovnin V., Aleynikov A., Petrakov D.A., Stokes C.R. (2007). Long-term change, interannual and intra-seasonal variability in climate and glacier mass balance in the central greater Caucasus. Annals of Glaciology, 46: 355–361. Shiklomanov A.I., Lammers R.B., Rawlins M.A., Smith L.C., Pavelsky T.M. (2007). Temporal and spatial variations in maximum river discharge from a new Russian data set. Journal of Geophysical Research: Biogeosciences, 112(G4). Toropov P.А., Aleshina М.А., Kislov А.V., Semenov V.А. (2018). Trends of climate change in the Black sea – Caspian region in the last 30 years. Moscow University Vestnik. Series 5. Geography, 2. Vishnevskaya I.A., Desinov L.V., Dolgov S.V., Koronkevich N.I., Shaporenko S.I., Kireeva M.B., Frolova N.L., Rets E.P., Golubchikov S.N. (2016). Geographic and hydrological assessment of floods in the Russian Black Sea region. Izvestiya of the Russian Academy of Sciences. Geographic series, 1, pp. 131-146. Voitkovskiy K.F. and Volodicheva N.A. (2004). Evolution of Elbrus glacial system. Geography, Society and Environment, 1: 377–395 (in Russian). Zemp M., Frey H., Gärtner-Roer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger F., Ahlstrøm A.P., Anderson B., and Bajracharya S. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), pp.745-762. https://ges.rgo.ru/jour/article/view/476 doi:10.24057/2071-9388-2018-11-3-61-70 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 11, No 3 (2018); 61-70 2542-1565 2071-9388 Water resources mean annual runoff minimum monthly runoff maximum discharge climate change hydrological hazards North Caucasus info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2018 ftjges https://doi.org/10.24057/2071-9388-2018-11-3-61-70 2021-05-21T07:34:48Z Based on observational data from 70 hydrological stations in the North Caucasus an evaluation of present values of mean annual runoff, minimum monthly winter and summer runoff was carried out. Series of maps was drawn. Significant changes in mean annual. minimum monthly and maximum runoff during last decades have been revealed in the North Caucasus. A rise in both amount of water availability and potential natural hazard is characteristic of the most of the North Caucasus that is considered to be caused by recent climate change. Mean annual runoff during 1978-2010 increased compared to 1945-1977 by 5-30 % in the foothills and by 30-70% in the plain area. An increase in winter minimum monthly runoff is as well most intensive in the plain part of study area (>100%). Within the foothills it amounts to 50-100%. In mountainous area long-term oscillation of winter minimum monthly discharge strongly depends on local factors, such as geological structure. The rate of the increase in summer minimum monthly discharge regularly grows from central foothill part of Northern Caucasus (30-50%) to the Western plain territory (70-100%). In Kuban river basin 30% of analyzed gauging stations show positive trend in maximum instantaneous discharge, while 9% negative. On the contrary, in the Eastern part – Terek river basin – negative trend in maximum instantaneous discharge is prevalent: 38% of gauging stations. Positive trend in Terek river basin is characteristic of 9.5% of analyzed gauging stations. Article in Journal/Newspaper Annals of Glaciology Arctic Journal of Glaciology The Cryosphere Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 11 3 61 70