Numerical Hydrodynamic Modelling As A Tool For Research And Use Of Tidal Rivers

Tidal estuaries play a crucial role, serving as major hubs for economic activities while also contributing to the preservation of natural diversity and bioproductivity. In Russia, these estuaries are primarily located in remote regions of the European North and the Far East, making them vital for en...

Full description

Bibliographic Details
Main Authors: Evgeniya D. Panchenko, Andrei M. Alabyan, Tatiana A. Fedorova
Other Authors: The authors are grateful to the participants of fieldwork – N.A. Demidenko, M. Leummens, L. Leummens, A. Popryadukhin, E. Fingert.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2024
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/3326
https://doi.org/10.24057/2071-9388-2023-3122
id ftjges:oai:oai.gesj.elpub.ru:article/3326
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability
op_collection_id ftjges
language English
topic Syomzha river
reverse current
energy potential
mathematical model
White Sea
spellingShingle Syomzha river
reverse current
energy potential
mathematical model
White Sea
Evgeniya D. Panchenko
Andrei M. Alabyan
Tatiana A. Fedorova
Numerical Hydrodynamic Modelling As A Tool For Research And Use Of Tidal Rivers
topic_facet Syomzha river
reverse current
energy potential
mathematical model
White Sea
description Tidal estuaries play a crucial role, serving as major hubs for economic activities while also contributing to the preservation of natural diversity and bioproductivity. In Russia, these estuaries are primarily located in remote regions of the European North and the Far East, making them vital for energy and transportation usage as they essentially form the ‘cores’ of territorial development along the Northern Sea Route. To facilitate the development of energy and navigation infrastructure in tidal estuaries, as well as to plan and implement environmental protection measures, it is essential to have a comprehensive understanding of their hydrological regime. Unlike regular river flow, tidal estuaries exhibit more complex hydrodynamics, influenced by both river and marine factors. Due to the considerable challenges of conducting field hydrological studies in remote areas, numerical hydrodynamic modelling has emerged as a valuable method for obtaining information on the flow and water level regime in tidal estuaries. This paper presents an application of one-dimensional HEC-RAS and two-dimensional STREAM_2D CUDA numerical models to investigate the parameters of reverse currents in the hypertidal Syomzha estuary flowing into the Mezen Bay of the White Sea. The limitations and accuracy of the models are discussed, along with the potential for their improvement considering recent advancements in understanding the hydraulics of reverse currents.
author2 The authors are grateful to the participants of fieldwork – N.A. Demidenko, M. Leummens, L. Leummens, A. Popryadukhin, E. Fingert.
format Article in Journal/Newspaper
author Evgeniya D. Panchenko
Andrei M. Alabyan
Tatiana A. Fedorova
author_facet Evgeniya D. Panchenko
Andrei M. Alabyan
Tatiana A. Fedorova
author_sort Evgeniya D. Panchenko
title Numerical Hydrodynamic Modelling As A Tool For Research And Use Of Tidal Rivers
title_short Numerical Hydrodynamic Modelling As A Tool For Research And Use Of Tidal Rivers
title_full Numerical Hydrodynamic Modelling As A Tool For Research And Use Of Tidal Rivers
title_fullStr Numerical Hydrodynamic Modelling As A Tool For Research And Use Of Tidal Rivers
title_full_unstemmed Numerical Hydrodynamic Modelling As A Tool For Research And Use Of Tidal Rivers
title_sort numerical hydrodynamic modelling as a tool for research and use of tidal rivers
publisher Russian Geographical Society
publishDate 2024
url https://ges.rgo.ru/jour/article/view/3326
https://doi.org/10.24057/2071-9388-2023-3122
genre Arctic
Mezen
Mezen Bay
Mezen'
Northern Sea Route
White Sea
genre_facet Arctic
Mezen
Mezen Bay
Mezen'
Northern Sea Route
White Sea
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 17, No 1 (2024); 36-43
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/3326/759
Abreu С., Barros M., Brito D., Teixeira M., Cunha A. (2020). Hydrodynamic Modeling and Simulation of Water Residence Time in the Estuary of the Lower Amazon River. Water, 12(3), 660, DOI:10.3390/w12030660.
Alabyan A., Panchenko E., Alekseeva A. (2018). Hydrodynamic features of small tidal estuaries of the White Sea basin // Vestnik Moskovskogo Universiteta, Seria 5 Geographia, 4, 39–48. (in Russian with English summary).
Alabyan A., Krylenko I., Lebedeva S., Panchenko E. (2022). World experience in numerical simulation of flow dynamics at river mouths. Water Resources, 49 (5), 766–780. DOI:10.1134/S0097807822050025.
Aleksyuk A., Belikov V. (2017). Simulation of shallow water flows with shoaling areas and bottom discontinuities. Computational Mathematics and Mathematical Physics, 57 (2), 318–339, DOI:10.1134/S0965542517020026.
Aleksyuk A., Belikov V. (2017). STREAM 2D CUDA program complex for calculation of currents, bottom deformations and pollution transport in open streams using CUDA technology (on NVIDIA GPUs). Software Registration Certificate No. 2017660266. (in Russian).
Anh D., Hoang L., Bui M., Rutschmann P. (2018). Simulating Future Flows and Salinity Intrusion Using Combined One- and TwoDimensional Hydrodynamic Modelling—The Case of Hau River, Vietnamese Mekong Delta. Water, 10(7), 897, DOI:10.3390/w10070897.
Brunner G. (2016). HEC-RAS River Analysis System User’s Manual. Version 5.0. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center, Davis, CA, USA. 960 p.
Chen W., Chen K., Kuang C., Zhu D., He L., Mao X., Liang H., Song H. (2016). Influence of sea level rise on saline water intrusion in the Yangtze River Estuary, China. Applied Ocean Research, 54, 12–25, DOI:10.1016/j.apor.2015.11.002.
Hoitink A., Jay D. (2016). Tidal river dynamics: Implications for deltas. Rev. Geophys., 54, 240–272, DOI:10.1002/2015RG000507.
Iglesias I., Bio A., Melo W., Avilez-Valente P., Pinho J., Cruz M., Gomes A., Vieira J., Bastos L., Veloso-Gomes F. (2022). Hydrodynamic Model Ensembles for Climate Change Projections in Estuarine Regions. Water, 14, 1966, DOI:10.3390/w14121966.
Jiang A., Ranasinghe R., Cowell P. (2013). Contemporary hydrodynamics and morphological change of a microtidal estuary: a numerical modelling study. Ocean Dynamics, 63(1), 21–41, DOI:10.1007/s10236-012-0583-z.
Jouanneau N., Sentchev A., Dumas F. (2013). Numerical modelling of circulation and dispersion processes in Boulogne-sur-Mer harbour (Eastern English Channel): Sensitivity to physical forcing and harbour design. Deutsche Hydrographische Zeitschrift, 63 (11–12), 321–1340, DOI:10.1007/s10236-013-0659-4.
Khanarmuei M., Suara K., Sumihar J., Brown R.J. (2020). Hydrodynamic modelling and model sensitivities to bed roughness and bathymetry offset in a micro-tidal estuary. Journal of Hydroinformatics, 22 (6), 1536–1553, DOI:10.2166/hydro.2020.102.
Khare V., Khare C., Nema S., Baredar P. (2019). Tidal Energy Systems. Design, Optimization and Control. Elsevier. DOI:10.1016/C2017-002279-6.
Lyddon C., Brown J., Leonardi N., Plater A. (2018). Flood Hazard Assessment for a Hyper-Tidal Estuary as a Function of Tide-SurgeMorphology Interaction. Estuaries and Coasts, 41, 1565–1586, DOI:10.1007/s12237-018-0384-9.
Matte, P., Secretan, Y., Morin, J. (2017). Hydrodynamic modeling of the St. Lawrence fluvial estuary. I: model setup, calibration, and validation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 143 (5), DOI:10.1061/(ASCE)WW.1943-5460.0000397.
Miskevich I., Alabyan A., Korobov V., Demidenko N., Popryadukhin A. (2018). Short-term variability of hydrological and hydrochemical characteristics of the Kyanda estuary in Onega bay, the White sea (July 28–August 15). Oceanology, 58(3), 350–353, DOI:10.1134/S000143701803013X.
Miskevich I., Korobov V., Alabyan A. (2018). Specificity of engineering-ecological surveys in small tidal estuaries of the western sector of the Russian Arctic. Engineering Survey, 12 (3-4), 50–61, DOI:10.25296/1997-8650-2018-12-3-4-50-61(in Russian with English summary)
McDowell D., O’Connor B. (1977). Hydraulic behavior of estuaries. London: Macmillan Press.
Mikhailov V. (1971). Flow and channel dynamics in non-tidal river mouths. Moscow: Gidrometeoizdat. (in Russian)
Mills L., Janeiro J., Martins F. (2021). Effects of sea level rise on salinity and tidal flooding patterns in the Guadiana Estuary. Journal of Water and Climate Change, 12 (7), 2933–2947, DOI:10.2166/wcc.2021.202.
Mohammadian A., Morse B., Robert J.-L. (2022). Calibration of a 3D hydrodynamic model for a hypertidal estuary with complex irregular bathymetry using adaptive parametrization of bottom roughness and eddy viscosity. Estuarine, Coastal and Shelf Science, 265, 107655, DOI:10.1016/j.ecss.2021.107655.
Neill S., Reza Hashemi M. (2018). Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea. London: Academic Press. DOI:10.1016/C2016-0-00230-9.
Panchenko E., Alabyan A., Demidenko N., Leummens M., Leummens L. (2020). Data from the research on hydrodynamic characteristics of the macrotidal estuary of the Semzha River (White Sea basin). Version 1, 4TU.ResearchData, dataset. DOI:10.4121/uuid:890d12be-ddc942dc-a889-752783670136.
Panchenko E., Alabyan A., Krylenko I., Lebedeva S. (2020). Modelling of hydrodynamic processes in the Onega and the Northern Dvina river mouths under different climate change scenarios. Proc. IX International Scientific and Practical Conference «Marine Research and Education (MARESEDU-2020)», 2, 72–75. (in Russian)
Panchenko E., Leummens M., Lebedeva S. (2020). Hydrodynamic modelling of the Onega river tidal estuary. E3S Web Conferences, 163, DOI:10.1051/e3sconf/202016301008.
Panchenko E., Alabyan A. (2022). Friction factor evaluation in tidal rivers and estuaries. METHODSX, 9, 101669, DOI:10.1016/j.mex.2022.101669.
Panchenko E. (2023). Experience of one-dimensional hydrodynamic modeling in micro-, meso- and macrotidal estuaries of small rivers. Collection of articles on the materials of the XIII seminar of young scientists of universities, united by the council on the problem of erosion, channel and estuarine processes. Moscow: Your format. 94–100. (in Russian).
Rahbani M. (2015). A comparison between the suspended sediment concentrations derived from DELFT3D model and collected using transmissometer – a case study in tidally dominated area of Dithmarschen Bight. Oceanologia, 57, 44–49, DOI:10.1016/j.oceano.2014.06.002.
Rtimi R., Sottolichio A., Tassi P. (2021). Hydrodynamics of a hyper-tidal estuary influenced by the world’s second largest tidal power station (Rance estuary, France). Estuarine, Coastal and Shelf Science, 250, 19, DOI:10.1016/j.ecss.2020.107143.
Samarasinghe J., Basnayaka V., Gunathilake M., Azamathulla H., Rathnayake U. (2022). Comparing Combined 1D/2D and 2D Hydraulic Simulations Using High-Resolution Topographic Data: Examples from Sri Lanka—Lower Kelani River Basin. Hydrology, 9 (2), 39, DOI:10.3390/hydrology9020039.
Savenije H. (2012). Salinity and tides in alluvial estuaries. 2nd completely revised ed. Delft: Delft University of Technology.
Veerapaga N., Azhikodan G., Shintani T., Iwamoto N., Yokoyama K. (2019). A three-dimensional environmental hydrodynamic model, Fantom-Refined: Validation and application for saltwater intrusion in a meso-macrotidal estuary. Ocean Modelling, 141, DOI:10.1016/j.ocemod.2019.101425.
Ward, P., Couasnon A., Eilander D., Haigh I., Hendry A., Muis S., Veldkamp T., Winsemius H., Wahl T. (2018). Dependence between high sealevel and high river discharge increases flood hazard in global deltas and estuaries. Environ. Res. Lett. 13, 084012, DOI:10.1088/1748-9326/aad400.
Yin Y., Karunarathna H., Reeve D. (2019). Numerical modelling of hydrodynamic and morphodynamic response of a meso-tidal estuary inlet to the impacts of global climate variabilities. Marine Geology, 407, 229–247, DOI:10.1016/j.margeo.2018.11.005.
Zheng P., Li M., Wang C., Wolf J., Chen X., De Dominicis M., Yao P., Hu Z. (2020). Tide-Surge Interaction in the Pearl River Estuary: A Case Study of Typhoon Hato. Frontiers in Marine Science, 7, DOI:10.3389/fmars.2020.00236.
https://ges.rgo.ru/jour/article/view/3326
doi:10.24057/2071-9388-2023-3122
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_doi https://doi.org/10.24057/2071-9388-2023-312210.3390/w1203066010.1134/S009780782205002510.1134/S096554251702002610.3390/w1007089710.1016/j.apor.2015.11.00210.1002/2015RG00050710.3390/w1412196610.1007/s10236-012-0583-z10.1007/s10236-013-0659-410.2166/hydro.
_version_ 1797575375528656896
spelling ftjges:oai:oai.gesj.elpub.ru:article/3326 2024-04-28T08:05:10+00:00 Numerical Hydrodynamic Modelling As A Tool For Research And Use Of Tidal Rivers Evgeniya D. Panchenko Andrei M. Alabyan Tatiana A. Fedorova The authors are grateful to the participants of fieldwork – N.A. Demidenko, M. Leummens, L. Leummens, A. Popryadukhin, E. Fingert. 2024-04-03 application/pdf https://ges.rgo.ru/jour/article/view/3326 https://doi.org/10.24057/2071-9388-2023-3122 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/3326/759 Abreu С., Barros M., Brito D., Teixeira M., Cunha A. (2020). Hydrodynamic Modeling and Simulation of Water Residence Time in the Estuary of the Lower Amazon River. Water, 12(3), 660, DOI:10.3390/w12030660. Alabyan A., Panchenko E., Alekseeva A. (2018). Hydrodynamic features of small tidal estuaries of the White Sea basin // Vestnik Moskovskogo Universiteta, Seria 5 Geographia, 4, 39–48. (in Russian with English summary). Alabyan A., Krylenko I., Lebedeva S., Panchenko E. (2022). World experience in numerical simulation of flow dynamics at river mouths. Water Resources, 49 (5), 766–780. DOI:10.1134/S0097807822050025. Aleksyuk A., Belikov V. (2017). Simulation of shallow water flows with shoaling areas and bottom discontinuities. Computational Mathematics and Mathematical Physics, 57 (2), 318–339, DOI:10.1134/S0965542517020026. Aleksyuk A., Belikov V. (2017). STREAM 2D CUDA program complex for calculation of currents, bottom deformations and pollution transport in open streams using CUDA technology (on NVIDIA GPUs). Software Registration Certificate No. 2017660266. (in Russian). Anh D., Hoang L., Bui M., Rutschmann P. (2018). Simulating Future Flows and Salinity Intrusion Using Combined One- and TwoDimensional Hydrodynamic Modelling—The Case of Hau River, Vietnamese Mekong Delta. Water, 10(7), 897, DOI:10.3390/w10070897. Brunner G. (2016). HEC-RAS River Analysis System User’s Manual. Version 5.0. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center, Davis, CA, USA. 960 p. Chen W., Chen K., Kuang C., Zhu D., He L., Mao X., Liang H., Song H. (2016). Influence of sea level rise on saline water intrusion in the Yangtze River Estuary, China. Applied Ocean Research, 54, 12–25, DOI:10.1016/j.apor.2015.11.002. Hoitink A., Jay D. (2016). Tidal river dynamics: Implications for deltas. Rev. Geophys., 54, 240–272, DOI:10.1002/2015RG000507. Iglesias I., Bio A., Melo W., Avilez-Valente P., Pinho J., Cruz M., Gomes A., Vieira J., Bastos L., Veloso-Gomes F. (2022). Hydrodynamic Model Ensembles for Climate Change Projections in Estuarine Regions. Water, 14, 1966, DOI:10.3390/w14121966. Jiang A., Ranasinghe R., Cowell P. (2013). Contemporary hydrodynamics and morphological change of a microtidal estuary: a numerical modelling study. Ocean Dynamics, 63(1), 21–41, DOI:10.1007/s10236-012-0583-z. Jouanneau N., Sentchev A., Dumas F. (2013). Numerical modelling of circulation and dispersion processes in Boulogne-sur-Mer harbour (Eastern English Channel): Sensitivity to physical forcing and harbour design. Deutsche Hydrographische Zeitschrift, 63 (11–12), 321–1340, DOI:10.1007/s10236-013-0659-4. Khanarmuei M., Suara K., Sumihar J., Brown R.J. (2020). Hydrodynamic modelling and model sensitivities to bed roughness and bathymetry offset in a micro-tidal estuary. Journal of Hydroinformatics, 22 (6), 1536–1553, DOI:10.2166/hydro.2020.102. Khare V., Khare C., Nema S., Baredar P. (2019). Tidal Energy Systems. Design, Optimization and Control. Elsevier. DOI:10.1016/C2017-002279-6. Lyddon C., Brown J., Leonardi N., Plater A. (2018). Flood Hazard Assessment for a Hyper-Tidal Estuary as a Function of Tide-SurgeMorphology Interaction. Estuaries and Coasts, 41, 1565–1586, DOI:10.1007/s12237-018-0384-9. Matte, P., Secretan, Y., Morin, J. (2017). Hydrodynamic modeling of the St. Lawrence fluvial estuary. I: model setup, calibration, and validation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 143 (5), DOI:10.1061/(ASCE)WW.1943-5460.0000397. Miskevich I., Alabyan A., Korobov V., Demidenko N., Popryadukhin A. (2018). Short-term variability of hydrological and hydrochemical characteristics of the Kyanda estuary in Onega bay, the White sea (July 28–August 15). Oceanology, 58(3), 350–353, DOI:10.1134/S000143701803013X. Miskevich I., Korobov V., Alabyan A. (2018). Specificity of engineering-ecological surveys in small tidal estuaries of the western sector of the Russian Arctic. Engineering Survey, 12 (3-4), 50–61, DOI:10.25296/1997-8650-2018-12-3-4-50-61(in Russian with English summary) McDowell D., O’Connor B. (1977). Hydraulic behavior of estuaries. London: Macmillan Press. Mikhailov V. (1971). Flow and channel dynamics in non-tidal river mouths. Moscow: Gidrometeoizdat. (in Russian) Mills L., Janeiro J., Martins F. (2021). Effects of sea level rise on salinity and tidal flooding patterns in the Guadiana Estuary. Journal of Water and Climate Change, 12 (7), 2933–2947, DOI:10.2166/wcc.2021.202. Mohammadian A., Morse B., Robert J.-L. (2022). Calibration of a 3D hydrodynamic model for a hypertidal estuary with complex irregular bathymetry using adaptive parametrization of bottom roughness and eddy viscosity. Estuarine, Coastal and Shelf Science, 265, 107655, DOI:10.1016/j.ecss.2021.107655. Neill S., Reza Hashemi M. (2018). Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea. London: Academic Press. DOI:10.1016/C2016-0-00230-9. Panchenko E., Alabyan A., Demidenko N., Leummens M., Leummens L. (2020). Data from the research on hydrodynamic characteristics of the macrotidal estuary of the Semzha River (White Sea basin). Version 1, 4TU.ResearchData, dataset. DOI:10.4121/uuid:890d12be-ddc942dc-a889-752783670136. Panchenko E., Alabyan A., Krylenko I., Lebedeva S. (2020). Modelling of hydrodynamic processes in the Onega and the Northern Dvina river mouths under different climate change scenarios. Proc. IX International Scientific and Practical Conference «Marine Research and Education (MARESEDU-2020)», 2, 72–75. (in Russian) Panchenko E., Leummens M., Lebedeva S. (2020). Hydrodynamic modelling of the Onega river tidal estuary. E3S Web Conferences, 163, DOI:10.1051/e3sconf/202016301008. Panchenko E., Alabyan A. (2022). Friction factor evaluation in tidal rivers and estuaries. METHODSX, 9, 101669, DOI:10.1016/j.mex.2022.101669. Panchenko E. (2023). Experience of one-dimensional hydrodynamic modeling in micro-, meso- and macrotidal estuaries of small rivers. Collection of articles on the materials of the XIII seminar of young scientists of universities, united by the council on the problem of erosion, channel and estuarine processes. Moscow: Your format. 94–100. (in Russian). Rahbani M. (2015). A comparison between the suspended sediment concentrations derived from DELFT3D model and collected using transmissometer – a case study in tidally dominated area of Dithmarschen Bight. Oceanologia, 57, 44–49, DOI:10.1016/j.oceano.2014.06.002. Rtimi R., Sottolichio A., Tassi P. (2021). Hydrodynamics of a hyper-tidal estuary influenced by the world’s second largest tidal power station (Rance estuary, France). Estuarine, Coastal and Shelf Science, 250, 19, DOI:10.1016/j.ecss.2020.107143. Samarasinghe J., Basnayaka V., Gunathilake M., Azamathulla H., Rathnayake U. (2022). Comparing Combined 1D/2D and 2D Hydraulic Simulations Using High-Resolution Topographic Data: Examples from Sri Lanka—Lower Kelani River Basin. Hydrology, 9 (2), 39, DOI:10.3390/hydrology9020039. Savenije H. (2012). Salinity and tides in alluvial estuaries. 2nd completely revised ed. Delft: Delft University of Technology. Veerapaga N., Azhikodan G., Shintani T., Iwamoto N., Yokoyama K. (2019). A three-dimensional environmental hydrodynamic model, Fantom-Refined: Validation and application for saltwater intrusion in a meso-macrotidal estuary. Ocean Modelling, 141, DOI:10.1016/j.ocemod.2019.101425. Ward, P., Couasnon A., Eilander D., Haigh I., Hendry A., Muis S., Veldkamp T., Winsemius H., Wahl T. (2018). Dependence between high sealevel and high river discharge increases flood hazard in global deltas and estuaries. Environ. Res. Lett. 13, 084012, DOI:10.1088/1748-9326/aad400. Yin Y., Karunarathna H., Reeve D. (2019). Numerical modelling of hydrodynamic and morphodynamic response of a meso-tidal estuary inlet to the impacts of global climate variabilities. Marine Geology, 407, 229–247, DOI:10.1016/j.margeo.2018.11.005. Zheng P., Li M., Wang C., Wolf J., Chen X., De Dominicis M., Yao P., Hu Z. (2020). Tide-Surge Interaction in the Pearl River Estuary: A Case Study of Typhoon Hato. Frontiers in Marine Science, 7, DOI:10.3389/fmars.2020.00236. https://ges.rgo.ru/jour/article/view/3326 doi:10.24057/2071-9388-2023-3122 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 17, No 1 (2024); 36-43 2542-1565 2071-9388 Syomzha river reverse current energy potential mathematical model White Sea info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2024 ftjges https://doi.org/10.24057/2071-9388-2023-312210.3390/w1203066010.1134/S009780782205002510.1134/S096554251702002610.3390/w1007089710.1016/j.apor.2015.11.00210.1002/2015RG00050710.3390/w1412196610.1007/s10236-012-0583-z10.1007/s10236-013-0659-410.2166/hydro. 2024-04-08T00:11:04Z Tidal estuaries play a crucial role, serving as major hubs for economic activities while also contributing to the preservation of natural diversity and bioproductivity. In Russia, these estuaries are primarily located in remote regions of the European North and the Far East, making them vital for energy and transportation usage as they essentially form the ‘cores’ of territorial development along the Northern Sea Route. To facilitate the development of energy and navigation infrastructure in tidal estuaries, as well as to plan and implement environmental protection measures, it is essential to have a comprehensive understanding of their hydrological regime. Unlike regular river flow, tidal estuaries exhibit more complex hydrodynamics, influenced by both river and marine factors. Due to the considerable challenges of conducting field hydrological studies in remote areas, numerical hydrodynamic modelling has emerged as a valuable method for obtaining information on the flow and water level regime in tidal estuaries. This paper presents an application of one-dimensional HEC-RAS and two-dimensional STREAM_2D CUDA numerical models to investigate the parameters of reverse currents in the hypertidal Syomzha estuary flowing into the Mezen Bay of the White Sea. The limitations and accuracy of the models are discussed, along with the potential for their improvement considering recent advancements in understanding the hydraulics of reverse currents. Article in Journal/Newspaper Arctic Mezen Mezen Bay Mezen' Northern Sea Route White Sea Geography, Environment, Sustainability