TERRESTRIAL WATER STORAGE CHANGE OF EUROPEAN RUSSIA AND ITS IMPACT ON WATER BALANCE

Terrestrial water storage has a significant impact on the water balance of river basins. The analysis of its changes in the European part of Russia (EPR) using the GRACE (Gravity Recovery and Climate Experiment) data showed that its reduction was approximately150 mmfor 2002-2015 for the south of EPR...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Vadim Grigoriev Yu., Natalia Frolova L.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2018
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/379
https://doi.org/10.24057/2071-9388-2018-11-1-38-50
id ftjges:oai:oai.gesj.elpub.ru:article/379
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic GRACE
water balance
European Russia
soil water content
spellingShingle GRACE
water balance
European Russia
soil water content
Vadim Grigoriev Yu.
Natalia Frolova L.
TERRESTRIAL WATER STORAGE CHANGE OF EUROPEAN RUSSIA AND ITS IMPACT ON WATER BALANCE
topic_facet GRACE
water balance
European Russia
soil water content
description Terrestrial water storage has a significant impact on the water balance of river basins. The analysis of its changes in the European part of Russia (EPR) using the GRACE (Gravity Recovery and Climate Experiment) data showed that its reduction was approximately150 mmfor 2002-2015 for the south of EPR, especially the Don basin, which is caused rather by a decline in the storages of surface and ground waters then to changes in soil waters. Quasilinear relation between the values of terrestrial water storages and a river runoff for the period of a summer low water level for a number of rivers has been revealed.
format Article in Journal/Newspaper
author Vadim Grigoriev Yu.
Natalia Frolova L.
author_facet Vadim Grigoriev Yu.
Natalia Frolova L.
author_sort Vadim Grigoriev Yu.
title TERRESTRIAL WATER STORAGE CHANGE OF EUROPEAN RUSSIA AND ITS IMPACT ON WATER BALANCE
title_short TERRESTRIAL WATER STORAGE CHANGE OF EUROPEAN RUSSIA AND ITS IMPACT ON WATER BALANCE
title_full TERRESTRIAL WATER STORAGE CHANGE OF EUROPEAN RUSSIA AND ITS IMPACT ON WATER BALANCE
title_fullStr TERRESTRIAL WATER STORAGE CHANGE OF EUROPEAN RUSSIA AND ITS IMPACT ON WATER BALANCE
title_full_unstemmed TERRESTRIAL WATER STORAGE CHANGE OF EUROPEAN RUSSIA AND ITS IMPACT ON WATER BALANCE
title_sort terrestrial water storage change of european russia and its impact on water balance
publisher Russian Geographical Society
publishDate 2018
url https://ges.rgo.ru/jour/article/view/379
https://doi.org/10.24057/2071-9388-2018-11-1-38-50
genre Journal of Glaciology
genre_facet Journal of Glaciology
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 11, No 1 (2018); 38-50
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/379/302
Albergel C., De Rosnay P., Balsamo G., Isaksen L., Muñoz-Sabater J. (2012). Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations. Journal of Hydrometeorology, 13(5), pp. 1442-1460. DOI: https://doi.org/10.1175/JHM-D-11-0107.1.
Andrew, R., Guan, H., Batelaan, O. (2017). Estimation of GRACE water storage components by temporal decomposition. Journal of Hydrology, 552, pp. 341-350. DOI: https://dx.doi.org/10.1016/j.jhydrol.2017.06.016.
Babkin V.I., Vuglinsky V.S. (1982). Water balance of river basins. Leningrad: Hydrometeoizdat (in Russian).
Chambers D. P., Cazenave A., Champollion N., Dieng H., Llovel W., Forsberg R., Schuckmann K., Wada Y. (2017). Evaluation of the Global Mean Sea Level Budget between 1993 and 2014. Surveys in Geophysics. 38(1), pp. 309-327. DOI: http://dx.doi.org/10.1007/s10712-016-9381-3.
Chen X., Long D., Hong Y., Zeng C., Yan D. (2017 a). Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour. Res., 53(3), pp. 2431-2466. DOI:10.1002/2016WR019656.
Chen J. L.,Wilson C. R.,Tapley B. D., Save H., Cretaux J. F.(2017 b). Long-termandseasonal Caspian Sea level change from satellite gravity and altimeter measurements. Journal of Geophysical Research - Solid Earth, 122(3), pp. 2274-2290. DOI: https://dx.doi.org/10.1002/2016jb013595.
Demchenko P. F., Kislov A. V. (2010). Stochastic Dynamics of Natural Objects. Brownian Motion and Geophysical Applications. Moscow: GEOS. (in Russian).
Deng H., Chen Y. (2017). Influences of recent climate change and human activities on water storage variations in Central Asia. Journal of Hydrology, 544, pp. 46-57. DOI: https://dx.doi.org/10.1016/j.jhydrol.2016.11.006.
Dobslaw H., Bergmann-Wolf I., Dill R., Poropat L., Thomas M., Dahle C., Esselborn S., Konig R., Flechtner F. (2017). A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophysical Journal International, 211(1), pp. 263-269. DOI: https://dx.doi.org/10.1093/gji/ggx302.
Dolgonosov B. M. (2009). Nonlinear dynamics of ecological and hydrological processes. Moscow: LIBROKOM, p. 440. (in Russian).
Dzhamalov R. G., Frolova N. L., Kireeva M. B., Rets E. P., Safronova T. I., Bugrov A. A., Telegina I. A., Telegina E. A. (2015). Modern resources of underground and surface waters of the European Russia: formation, distribution, use. Moscow: GEOS, p. 315. (in Russian).
Eom J., Seo K.-W., Ryu D. (2017). Estimation of Amazon River discharge based on EOF analysis of GRACE gravity data. Remote Sens. Environ., 191, pp. 55-66. DOI: https://dx.doi.org/10.1016/j.rse.2017.01.011.
Forman B. A., Reichle R. H., Rodell M.(2012). Assimilationofterrestrialwaterstoragefrom GRACE in a snow-dominated basin. Water Resour. Res., 48(1), W01507. DOI:10.1029/2011WR011239.
Forootan E., Safari A., Mostafaie A., Schumacher M., Delavar M., Awange J. L. (2016). Large- Scale Total Water Storage and Water Flux Changes over the Arid and Semiarid Parts of the Middle East from GRACE and Reanalysis Products. Surveys in Geophysics, 38(3), pp 591-615. DOI: https://dx.doi.org/10.1007/s10712-016-9403-1.
Frolov A. V. (2011). Discrete dynamic-stochastic model of long-term river runoff variations. Water Resources, 38(5), pp. 583-592. DOI:10.1134/S0097807811040051.
Frolov A. V. (2014). Estimation of the statistical characteristics of long-term fluctuations in evaporation from large river catchments. Doklady Earth Sciences, 458(1), pp. 1183-1186. DOI:10.1134/S1028334X1409027X.
Frolova N., Belyakova P., Grigoriev V., Sazonov A., Zotov L. V., Jarsjö J. (2017). Runoff fluctuations in the Selenga river basin. Regional Environmental Change, 17(7), pp. 1965–1976. DOI: https://doi.org/10.1007/s10113-017-1199-0.
Girotto M., De Lannoy G. J. M., Reichle R. H., Rodell M., Draper C., Bhanja S. N., Mukherjee A. (2017). Benefitsand pitfalls of GRACEdataassimilation: Acasestudyofterrestrialwaterstorage depletion in India. Geophys. Res. Lett., 44(9), pp. 4107–4115. DOI:10.1002/2017GL072994.
https://grace.jpl.nasa.gov (2017). JPL data page. [online]. Available at: https://grace.jpl.nasa. gov/data/grace-months/. [Accessed 20 Oct. 2017].
Khaki M., Hoteit I., Kuhn M., Awange J., Forootan E., van Dijk A., Schumacher M., Pattiaratchi C. (2017). Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model. Advances in Water Resources, 107, pp. 301-316. https://dx.doi.org/10.1016/j.advwatres.2017.07.001.
Klemes V. (1974). The Hurst phenomenon— a puzzle? Water Resources Research, 10(4), pp. 675-688.
Klemes V. (1978). Physically based stochastic hydrologic analysis, Advances in Hydroscience, 11, 285– 356.
Klemes, V. (1978), Physically based stochastic hydrologic analysis, Adv. Hydrosci., 11, 285–356.
Kumar S. V., Zaitchik B. F., Peters-Lidard C. D. et al. (2016). Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System. Journal of Hydrometeorology, 17(7), pp. 1951-1972. DOI: https://dx.doi.org/10.1175/ jhm-d-15-0157.1.
Li Q., Zhong B., Luo Z. C., Yao C. L. (2016). GRACE-based estimates of water discharge over the Yellow River basin. Journal of Geodesy and Geodynamics, 7(3), pp. 187-193. DOI: https://dx.doi.org/10.1016/j.geog.2016.04.007.
Lin P., Wei J., Yang Z.-L., Zhang Y., Zhang K. (2016). Snow data assimilation-constrained land initialization improves seasonal temperature prediction. Geophysical Research Letters, 43(21), 11,423-11,432. DOI:10.1002/2016GL070966.
Liu Y. C., Hwang C. W., Han J. C., Kao R., Wu C. R., Shih H. C., Tangdamrongsub N. (2016). Sediment-Mass Accumulation Rate and Variability in the East China Sea Detected by GRACE. Remote Sensing, 8(9), 777. DOI: https://dx.doi.org/10.3390/rs8090777.
Lorenz C., Kunstmann H., Devaraju B., Tourian M.J., Sneeuw N., Riegger N. (2014). Large- Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances. Journal of Hydrometeorology, 15(6), рp. 2111-2139. DOI:10.1175/JHM-D-13-0157.1.
Naydenov V. I. (2004). Nonlinear dynamics of surface waters. Moscow: Nauka, p. 318 (in Russian).
Sakumura C., Bettadpur S., Bruinsma S. (2014). Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett. 41(5). pp. 1389- 1397. DOI:10.1002/2013GL058632
Save H., Bettadpur S., Tapley B. D. (2016). High-resolution CSR GRACE RL05 mascons. Journal of Geophysical Research-Solid Earth, 121(10), pp. 7547-7569. DOI: https://dx.doi.org/10.1002/2016jb013007.
Savin I.Y., Markov M. L., Ovechkin S. V., Isaev V. A. (2016). Trend in total terrestrial water storage at the European Russia detected based on GRACE DATA. Bulletin of V.V. Dokuchaev Soil Science Institute, 82, pp. 28-41. (in Russian with English abstract and title). DOI:10.19047/0136-1694- 2016-82-28-41.
Schlegel N. J., Wiese D. N., Larour E. Y., Watkins M. M., Box J. E., Fettweis X., van den Broeke M. R. (2016). Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003-2012). Cryosphere, 10(5), pp. 1965-1989. DOI: https://dx.doi.org/10.5194/tc-10-1965-2016.
Seo J. Y., Lee S.-I. (2017). Total discharge estimation in the Korean Peninsula using multi- satellite products. Water, 9(7), 532. DOI: https://dx.doi.org/10.3390/w9070532.
Shiklomanov I. A. (ed.). Water resources of Russia and their use. (2008). St. Petersburg: State Hydrological Institute (in Russian)
Springer A., Eicker A., Bettge A., Kusche J., Hense A. (2017). Evaluation of the Water Cycle in the European COSMO-REA6 Reanalysis Using GRACE. Water, 9(4), 289. DOI:10.3390/w9040289.
Tangdamrongsub N., Steele-Dunne S. C., Gunter B. C., Ditmar P. G., Sutanudjaja E. H., Sun Y., Xia T., Wang Z. (2017). Improving estimates of water resources in a semi-arid region by assimilating GRACE data into the PCR-GLOBWB hydrological model. Hydrol. Earth Syst. Sci., 21(4), pp. 2053-2074. DOI: https://doi.org/10.5194/hess-21-2053-2017.
Tian S., Tregoning P., Renzullo L. J., van Dijk A., Walker J. P., Pauwels V. R. N., Allgeyer S. (2017). Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resour. Res., 53(3), pp. 1820-1840. DOI:10.1002/2016WR019641.
Wahr J., Burgess E., Swenson S. (2016). Using GRACE and climate model simulations to predict mass loss of Alaskan glaciers through 2100. Journal of Glaciology, 62(234), pp. 623- 639. DOI: https://dx.doi.org/10.1017/jog.2016.49.
Xie Z. Y., Huete A., Ma X., Restrepo-Coupe N., Devadas R., Clarke K., Lewis M. (2016). Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multidecadal hydroclimatic extremes. Journal of Hydrology, 543, pp. 818-831. DOI: https://dx.doi.org/10.1016/j.jhydrol.2016.11.001.
Zaitchik B. F., Rodell M., Reichle R. H. (2008). Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin. Journal of Hydrometeorology, 9(3), рp. 535-548. DOI:10.1175/2007JHM951.1
Zhang Y. F., Yang Z. L. (2016). Estimating uncertainties in the newly developed multi-source land snow data assimilation system. Journal of Geophysical Research-Atmospheres, 121(14), pp. 8254-8268. DOI: https://dx.doi.org/10.1002/2015jd024248.
Zotov L., Frolova N., Grigoriev V., Kharlamov M. (2015). Application of the satellite system of the Earth’s gravity field measurement (GRACE) for the evaluation of water balance in river catchments. Moscow University Herald. Geography, (4), pp. 27-33. (in Russian with English abstract).
https://ges.rgo.ru/jour/article/view/379
doi:10.24057/2071-9388-2018-11-1-38-50
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2018-11-1-38-50
https://doi.org/10.1175/JHM-D-11-0107.1
https://doi.org/10.1016/j.jhydrol.2017.06.016
https://doi.org/10.1007/s10712-016-9381-3
https://doi.org/10.1002/2016jb013595
https://doi.org/10.1016/j.jhy
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 11
container_issue 1
container_start_page 38
op_container_end_page 50
_version_ 1766049234398740480
spelling ftjges:oai:oai.gesj.elpub.ru:article/379 2023-05-15T16:57:40+02:00 TERRESTRIAL WATER STORAGE CHANGE OF EUROPEAN RUSSIA AND ITS IMPACT ON WATER BALANCE Vadim Grigoriev Yu. Natalia Frolova L. 2018-03-30 application/pdf https://ges.rgo.ru/jour/article/view/379 https://doi.org/10.24057/2071-9388-2018-11-1-38-50 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/379/302 Albergel C., De Rosnay P., Balsamo G., Isaksen L., Muñoz-Sabater J. (2012). Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations. Journal of Hydrometeorology, 13(5), pp. 1442-1460. DOI: https://doi.org/10.1175/JHM-D-11-0107.1. Andrew, R., Guan, H., Batelaan, O. (2017). Estimation of GRACE water storage components by temporal decomposition. Journal of Hydrology, 552, pp. 341-350. DOI: https://dx.doi.org/10.1016/j.jhydrol.2017.06.016. Babkin V.I., Vuglinsky V.S. (1982). Water balance of river basins. Leningrad: Hydrometeoizdat (in Russian). Chambers D. P., Cazenave A., Champollion N., Dieng H., Llovel W., Forsberg R., Schuckmann K., Wada Y. (2017). Evaluation of the Global Mean Sea Level Budget between 1993 and 2014. Surveys in Geophysics. 38(1), pp. 309-327. DOI: http://dx.doi.org/10.1007/s10712-016-9381-3. Chen X., Long D., Hong Y., Zeng C., Yan D. (2017 a). Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour. Res., 53(3), pp. 2431-2466. DOI:10.1002/2016WR019656. Chen J. L.,Wilson C. R.,Tapley B. D., Save H., Cretaux J. F.(2017 b). Long-termandseasonal Caspian Sea level change from satellite gravity and altimeter measurements. Journal of Geophysical Research - Solid Earth, 122(3), pp. 2274-2290. DOI: https://dx.doi.org/10.1002/2016jb013595. Demchenko P. F., Kislov A. V. (2010). Stochastic Dynamics of Natural Objects. Brownian Motion and Geophysical Applications. Moscow: GEOS. (in Russian). Deng H., Chen Y. (2017). Influences of recent climate change and human activities on water storage variations in Central Asia. Journal of Hydrology, 544, pp. 46-57. DOI: https://dx.doi.org/10.1016/j.jhydrol.2016.11.006. Dobslaw H., Bergmann-Wolf I., Dill R., Poropat L., Thomas M., Dahle C., Esselborn S., Konig R., Flechtner F. (2017). A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophysical Journal International, 211(1), pp. 263-269. DOI: https://dx.doi.org/10.1093/gji/ggx302. Dolgonosov B. M. (2009). Nonlinear dynamics of ecological and hydrological processes. Moscow: LIBROKOM, p. 440. (in Russian). Dzhamalov R. G., Frolova N. L., Kireeva M. B., Rets E. P., Safronova T. I., Bugrov A. A., Telegina I. A., Telegina E. A. (2015). Modern resources of underground and surface waters of the European Russia: formation, distribution, use. Moscow: GEOS, p. 315. (in Russian). Eom J., Seo K.-W., Ryu D. (2017). Estimation of Amazon River discharge based on EOF analysis of GRACE gravity data. Remote Sens. Environ., 191, pp. 55-66. DOI: https://dx.doi.org/10.1016/j.rse.2017.01.011. Forman B. A., Reichle R. H., Rodell M.(2012). Assimilationofterrestrialwaterstoragefrom GRACE in a snow-dominated basin. Water Resour. Res., 48(1), W01507. DOI:10.1029/2011WR011239. Forootan E., Safari A., Mostafaie A., Schumacher M., Delavar M., Awange J. L. (2016). Large- Scale Total Water Storage and Water Flux Changes over the Arid and Semiarid Parts of the Middle East from GRACE and Reanalysis Products. Surveys in Geophysics, 38(3), pp 591-615. DOI: https://dx.doi.org/10.1007/s10712-016-9403-1. Frolov A. V. (2011). Discrete dynamic-stochastic model of long-term river runoff variations. Water Resources, 38(5), pp. 583-592. DOI:10.1134/S0097807811040051. Frolov A. V. (2014). Estimation of the statistical characteristics of long-term fluctuations in evaporation from large river catchments. Doklady Earth Sciences, 458(1), pp. 1183-1186. DOI:10.1134/S1028334X1409027X. Frolova N., Belyakova P., Grigoriev V., Sazonov A., Zotov L. V., Jarsjö J. (2017). Runoff fluctuations in the Selenga river basin. Regional Environmental Change, 17(7), pp. 1965–1976. DOI: https://doi.org/10.1007/s10113-017-1199-0. Girotto M., De Lannoy G. J. M., Reichle R. H., Rodell M., Draper C., Bhanja S. N., Mukherjee A. (2017). Benefitsand pitfalls of GRACEdataassimilation: Acasestudyofterrestrialwaterstorage depletion in India. Geophys. Res. Lett., 44(9), pp. 4107–4115. DOI:10.1002/2017GL072994. https://grace.jpl.nasa.gov (2017). JPL data page. [online]. Available at: https://grace.jpl.nasa. gov/data/grace-months/. [Accessed 20 Oct. 2017]. Khaki M., Hoteit I., Kuhn M., Awange J., Forootan E., van Dijk A., Schumacher M., Pattiaratchi C. (2017). Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model. Advances in Water Resources, 107, pp. 301-316. https://dx.doi.org/10.1016/j.advwatres.2017.07.001. Klemes V. (1974). The Hurst phenomenon— a puzzle? Water Resources Research, 10(4), pp. 675-688. Klemes V. (1978). Physically based stochastic hydrologic analysis, Advances in Hydroscience, 11, 285– 356. Klemes, V. (1978), Physically based stochastic hydrologic analysis, Adv. Hydrosci., 11, 285–356. Kumar S. V., Zaitchik B. F., Peters-Lidard C. D. et al. (2016). Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System. Journal of Hydrometeorology, 17(7), pp. 1951-1972. DOI: https://dx.doi.org/10.1175/ jhm-d-15-0157.1. Li Q., Zhong B., Luo Z. C., Yao C. L. (2016). GRACE-based estimates of water discharge over the Yellow River basin. Journal of Geodesy and Geodynamics, 7(3), pp. 187-193. DOI: https://dx.doi.org/10.1016/j.geog.2016.04.007. Lin P., Wei J., Yang Z.-L., Zhang Y., Zhang K. (2016). Snow data assimilation-constrained land initialization improves seasonal temperature prediction. Geophysical Research Letters, 43(21), 11,423-11,432. DOI:10.1002/2016GL070966. Liu Y. C., Hwang C. W., Han J. C., Kao R., Wu C. R., Shih H. C., Tangdamrongsub N. (2016). Sediment-Mass Accumulation Rate and Variability in the East China Sea Detected by GRACE. Remote Sensing, 8(9), 777. DOI: https://dx.doi.org/10.3390/rs8090777. Lorenz C., Kunstmann H., Devaraju B., Tourian M.J., Sneeuw N., Riegger N. (2014). Large- Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances. Journal of Hydrometeorology, 15(6), рp. 2111-2139. DOI:10.1175/JHM-D-13-0157.1. Naydenov V. I. (2004). Nonlinear dynamics of surface waters. Moscow: Nauka, p. 318 (in Russian). Sakumura C., Bettadpur S., Bruinsma S. (2014). Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett. 41(5). pp. 1389- 1397. DOI:10.1002/2013GL058632 Save H., Bettadpur S., Tapley B. D. (2016). High-resolution CSR GRACE RL05 mascons. Journal of Geophysical Research-Solid Earth, 121(10), pp. 7547-7569. DOI: https://dx.doi.org/10.1002/2016jb013007. Savin I.Y., Markov M. L., Ovechkin S. V., Isaev V. A. (2016). Trend in total terrestrial water storage at the European Russia detected based on GRACE DATA. Bulletin of V.V. Dokuchaev Soil Science Institute, 82, pp. 28-41. (in Russian with English abstract and title). DOI:10.19047/0136-1694- 2016-82-28-41. Schlegel N. J., Wiese D. N., Larour E. Y., Watkins M. M., Box J. E., Fettweis X., van den Broeke M. R. (2016). Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003-2012). Cryosphere, 10(5), pp. 1965-1989. DOI: https://dx.doi.org/10.5194/tc-10-1965-2016. Seo J. Y., Lee S.-I. (2017). Total discharge estimation in the Korean Peninsula using multi- satellite products. Water, 9(7), 532. DOI: https://dx.doi.org/10.3390/w9070532. Shiklomanov I. A. (ed.). Water resources of Russia and their use. (2008). St. Petersburg: State Hydrological Institute (in Russian) Springer A., Eicker A., Bettge A., Kusche J., Hense A. (2017). Evaluation of the Water Cycle in the European COSMO-REA6 Reanalysis Using GRACE. Water, 9(4), 289. DOI:10.3390/w9040289. Tangdamrongsub N., Steele-Dunne S. C., Gunter B. C., Ditmar P. G., Sutanudjaja E. H., Sun Y., Xia T., Wang Z. (2017). Improving estimates of water resources in a semi-arid region by assimilating GRACE data into the PCR-GLOBWB hydrological model. Hydrol. Earth Syst. Sci., 21(4), pp. 2053-2074. DOI: https://doi.org/10.5194/hess-21-2053-2017. Tian S., Tregoning P., Renzullo L. J., van Dijk A., Walker J. P., Pauwels V. R. N., Allgeyer S. (2017). Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resour. Res., 53(3), pp. 1820-1840. DOI:10.1002/2016WR019641. Wahr J., Burgess E., Swenson S. (2016). Using GRACE and climate model simulations to predict mass loss of Alaskan glaciers through 2100. Journal of Glaciology, 62(234), pp. 623- 639. DOI: https://dx.doi.org/10.1017/jog.2016.49. Xie Z. Y., Huete A., Ma X., Restrepo-Coupe N., Devadas R., Clarke K., Lewis M. (2016). Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multidecadal hydroclimatic extremes. Journal of Hydrology, 543, pp. 818-831. DOI: https://dx.doi.org/10.1016/j.jhydrol.2016.11.001. Zaitchik B. F., Rodell M., Reichle R. H. (2008). Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin. Journal of Hydrometeorology, 9(3), рp. 535-548. DOI:10.1175/2007JHM951.1 Zhang Y. F., Yang Z. L. (2016). Estimating uncertainties in the newly developed multi-source land snow data assimilation system. Journal of Geophysical Research-Atmospheres, 121(14), pp. 8254-8268. DOI: https://dx.doi.org/10.1002/2015jd024248. Zotov L., Frolova N., Grigoriev V., Kharlamov M. (2015). Application of the satellite system of the Earth’s gravity field measurement (GRACE) for the evaluation of water balance in river catchments. Moscow University Herald. Geography, (4), pp. 27-33. (in Russian with English abstract). https://ges.rgo.ru/jour/article/view/379 doi:10.24057/2071-9388-2018-11-1-38-50 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 11, No 1 (2018); 38-50 2542-1565 2071-9388 GRACE water balance European Russia soil water content info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2018 ftjges https://doi.org/10.24057/2071-9388-2018-11-1-38-50 https://doi.org/10.1175/JHM-D-11-0107.1 https://doi.org/10.1016/j.jhydrol.2017.06.016 https://doi.org/10.1007/s10712-016-9381-3 https://doi.org/10.1002/2016jb013595 https://doi.org/10.1016/j.jhy 2021-05-21T07:34:48Z Terrestrial water storage has a significant impact on the water balance of river basins. The analysis of its changes in the European part of Russia (EPR) using the GRACE (Gravity Recovery and Climate Experiment) data showed that its reduction was approximately150 mmfor 2002-2015 for the south of EPR, especially the Don basin, which is caused rather by a decline in the storages of surface and ground waters then to changes in soil waters. Quasilinear relation between the values of terrestrial water storages and a river runoff for the period of a summer low water level for a number of rivers has been revealed. Article in Journal/Newspaper Journal of Glaciology Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 11 1 38 50