Seasonal Characteristics of Long-Range Transport and Potential Associated Sources of Particulate Matter (Pm10) Pollution at the Station Elk, Poland, on 2021-2022 Data

The current study aimed to determine the potential sources of distant emissions of PM10 particles that significantly affect PM10 levels at a given site in southeastern Baltic. The EEA Air Quality Monitoring Station in Elk City, northeastern Poland, was selected for this study. This station is locate...

Full description

Bibliographic Details
Main Authors: S. Abdo, Y. Koroleva
Other Authors: The authors express their gratitude to the Elk station team and European Union (EU) Environment Agency for providing air pollution data without charge. The authors also thank NOAA’s Air Resources Laboratory (ARL) for providing the HYSPLIT transport and dispersion model used in this paper. We also gratefully thank the reviewers for their constructive comments
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2023
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/3078
https://doi.org/10.24057/2071-9388-2022-2461
id ftjges:oai:oai.gesj.elpub.ru:article/3078
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic concentration-weighted trajectory
PM10
HYSPLIT
backward trajectory
potential source contribution function
spellingShingle concentration-weighted trajectory
PM10
HYSPLIT
backward trajectory
potential source contribution function
S. Abdo
Y. Koroleva
Seasonal Characteristics of Long-Range Transport and Potential Associated Sources of Particulate Matter (Pm10) Pollution at the Station Elk, Poland, on 2021-2022 Data
topic_facet concentration-weighted trajectory
PM10
HYSPLIT
backward trajectory
potential source contribution function
description The current study aimed to determine the potential sources of distant emissions of PM10 particles that significantly affect PM10 levels at a given site in southeastern Baltic. The EEA Air Quality Monitoring Station in Elk City, northeastern Poland, was selected for this study. This station is located approximately 50 km from the border of the Russian exclave (Kaliningrad Region). In this study, the NOAA HYSPLIT_4 trajectory model, potential source contribution function (PSCF), and concentration-weight trajectory (CWT) were employed to investigate the origin of the measured PM10 mass at a receptor site. PSCF and CWT utilize back-trajectory analysis and Lagrangian particle dispersion simulations to reconstruct the advection pathways of air masses arriving at the site. These reconstructed retroplumes provide detailed information regarding the geographic locations traversed by polluted air masses on their way to the receptor. By integrating trajectory information with concurrent pollutant concentration data, the PSCF and CWT enable the identification of potential source regions and quantification of their impact on the observed atmospheric levels. From January 1, 2021, to December 31, 2022, at 200 m the 72h backward trajectories of air masses entering the receptor point were calculated and categorized by clustering them into 5-4-4-5 clusters. Subsequently, the PM10 levels at the Elk site associated with each air mass cluster were examined during the observation period. The seasonal variation in PM10 was generally characterized by a peak in winter and minimum values in summer. PM10 was lower during warmer periods, particularly during summer, and significantly, higher concentrations were observed during colder periods. Cluster analyses showed that airflow followed a seasonal pattern, with different results obtained in different seasons. According to the PSCF and CWT results, in winter and spring, the receptor site was influenced more by long-range PM10 pollution, particularly from heavily industrialized areas in ...
author2 The authors express their gratitude to the Elk station team and European Union (EU) Environment Agency for providing air pollution data without charge. The authors also thank NOAA’s Air Resources Laboratory (ARL) for providing the HYSPLIT transport and dispersion model used in this paper. We also gratefully thank the reviewers for their constructive comments
format Article in Journal/Newspaper
author S. Abdo
Y. Koroleva
author_facet S. Abdo
Y. Koroleva
author_sort S. Abdo
title Seasonal Characteristics of Long-Range Transport and Potential Associated Sources of Particulate Matter (Pm10) Pollution at the Station Elk, Poland, on 2021-2022 Data
title_short Seasonal Characteristics of Long-Range Transport and Potential Associated Sources of Particulate Matter (Pm10) Pollution at the Station Elk, Poland, on 2021-2022 Data
title_full Seasonal Characteristics of Long-Range Transport and Potential Associated Sources of Particulate Matter (Pm10) Pollution at the Station Elk, Poland, on 2021-2022 Data
title_fullStr Seasonal Characteristics of Long-Range Transport and Potential Associated Sources of Particulate Matter (Pm10) Pollution at the Station Elk, Poland, on 2021-2022 Data
title_full_unstemmed Seasonal Characteristics of Long-Range Transport and Potential Associated Sources of Particulate Matter (Pm10) Pollution at the Station Elk, Poland, on 2021-2022 Data
title_sort seasonal characteristics of long-range transport and potential associated sources of particulate matter (pm10) pollution at the station elk, poland, on 2021-2022 data
publisher Russian Geographical Society
publishDate 2023
url https://ges.rgo.ru/jour/article/view/3078
https://doi.org/10.24057/2071-9388-2022-2461
genre Arctic
genre_facet Arctic
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 16, No 3 (2023); 92-101
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/3078/733
Bari A., Dutkiewicz V.A., Judd C.D., Wilson L.R., Luttinger D. and Husain L. (2003). Regional sources of particulate sulfate, SO2, PM2.5, HCl, and HNO3, in New York, NY. Atmospheric Environment, 37(20), 2837–2844. doi:10.1016/S1352-2310(03)00200-0
Bihałowicz J.S., Rogula-Kozłowska W. and Krasuski A. (2021). Contribution of landfill fires to air pollution – An assessment methodology. Waste Management, 125, 182–191. doi:10.1016/J.WASMAN.2021.02.046
Bodor Z., Bodor K., Keresztesi Á. and Szép R. (2020). Major air pollutants seasonal variation analysis and long-range transport of PM10 in an urban environment with specific climate condition in Transylvania (Romania). Environmental Science and Pollution Research International, 27(30), 38181. doi:10.1007/S11356-020-09838-2
Byčenkiene S., Dudoitis V. and Ulevicius V. (2014). The Use of Trajectory Cluster Analysis to Evaluate the Long-Range Transport of Black Carbon Aerosol in the South-Eastern Baltic Region. Advances in Meteorology, 2014. doi:10.1155/2014/137694
Draxler R.R. and Hess G.D. (1998). OverviewHYSPLIT4. Aust. Meteor. Mag., 47, 295–308.
Daly A. and Zannetti P. (2007). An Introduction to Air Pollution-Definitions, Classifications, and History. Retrieved from http://www.arabschool.org.sy
Dimitriou K., Grivas G., Liakakou E., Gerasopoulos E. and Mihalopoulos N. (2021). Assessing the contribution of regional sources to urban air pollution by applying 3D-PSCF modeling. Atmospheric Research, 248, 105187. doi:10.1016/J.ATMOSRES.2020.105187
Fleming Z.L., Monks P.S. and Manning A.J. (2012). Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmospheric Research, 104–105, 1–39. doi:10.1016/J.ATMOSRES.2011.09.009
Heffter J.L., Taylor A.D. and Ferber G. (1975). A regional-continental scale transport, diffusion, and deposition model. Retrieved from https://repository.library.noaa.gov/view/noaa/14895
Hopke P.K., Barrie L.A., Li S.M., Cheng M.D., Li C. and Xie Y. (1995). Possible sources and preferred pathways for biogenic and non-sea- salt sulfur for the high Arctic. Journal of Geophysical Research, 100(D8). doi:10.1029/95JD01712
Hsu, C. Y., Chiang, H. C., Chen, M. J., Yang, T. T., Wu, Y. S., & Chen, Y. C. (2019). Impacts of hazardous metals and PAHs in fine and coarse particles with long-range transports in Taipei City. Environmental Pollution, 250, 934–943. doi:10.1016/J.ENVPOL.2019.04.038
Hsu Y.K., Holsen T.M. and Hopke P. K. (2003). Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmospheric Environment, 37(4), 545–562. doi:10.1016/S1352-2310(02)00886-5
Indumali U. and Appuhamillage W. (2018). THE IMPACT OF LIVING WALLS IN THE REDUCTION OF ATMOSPHERIC PARTICULATE MATTER POLLUTION.
Jasiński R., Galant-Gołębiewska M., Nowak M., Kurtyka K., Kurzawska P., Maciejewska M. and Ginter M. (2021). Emissions and Concentrations of Particulate Matter in Poznan Compared with Other Polish and European Cities. Atmosphere 2021, Vol. 12, Page 533, 12(5), 533. doi:10.3390/ATMOS12050533
Kim D.S. (2013). Air Pollution History, Regulatory Changes, and Remedial Measures of the Current Regulatory Regimes in Korea. Journal of Korean Society for Atmospheric Environment, 29(4), 353–368. doi:10.5572/KOSAE.2013.29.4.353
Kobza J., Geremek M. and Dul L. (2018). Characteristics of air quality and sources affecting high levels of PM10 and PM2.5 in Poland, Upper Silesia urban area. Environmental Monitoring and Assessment, 190(9), 1–13. doi:10.1007/S10661-018-6797-X/TABLES/5
Li C., Dai Z., Liu X. and Wu P. (2020). Transport Pathways and Potential Source Region Contributions of PM2.5 in Weifang: Seasonal Variations. Applied Sciences 2020, Vol. 10, Page 2835, 10(8), 2835. doi:10.3390/APP10082835
Li M., Huang X., Zhu L., Li J., Song Y., Cai X. and Xie S. (2012). Analysis of the transport pathways and potential sources of PM10 in Shanghai based on three methods. Science of The Total Environment, 414, 525–534. doi:10.1016/J.SCITOTENV.2011.10.054
Ma Y.F., Du B.Y., Wang Q., Hu Q.Q., Bian Y.S., Wang M.B. and Jin S.Y. (2019). Analysis of the atmospheric pollution transport pathways and sources in Shenyang, based on the HYSPLIT model. IOP Conference Series: Earth and Environmental Science, 351(1), 012030. doi:10.1088/17551315/351/1/012030
Majewski G., Rogula-Kozłowska W., Rozbicka K., Rogula-Kopie, P., Mathew, B. and Brandyk A. (2018). Concentration, Chemical Composition and Origin of PM1: Results from the First Long-term Measurement Campaign in Warsaw (Poland). Aerosol and Air Quality Research, 18(3), 636–654. doi:10.4209/AAQR.2017.06.0221
Manisalidis I., Stavropoulou E., Stavropoulos A. and Bezirtzoglou E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8, 505570. doi:10.3389/FPUBH.2020.00014/BIBTEX
Moody J.L. and Galloway J.N. (2017). Quantifying the relationship between atmospheric transport and the chemical composition of precipitation on Bermuda. Tellus B: Chemical and Physical Meteorology, 40(5), 463–479. doi:10.3402/tellusb.v40i5.16014
Nazar, W., Niedoszytko, M. (2022). Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases. International Journal of Environmental Research and Public Health, 19(2), 895. doi:10.3390/IJERPH19020895
Pouyaei A., Choi Y., Jung J., Sadeghi B. and Han Song C. (2020). Concentration Trajectory Route of Air pollution with an Integrated Lagrangian model (C-TRAIL Model v1.0) derived from the Community Multiscale Air Quality Model (CMAQ Model v5.2). Geoscientific Model Development, 13(8), 3489–3505. doi:10.5194/GMD-13-3489-2020
Reizer M. and Orza J.A.G. (2018). Identification of PM10 air pollution origins at a rural background site. E3S Web of Conferences 28, Air Protection in Theory and Practice. doi:10.1051/e3sconf/20182801031
Sahu S.K., Zhang H., Guo H., Hu J., Ying Q. and Kota S.H. (2019). Health risk associated with potential source regions of PM 2.5 in Indian cities. Air Quality, Atmosphere and Health, 12(3), 327–340. doi:10.1007/S11869-019-00661-4/FIGURES/7
Shukurov K. and Shukurova L.M. (2017). Potential sources of Southern Siberia aerosols by data of AERONET site in Tomsk, Russia. 208. doi:10.1117/12.2287936
Sirois A. and Bottenheim J.W. (1995). Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. Journal of Geophysical Research: Atmospheres, 100(D2), 2867–2881. doi:10.1029/94JD02951
Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D. and Ngan F. (2015a). Noaa’s hysplit atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077. doi:10.1175/BAMS-D-14-00110.1
Stohl A. (1998). Computation, accuracy and applications of trajectories—A review and bibliography. Atmospheric Environment, 32(6), 947–966. doi:10.1016/S1352-2310(97)00457-3
Wang S., Yu S., Li P., Wang L., Mehmood K., Liu W., Yan R. and Zheng X. (2017). A Study of Characteristics and Origins of Haze Pollution in Zhengzhou, China, Based on Observations and Hybrid Receptor Models. Aerosol and Air Quality Research, 17, 513–528. doi:10.4209/aaqr.2016.06.0238
Wang S., Yu S., Yan R., Zhang Q., Li P., Wang L., Liu W. and Zheng X. (2017). Characteristics and origins of air pollutants in Wuhan, China, based on observations and hybrid receptor models. Http://Dx.Doi.Org/10.1080/10962247.2016.1240724, 67(7), 739–753. doi:10.1080/10962247.2016.1240724
Wang Y.Q., Zhang X.Y. and Arimoto R. (2006). The contribution from distant dust sources to the atmospheric particulate matter loadings at Xian, China during spring. The Science of the Total Environment, 368(2–3), 875–883. doi:10.1016/J.SCITOTENV.2006.03.040
Wang Y., Zhang X. and Draxler R.R. (2009). TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environmental Modelling & Software, 24, 938–939. doi:10.1016/j.envsoft.2009.01.004
Xin Y., Wang G. and Chen L. (2016). Identification of Long-Range Transport Pathways and Potential Sources of PM10 in Tibetan Plateau Uplift Area: Case Study of Xining, China in 2014. Aerosol and Air Quality Research, 16, 1044–1054. doi:10.4209/aaqr.2015.05.0296
Yang H. and Smyntek P. (2014). Use of the mercury record in Red Tarn sediments to reveal air pollution history and the implications of catchment erosion. Environmental Science. Processes & Impacts, 16(11), 2554–2563. doi:10.1039/C4EM00334A
Yerramilli A., Dodla V.B.R., Challa V.S., Myles L.T., Pendergrass W.R., Vogel C.A., Dasari H.P., Tuluri F., Baham J.M., Hughes R.L., Patrick C., Young J.H., Swanier S.J. and Hardy M.G. (2012). An integrated WRF/HYSPLIT modeling approach for the assessment of PM2.5 source regions over the Mississippi Gulf Coast region. Air Quality, Atmosphere and Health, 5(4), 401–412. doi:10.1007/S11869-010-0132-1/TABLES/6
Zaręba M. and Danek T. (2022). Analysis of Air Pollution Migration during COVID-19 Lockdown in Krakow, Poland. Aerosol and Air Quality Research, 22(3), 210275. doi:10.4209/AAQR.210275
Zhu L., Huang X., Shi H., Cai X. and Song Y. (2011). Transport pathways and potential sources of PM10 in Beijing. Atmospheric Environment, 45, 594–604. doi:10.1016/j.atmosenv.2010.10.040
https://ges.rgo.ru/jour/article/view/3078
doi:10.24057/2071-9388-2022-2461
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_doi https://doi.org/10.24057/2071-9388-2022-246110.1016/S1352-2310(03)00200-010.1016/J.WASMAN.2021.02.04610.1007/S11356-020-09838-210.1155/2014/13769410.1016/J.ATMOSRES.2020.10518710.1016/J.ATMOSRES.2011.09.00910.1029/95JD0171210.1016/S1352-2310(02)00886-510.
_version_ 1781693626838941696
spelling ftjges:oai:oai.gesj.elpub.ru:article/3078 2023-11-05T03:37:55+01:00 Seasonal Characteristics of Long-Range Transport and Potential Associated Sources of Particulate Matter (Pm10) Pollution at the Station Elk, Poland, on 2021-2022 Data S. Abdo Y. Koroleva The authors express their gratitude to the Elk station team and European Union (EU) Environment Agency for providing air pollution data without charge. The authors also thank NOAA’s Air Resources Laboratory (ARL) for providing the HYSPLIT transport and dispersion model used in this paper. We also gratefully thank the reviewers for their constructive comments 2023-10-08 application/pdf https://ges.rgo.ru/jour/article/view/3078 https://doi.org/10.24057/2071-9388-2022-2461 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/3078/733 Bari A., Dutkiewicz V.A., Judd C.D., Wilson L.R., Luttinger D. and Husain L. (2003). Regional sources of particulate sulfate, SO2, PM2.5, HCl, and HNO3, in New York, NY. Atmospheric Environment, 37(20), 2837–2844. doi:10.1016/S1352-2310(03)00200-0 Bihałowicz J.S., Rogula-Kozłowska W. and Krasuski A. (2021). Contribution of landfill fires to air pollution – An assessment methodology. Waste Management, 125, 182–191. doi:10.1016/J.WASMAN.2021.02.046 Bodor Z., Bodor K., Keresztesi Á. and Szép R. (2020). Major air pollutants seasonal variation analysis and long-range transport of PM10 in an urban environment with specific climate condition in Transylvania (Romania). Environmental Science and Pollution Research International, 27(30), 38181. doi:10.1007/S11356-020-09838-2 Byčenkiene S., Dudoitis V. and Ulevicius V. (2014). The Use of Trajectory Cluster Analysis to Evaluate the Long-Range Transport of Black Carbon Aerosol in the South-Eastern Baltic Region. Advances in Meteorology, 2014. doi:10.1155/2014/137694 Draxler R.R. and Hess G.D. (1998). OverviewHYSPLIT4. Aust. Meteor. Mag., 47, 295–308. Daly A. and Zannetti P. (2007). An Introduction to Air Pollution-Definitions, Classifications, and History. Retrieved from http://www.arabschool.org.sy Dimitriou K., Grivas G., Liakakou E., Gerasopoulos E. and Mihalopoulos N. (2021). Assessing the contribution of regional sources to urban air pollution by applying 3D-PSCF modeling. Atmospheric Research, 248, 105187. doi:10.1016/J.ATMOSRES.2020.105187 Fleming Z.L., Monks P.S. and Manning A.J. (2012). Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmospheric Research, 104–105, 1–39. doi:10.1016/J.ATMOSRES.2011.09.009 Heffter J.L., Taylor A.D. and Ferber G. (1975). A regional-continental scale transport, diffusion, and deposition model. Retrieved from https://repository.library.noaa.gov/view/noaa/14895 Hopke P.K., Barrie L.A., Li S.M., Cheng M.D., Li C. and Xie Y. (1995). Possible sources and preferred pathways for biogenic and non-sea- salt sulfur for the high Arctic. Journal of Geophysical Research, 100(D8). doi:10.1029/95JD01712 Hsu, C. Y., Chiang, H. C., Chen, M. J., Yang, T. T., Wu, Y. S., & Chen, Y. C. (2019). Impacts of hazardous metals and PAHs in fine and coarse particles with long-range transports in Taipei City. Environmental Pollution, 250, 934–943. doi:10.1016/J.ENVPOL.2019.04.038 Hsu Y.K., Holsen T.M. and Hopke P. K. (2003). Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmospheric Environment, 37(4), 545–562. doi:10.1016/S1352-2310(02)00886-5 Indumali U. and Appuhamillage W. (2018). THE IMPACT OF LIVING WALLS IN THE REDUCTION OF ATMOSPHERIC PARTICULATE MATTER POLLUTION. Jasiński R., Galant-Gołębiewska M., Nowak M., Kurtyka K., Kurzawska P., Maciejewska M. and Ginter M. (2021). Emissions and Concentrations of Particulate Matter in Poznan Compared with Other Polish and European Cities. Atmosphere 2021, Vol. 12, Page 533, 12(5), 533. doi:10.3390/ATMOS12050533 Kim D.S. (2013). Air Pollution History, Regulatory Changes, and Remedial Measures of the Current Regulatory Regimes in Korea. Journal of Korean Society for Atmospheric Environment, 29(4), 353–368. doi:10.5572/KOSAE.2013.29.4.353 Kobza J., Geremek M. and Dul L. (2018). Characteristics of air quality and sources affecting high levels of PM10 and PM2.5 in Poland, Upper Silesia urban area. Environmental Monitoring and Assessment, 190(9), 1–13. doi:10.1007/S10661-018-6797-X/TABLES/5 Li C., Dai Z., Liu X. and Wu P. (2020). Transport Pathways and Potential Source Region Contributions of PM2.5 in Weifang: Seasonal Variations. Applied Sciences 2020, Vol. 10, Page 2835, 10(8), 2835. doi:10.3390/APP10082835 Li M., Huang X., Zhu L., Li J., Song Y., Cai X. and Xie S. (2012). Analysis of the transport pathways and potential sources of PM10 in Shanghai based on three methods. Science of The Total Environment, 414, 525–534. doi:10.1016/J.SCITOTENV.2011.10.054 Ma Y.F., Du B.Y., Wang Q., Hu Q.Q., Bian Y.S., Wang M.B. and Jin S.Y. (2019). Analysis of the atmospheric pollution transport pathways and sources in Shenyang, based on the HYSPLIT model. IOP Conference Series: Earth and Environmental Science, 351(1), 012030. doi:10.1088/17551315/351/1/012030 Majewski G., Rogula-Kozłowska W., Rozbicka K., Rogula-Kopie, P., Mathew, B. and Brandyk A. (2018). Concentration, Chemical Composition and Origin of PM1: Results from the First Long-term Measurement Campaign in Warsaw (Poland). Aerosol and Air Quality Research, 18(3), 636–654. doi:10.4209/AAQR.2017.06.0221 Manisalidis I., Stavropoulou E., Stavropoulos A. and Bezirtzoglou E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8, 505570. doi:10.3389/FPUBH.2020.00014/BIBTEX Moody J.L. and Galloway J.N. (2017). Quantifying the relationship between atmospheric transport and the chemical composition of precipitation on Bermuda. Tellus B: Chemical and Physical Meteorology, 40(5), 463–479. doi:10.3402/tellusb.v40i5.16014 Nazar, W., Niedoszytko, M. (2022). Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases. International Journal of Environmental Research and Public Health, 19(2), 895. doi:10.3390/IJERPH19020895 Pouyaei A., Choi Y., Jung J., Sadeghi B. and Han Song C. (2020). Concentration Trajectory Route of Air pollution with an Integrated Lagrangian model (C-TRAIL Model v1.0) derived from the Community Multiscale Air Quality Model (CMAQ Model v5.2). Geoscientific Model Development, 13(8), 3489–3505. doi:10.5194/GMD-13-3489-2020 Reizer M. and Orza J.A.G. (2018). Identification of PM10 air pollution origins at a rural background site. E3S Web of Conferences 28, Air Protection in Theory and Practice. doi:10.1051/e3sconf/20182801031 Sahu S.K., Zhang H., Guo H., Hu J., Ying Q. and Kota S.H. (2019). Health risk associated with potential source regions of PM 2.5 in Indian cities. Air Quality, Atmosphere and Health, 12(3), 327–340. doi:10.1007/S11869-019-00661-4/FIGURES/7 Shukurov K. and Shukurova L.M. (2017). Potential sources of Southern Siberia aerosols by data of AERONET site in Tomsk, Russia. 208. doi:10.1117/12.2287936 Sirois A. and Bottenheim J.W. (1995). Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. Journal of Geophysical Research: Atmospheres, 100(D2), 2867–2881. doi:10.1029/94JD02951 Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D. and Ngan F. (2015a). Noaa’s hysplit atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077. doi:10.1175/BAMS-D-14-00110.1 Stohl A. (1998). Computation, accuracy and applications of trajectories—A review and bibliography. Atmospheric Environment, 32(6), 947–966. doi:10.1016/S1352-2310(97)00457-3 Wang S., Yu S., Li P., Wang L., Mehmood K., Liu W., Yan R. and Zheng X. (2017). A Study of Characteristics and Origins of Haze Pollution in Zhengzhou, China, Based on Observations and Hybrid Receptor Models. Aerosol and Air Quality Research, 17, 513–528. doi:10.4209/aaqr.2016.06.0238 Wang S., Yu S., Yan R., Zhang Q., Li P., Wang L., Liu W. and Zheng X. (2017). Characteristics and origins of air pollutants in Wuhan, China, based on observations and hybrid receptor models. Http://Dx.Doi.Org/10.1080/10962247.2016.1240724, 67(7), 739–753. doi:10.1080/10962247.2016.1240724 Wang Y.Q., Zhang X.Y. and Arimoto R. (2006). The contribution from distant dust sources to the atmospheric particulate matter loadings at Xian, China during spring. The Science of the Total Environment, 368(2–3), 875–883. doi:10.1016/J.SCITOTENV.2006.03.040 Wang Y., Zhang X. and Draxler R.R. (2009). TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environmental Modelling & Software, 24, 938–939. doi:10.1016/j.envsoft.2009.01.004 Xin Y., Wang G. and Chen L. (2016). Identification of Long-Range Transport Pathways and Potential Sources of PM10 in Tibetan Plateau Uplift Area: Case Study of Xining, China in 2014. Aerosol and Air Quality Research, 16, 1044–1054. doi:10.4209/aaqr.2015.05.0296 Yang H. and Smyntek P. (2014). Use of the mercury record in Red Tarn sediments to reveal air pollution history and the implications of catchment erosion. Environmental Science. Processes & Impacts, 16(11), 2554–2563. doi:10.1039/C4EM00334A Yerramilli A., Dodla V.B.R., Challa V.S., Myles L.T., Pendergrass W.R., Vogel C.A., Dasari H.P., Tuluri F., Baham J.M., Hughes R.L., Patrick C., Young J.H., Swanier S.J. and Hardy M.G. (2012). An integrated WRF/HYSPLIT modeling approach for the assessment of PM2.5 source regions over the Mississippi Gulf Coast region. Air Quality, Atmosphere and Health, 5(4), 401–412. doi:10.1007/S11869-010-0132-1/TABLES/6 Zaręba M. and Danek T. (2022). Analysis of Air Pollution Migration during COVID-19 Lockdown in Krakow, Poland. Aerosol and Air Quality Research, 22(3), 210275. doi:10.4209/AAQR.210275 Zhu L., Huang X., Shi H., Cai X. and Song Y. (2011). Transport pathways and potential sources of PM10 in Beijing. Atmospheric Environment, 45, 594–604. doi:10.1016/j.atmosenv.2010.10.040 https://ges.rgo.ru/jour/article/view/3078 doi:10.24057/2071-9388-2022-2461 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 16, No 3 (2023); 92-101 2542-1565 2071-9388 concentration-weighted trajectory PM10 HYSPLIT backward trajectory potential source contribution function info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjges https://doi.org/10.24057/2071-9388-2022-246110.1016/S1352-2310(03)00200-010.1016/J.WASMAN.2021.02.04610.1007/S11356-020-09838-210.1155/2014/13769410.1016/J.ATMOSRES.2020.10518710.1016/J.ATMOSRES.2011.09.00910.1029/95JD0171210.1016/S1352-2310(02)00886-510. 2023-10-10T16:59:15Z The current study aimed to determine the potential sources of distant emissions of PM10 particles that significantly affect PM10 levels at a given site in southeastern Baltic. The EEA Air Quality Monitoring Station in Elk City, northeastern Poland, was selected for this study. This station is located approximately 50 km from the border of the Russian exclave (Kaliningrad Region). In this study, the NOAA HYSPLIT_4 trajectory model, potential source contribution function (PSCF), and concentration-weight trajectory (CWT) were employed to investigate the origin of the measured PM10 mass at a receptor site. PSCF and CWT utilize back-trajectory analysis and Lagrangian particle dispersion simulations to reconstruct the advection pathways of air masses arriving at the site. These reconstructed retroplumes provide detailed information regarding the geographic locations traversed by polluted air masses on their way to the receptor. By integrating trajectory information with concurrent pollutant concentration data, the PSCF and CWT enable the identification of potential source regions and quantification of their impact on the observed atmospheric levels. From January 1, 2021, to December 31, 2022, at 200 m the 72h backward trajectories of air masses entering the receptor point were calculated and categorized by clustering them into 5-4-4-5 clusters. Subsequently, the PM10 levels at the Elk site associated with each air mass cluster were examined during the observation period. The seasonal variation in PM10 was generally characterized by a peak in winter and minimum values in summer. PM10 was lower during warmer periods, particularly during summer, and significantly, higher concentrations were observed during colder periods. Cluster analyses showed that airflow followed a seasonal pattern, with different results obtained in different seasons. According to the PSCF and CWT results, in winter and spring, the receptor site was influenced more by long-range PM10 pollution, particularly from heavily industrialized areas in ... Article in Journal/Newspaper Arctic Geography, Environment, Sustainability (E-Journal)