Climate-Related Gradients On Vegetation Diversity Of The Altai-Sayan Orobiome (Southern Siberia)

An analysis of the spatial organization of vegetation cover has been carried out for the Altai-Sayan orobiome in connection with climatic conditions in the Southern Siberian mountains based on original relevés of plant communities at the 4 altitudinal spectra. Basic bioclimatic parameters on the alt...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Author: Maxim V. Bocharnikov
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2023
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/2710
https://doi.org/10.24057/2071-9388-2022-043
id ftjges:oai:oai.gesj.elpub.ru:article/2710
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic ordination
biodiversity
bioclimate
altitudinal zonality
mountain territories
spellingShingle ordination
biodiversity
bioclimate
altitudinal zonality
mountain territories
Maxim V. Bocharnikov
Climate-Related Gradients On Vegetation Diversity Of The Altai-Sayan Orobiome (Southern Siberia)
topic_facet ordination
biodiversity
bioclimate
altitudinal zonality
mountain territories
description An analysis of the spatial organization of vegetation cover has been carried out for the Altai-Sayan orobiome in connection with climatic conditions in the Southern Siberian mountains based on original relevés of plant communities at the 4 altitudinal spectra. Basic bioclimatic parameters on the altitudinal spectra of vegetation have been determined according to latitudinal and longitudinal differentiation of climate. Correlation and discriminate analyses allowed to identify the regional features of altitudinal gradients in species diversity of the spectra as well as the role of parameters in the structure of typological diversity of vegetation for belts of high-mountain tundra, alpine and subalpine meadows and sparse forests, dark coniferous mountain taiga forests, chern-taiga forests, small leave – light coniferous subtaiga forests, forest-steppe. A compiled bioclimatic scheme characterizes the spatial organization of orobiome’s vegetation by basic bioclimatic parameters on the regional level (continentality index, average temperature of January). This scheme shows regional features of the diversity of vegetation in Southern Siberia, in adjacent plain and mountain regions according to climatic conditions. Identified patterns determine unity of the Altai-Sayan orobiome as well as regional differentiation that reflected on the development of types of vegetation zonality. They can be used to analysis of vegetation forming in different mountain systems.
format Article in Journal/Newspaper
author Maxim V. Bocharnikov
author_facet Maxim V. Bocharnikov
author_sort Maxim V. Bocharnikov
title Climate-Related Gradients On Vegetation Diversity Of The Altai-Sayan Orobiome (Southern Siberia)
title_short Climate-Related Gradients On Vegetation Diversity Of The Altai-Sayan Orobiome (Southern Siberia)
title_full Climate-Related Gradients On Vegetation Diversity Of The Altai-Sayan Orobiome (Southern Siberia)
title_fullStr Climate-Related Gradients On Vegetation Diversity Of The Altai-Sayan Orobiome (Southern Siberia)
title_full_unstemmed Climate-Related Gradients On Vegetation Diversity Of The Altai-Sayan Orobiome (Southern Siberia)
title_sort climate-related gradients on vegetation diversity of the altai-sayan orobiome (southern siberia)
publisher Russian Geographical Society
publishDate 2023
url https://ges.rgo.ru/jour/article/view/2710
https://doi.org/10.24057/2071-9388-2022-043
genre taiga
Tundra
Siberia
genre_facet taiga
Tundra
Siberia
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 15, No 4 (2022); 17-31
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/2710/660
Alberto F.J., Aitken S.N., Alia R., Gonzalez-Martinez S.C., Hänninen H., Kremer A., Lefevre F., Lenormand T., Yeaman S., Whetten R. and Savolainen O. (2013). Potential for evolutionary responses to climate change-evidence from tree populations. Glob. Change Biol., 19, 1645-1661, DOI:10.1111/gcb.12181.
Aynekulu E., Aerts R., Moonen P.E., Denich M., Gebrehiwot K., Vågen T., Mekuria W. and Boehmer H. J. (2012). Altitudinal variation and conservation priorities of vegetation along the Great Rift Valley escarpment, northern Ethiopia. Biodivers. Conserv, 21, 2691-2707, DOI:10.1007/s10531-012-0328-9.
Bocharnikov M.V. (2015). Eco-ptytocoenotic structure of the forest cover on the northern macroslope of Western Sayan. Lesovedenie, 1, 10-19 (in Russian with English abstract).
Bocharnikov M.V., Ogureeva G.N. and Jargalsaikhan L. (2018). Regional features of the altitudinal gradients in Northern Transbaikalia vegetation cover. Geography, Environment, sustainability, 11(4), 67-84, DOI:10.24057/2071-9388-2018-11-4-67-84.
Bocharnikov M.V. (2019). Role of climate in the spatial structure of vegetation of the Kodar-Kalar orobiome. Contemp. Probl. Ecol., 12, 193- 203, DOI:10.1134/S1995425519030028.
Bocharnikov M.V. (2021). Species distribution in cenofloras of the cryophytic steppes and cushion plants with the participation of Stellaria pulvinata Grub. in the Mongolian Altai. Arid Ecosystems, 11, 1, 52-61, DOI:10.1134/S2079096121010042.
Bueno M.L., Rezende V.L., De Paula L.F. A., Meira-Neto J.A.A., Pinto J.R.R., Neri A.V.and Pontara V. (2021). Understanding how environmental heterogeneity and elevation drives the distribution of woody communities across vegetation types within the campo rupestre in South America. Journal of Mountain Science, 18, 1192-1207, DOI:10.1007/s11629-020-6125-0.
Chytry M., Danihelka J., Kubešová S., Lustyk P., Ermakov N., Hájek M., HajkovanP., Kočí M., Otypková Z., Roleček J., Řezníčková M., Šmarda P., Valachovič M., Popov D. and Pišút I. (2007). Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecology, 196, 61-83, DOI:10.1007/s11258-007-9335-4.
Clarke K.R. (1993). Non-parametric multivariate analyses of changes in community structure. Austral. J. Ecol., 18, 117-143, DOI:10.1111/J.1442-9993.1993.TB00438.X.
Currie D.J. and Paquin V. (1987). Large-scale biogeographical patterns of species richness in trees. Nature, 329, 32-327, DOI:10.1038/329326A0.
De Dios V.R., Fischer C. and Colinas C. (2007). Climate change effects on Mediterranean forests and preventive measures. New Forests, 33, 29-40, DOI:10.1007/s11056-006-9011-x.
Del Rio S. and Penas A. (2006). Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatic variations // Plant Ecology, 185, 269-282, DOI:10.1007/s11258-006-9103-x.
Dolezal J. and Srutek M. (2002). Altitudinal changes in composition and structure of mountain-temperate vegetation: a case study from the Western Carpathians. Plant Ecology, 158, 2, 201-221, DOI:10.1023/A:1015564303206.
Drobushevskaya O.V. and Nazimova D.I. (2006). Climatic variants of the light-coniferous low-mountain subtaiga in Southern Siberia. Geography and Natural Resources, 2, 21-27 (in Russian with English abstract).
Ermakov N.B. (2003). Diversity of boreal vegetation in North Asia. Hemiboreal forests. Classification and ordination. Novosibirsk, 232. (in Russian).
Fick S.E. and Hijmans R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas // International Journal of Climatology, 37, 4302-4315, DOI:10.1002/JOC.5086.
Francis A.P. and Currie D.J. (2003). A globally consistent richness-climate relationship for angiosperms. American Naturalist, 161, 523-536, DOI:10.1086/368223.
Grebenshchikov O.S. (1974). An essay of climatic characteristics for the main plant formations of the Caucasus. Botanical journal, 59, 2, 161- 173 (in Russian).
Holdridge L.R. (1967). Life zone ecology. San Jose: Tropical Science Center, 206.
Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., Zimmermann N. E., Linder H. P. and Kessler M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122, DOI:10.5061/dryad.kd1d4.
Kolomyts E.G. (1966). Snow cover of mountain taiga landscapes of Northern Transbaikalia. Moscow-Leningrad, 184. (in Russian).
Kuminova A.V. (1960). The vegetation cover of the Altai. Novosibirsk, 450. (in Russian).
Mokarram M. and Sathyamoorthy D. (2015). Modeling the relationship between elevation, aspect and spatial distribution of vegetation in the Darab Mountain, Iran using remote sensing data. Model. Earth Syst. Environ., 1, 30, DOI:10.1007/s40808-015-0038-x.
Morozova O.V. (2011). Spatial trends in the taxonomic richness of the vascular plant flora. Biosfera 3(2), 190-207 (in Russian with English abstract).
Nakamura Y., Krestov P. V. and Omelko A. M. (2007). Bioclimate and vegetation complexes in Northeast Asia: first approximation to an integrated study. Phytocoenologia, 37, 3-4, 443-470, DOI:10.1127/0340-269X/2007/0037-0443.
Namzalov B.B. (2020). Extrazonal Steppe Phenomena in the Mountains of Southern Siberia: Features of Spatial Organization and Centers of the Latest Speciation and Cenogenesis. Contemp. Probl. Ecol., 13, 495-504, DOI:10.1134/S199542552005008X.
Navarro-Racines C., Tarapues J., Thornton P., Jarvis A. and, Ramirez-Villegas J. (2020). High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Scientific Data, 7, 7, DOI:10.1038/s41597-019-0343-8.
Nazimova D.I. (1967). Relics of nemoral flora in the forests of the Western Sayan. Lesovedeniye, 3, 76-88 (in Russian).
Nazimova D.I. (1975). Mountain dark coniferous forests of the Western Sayan: an experience of ecological-phytocenotic classification. Leningrad, 119. (in Russian).
Nazimova D.I., Danilina D.M. and Stepanov N.V. (2014). Biodiversity of rain-barrier forest ecosystems of the Sayan mountains // Botanica Pacifica. A journal of plant science and conservation, 3(1), 39-47, DOI:10.17581/bp.2014.03104.
Nazimova D.I., Ermakov N.B., Andreeva N.M. and Stepanov N.V. (2004). Conceptual model of structural biodiversity of zonal forests in North Eurasian forests. Contemp. Probl. Ecol., 5, 745-755 (in Russian with English abstract).
Nazimova D.I., Korotkov I.A. and Cherednikova Y.S. (1987). The main altitudinal-belt divisions of the forest cover in the mountains of Southern Siberia and their diagnostic features. Lectures in Commemoration of V.N. Sukachev. Moscow, 30-64 (in Russian).
Nazimova D.I., Ponomarev E.I., Stepanov N.V. and Fedotova E.V. (2005). Chern dark coniferous forests in southern Krasnoyarsk krai and problems of their general mapping. Lesovedeniye, 1, 12-18 (in Russian with English abstract).
Odland A. (2009). Interpretation of altitudinal gradients in South Central Norway based on vascular plants as environmental indicators. Ecological Indicators, 9(3), 409-421, DOI:10.1016/j.ecolind.2008.05.012.
Ogureeva G.N. (1980). Botanical geography of Altai. Moscow, 192. (in Russian).
Ogureeva G.N. (1991). Botanical and geographical zoning of the USSR. Moscow, 78. (in Russian).
Ogureeva G.N. (1997). Structure and dynamics of high mountain ecosystems of Mongolian Altai. Arid ecosystems, 3, 6-7, 119-133 (in Russian with English summary).
Ogureeva G.N. and Bocharnikov M.V. (2017). Orobiomes as the basic units of the regional evaluation of the mountain region biodiversity. Ecosystems: Ecology and Dynamics, 1, 2, 52-81 (in Russian with English abstract).
Ogureeva G.N., Miklyaeva I.M., Safronova I.N. and Yurkovskaya T.K. (1999). Zones and types of altitudinal zonation of vegetation of Russia and adjacent territories. Scale 1: 8 000 000. Moscow.
Otto-Bliesner B.L., Brady E.C., Clauzet G., Tomas R., Levis S. and Kothavala Z. (2006). Last glacial maximum and Holocene climate in CCSM3. Journal of Climate, 19, 11, 2526-2544, DOI:10.1175/JCLI3748.1.
Polikarpov N.P., Chebakova N.M. and Nazimova D.I. (1986). Climate and mountain forests of Southern Siberia. Novosibirsk, 225. (in Russian).
Qian H., Fridley J.D. and Palmer M.W. (2007). The latitudinal gradient of species-area relationship for vascular plants of North America // American Naturalist, 170, 5, 690-701.
Guo Q., Kelt D., Sun Z., Liu H., Hu L., Ren H. and Wen J. (2013). Global variation in elevational diversity patterns // Scientific Reports, 8, 1-7, DOI:10.1038/srep03007.
Rahman I.U., Khan N., Ali K. and Ahmad S. (2020). Vegetation-environment relationship in Pinus wallichiana forests of the Swat Hindukush range of Pakistan. J. For. Res., 31, 185-195, DOI:10.1007/s11676-018-0864-6.
Ramachandran R.M., Roy P.S., Chakravarthi V., Joshi P.K., Sanjay J. (2020). Land use and climate change impacts on distribution of plant species of conservation value in Eastern Ghats, India: a simulation study. Environmental Monitoring and Assessment, 192, 86, DOI:10.1007/s10661-019-8044-5
Rivas-Martinez S., Penas A. and Diaz T.E. (2004). Bioclimatic map of Europe, thermoclimatic belts. Cartographic Service. University of Leon, Spain.
Rivas-Martinez S., Rivas Saenz S. and Penas A. (2011). World-wide bioclimatic classification system. Global Geobotany, 1(1), 1-634.
Sang W. (2009). Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecological Research, 24, 303-314, DOI:10.1007/s11284-008-0507-z.
Sedel’nikov V.P. (1988). High mountain vegetation of the Altai-Sayan mountainous region. Novosibirsk, 222. (in Russian).
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2022-043
https://doi.org/10.1111/gcb.12181
https://doi.org/10.1007/s10531-012-0328-9
https://doi.org/10.24057/2071-9388-2018-11-4-67-84
https://doi.org/10.1134/S1995425519030028
https://doi.org/10.1134/S2079096
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 15
container_issue 4
container_start_page 17
op_container_end_page 31
_version_ 1766214052525113344
spelling ftjges:oai:oai.gesj.elpub.ru:article/2710 2023-05-15T18:30:32+02:00 Climate-Related Gradients On Vegetation Diversity Of The Altai-Sayan Orobiome (Southern Siberia) Maxim V. Bocharnikov 2023-01-16 application/pdf https://ges.rgo.ru/jour/article/view/2710 https://doi.org/10.24057/2071-9388-2022-043 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/2710/660 Alberto F.J., Aitken S.N., Alia R., Gonzalez-Martinez S.C., Hänninen H., Kremer A., Lefevre F., Lenormand T., Yeaman S., Whetten R. and Savolainen O. (2013). Potential for evolutionary responses to climate change-evidence from tree populations. Glob. Change Biol., 19, 1645-1661, DOI:10.1111/gcb.12181. Aynekulu E., Aerts R., Moonen P.E., Denich M., Gebrehiwot K., Vågen T., Mekuria W. and Boehmer H. J. (2012). Altitudinal variation and conservation priorities of vegetation along the Great Rift Valley escarpment, northern Ethiopia. Biodivers. Conserv, 21, 2691-2707, DOI:10.1007/s10531-012-0328-9. Bocharnikov M.V. (2015). Eco-ptytocoenotic structure of the forest cover on the northern macroslope of Western Sayan. Lesovedenie, 1, 10-19 (in Russian with English abstract). Bocharnikov M.V., Ogureeva G.N. and Jargalsaikhan L. (2018). Regional features of the altitudinal gradients in Northern Transbaikalia vegetation cover. Geography, Environment, sustainability, 11(4), 67-84, DOI:10.24057/2071-9388-2018-11-4-67-84. Bocharnikov M.V. (2019). Role of climate in the spatial structure of vegetation of the Kodar-Kalar orobiome. Contemp. Probl. Ecol., 12, 193- 203, DOI:10.1134/S1995425519030028. Bocharnikov M.V. (2021). Species distribution in cenofloras of the cryophytic steppes and cushion plants with the participation of Stellaria pulvinata Grub. in the Mongolian Altai. Arid Ecosystems, 11, 1, 52-61, DOI:10.1134/S2079096121010042. Bueno M.L., Rezende V.L., De Paula L.F. A., Meira-Neto J.A.A., Pinto J.R.R., Neri A.V.and Pontara V. (2021). Understanding how environmental heterogeneity and elevation drives the distribution of woody communities across vegetation types within the campo rupestre in South America. Journal of Mountain Science, 18, 1192-1207, DOI:10.1007/s11629-020-6125-0. Chytry M., Danihelka J., Kubešová S., Lustyk P., Ermakov N., Hájek M., HajkovanP., Kočí M., Otypková Z., Roleček J., Řezníčková M., Šmarda P., Valachovič M., Popov D. and Pišút I. (2007). Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecology, 196, 61-83, DOI:10.1007/s11258-007-9335-4. Clarke K.R. (1993). Non-parametric multivariate analyses of changes in community structure. Austral. J. Ecol., 18, 117-143, DOI:10.1111/J.1442-9993.1993.TB00438.X. Currie D.J. and Paquin V. (1987). Large-scale biogeographical patterns of species richness in trees. Nature, 329, 32-327, DOI:10.1038/329326A0. De Dios V.R., Fischer C. and Colinas C. (2007). Climate change effects on Mediterranean forests and preventive measures. New Forests, 33, 29-40, DOI:10.1007/s11056-006-9011-x. Del Rio S. and Penas A. (2006). Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatic variations // Plant Ecology, 185, 269-282, DOI:10.1007/s11258-006-9103-x. Dolezal J. and Srutek M. (2002). Altitudinal changes in composition and structure of mountain-temperate vegetation: a case study from the Western Carpathians. Plant Ecology, 158, 2, 201-221, DOI:10.1023/A:1015564303206. Drobushevskaya O.V. and Nazimova D.I. (2006). Climatic variants of the light-coniferous low-mountain subtaiga in Southern Siberia. Geography and Natural Resources, 2, 21-27 (in Russian with English abstract). Ermakov N.B. (2003). Diversity of boreal vegetation in North Asia. Hemiboreal forests. Classification and ordination. Novosibirsk, 232. (in Russian). Fick S.E. and Hijmans R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas // International Journal of Climatology, 37, 4302-4315, DOI:10.1002/JOC.5086. Francis A.P. and Currie D.J. (2003). A globally consistent richness-climate relationship for angiosperms. American Naturalist, 161, 523-536, DOI:10.1086/368223. Grebenshchikov O.S. (1974). An essay of climatic characteristics for the main plant formations of the Caucasus. Botanical journal, 59, 2, 161- 173 (in Russian). Holdridge L.R. (1967). Life zone ecology. San Jose: Tropical Science Center, 206. Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., Zimmermann N. E., Linder H. P. and Kessler M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122, DOI:10.5061/dryad.kd1d4. Kolomyts E.G. (1966). Snow cover of mountain taiga landscapes of Northern Transbaikalia. Moscow-Leningrad, 184. (in Russian). Kuminova A.V. (1960). The vegetation cover of the Altai. Novosibirsk, 450. (in Russian). Mokarram M. and Sathyamoorthy D. (2015). Modeling the relationship between elevation, aspect and spatial distribution of vegetation in the Darab Mountain, Iran using remote sensing data. Model. Earth Syst. Environ., 1, 30, DOI:10.1007/s40808-015-0038-x. Morozova O.V. (2011). Spatial trends in the taxonomic richness of the vascular plant flora. Biosfera 3(2), 190-207 (in Russian with English abstract). Nakamura Y., Krestov P. V. and Omelko A. M. (2007). Bioclimate and vegetation complexes in Northeast Asia: first approximation to an integrated study. Phytocoenologia, 37, 3-4, 443-470, DOI:10.1127/0340-269X/2007/0037-0443. Namzalov B.B. (2020). Extrazonal Steppe Phenomena in the Mountains of Southern Siberia: Features of Spatial Organization and Centers of the Latest Speciation and Cenogenesis. Contemp. Probl. Ecol., 13, 495-504, DOI:10.1134/S199542552005008X. Navarro-Racines C., Tarapues J., Thornton P., Jarvis A. and, Ramirez-Villegas J. (2020). High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Scientific Data, 7, 7, DOI:10.1038/s41597-019-0343-8. Nazimova D.I. (1967). Relics of nemoral flora in the forests of the Western Sayan. Lesovedeniye, 3, 76-88 (in Russian). Nazimova D.I. (1975). Mountain dark coniferous forests of the Western Sayan: an experience of ecological-phytocenotic classification. Leningrad, 119. (in Russian). Nazimova D.I., Danilina D.M. and Stepanov N.V. (2014). Biodiversity of rain-barrier forest ecosystems of the Sayan mountains // Botanica Pacifica. A journal of plant science and conservation, 3(1), 39-47, DOI:10.17581/bp.2014.03104. Nazimova D.I., Ermakov N.B., Andreeva N.M. and Stepanov N.V. (2004). Conceptual model of structural biodiversity of zonal forests in North Eurasian forests. Contemp. Probl. Ecol., 5, 745-755 (in Russian with English abstract). Nazimova D.I., Korotkov I.A. and Cherednikova Y.S. (1987). The main altitudinal-belt divisions of the forest cover in the mountains of Southern Siberia and their diagnostic features. Lectures in Commemoration of V.N. Sukachev. Moscow, 30-64 (in Russian). Nazimova D.I., Ponomarev E.I., Stepanov N.V. and Fedotova E.V. (2005). Chern dark coniferous forests in southern Krasnoyarsk krai and problems of their general mapping. Lesovedeniye, 1, 12-18 (in Russian with English abstract). Odland A. (2009). Interpretation of altitudinal gradients in South Central Norway based on vascular plants as environmental indicators. Ecological Indicators, 9(3), 409-421, DOI:10.1016/j.ecolind.2008.05.012. Ogureeva G.N. (1980). Botanical geography of Altai. Moscow, 192. (in Russian). Ogureeva G.N. (1991). Botanical and geographical zoning of the USSR. Moscow, 78. (in Russian). Ogureeva G.N. (1997). Structure and dynamics of high mountain ecosystems of Mongolian Altai. Arid ecosystems, 3, 6-7, 119-133 (in Russian with English summary). Ogureeva G.N. and Bocharnikov M.V. (2017). Orobiomes as the basic units of the regional evaluation of the mountain region biodiversity. Ecosystems: Ecology and Dynamics, 1, 2, 52-81 (in Russian with English abstract). Ogureeva G.N., Miklyaeva I.M., Safronova I.N. and Yurkovskaya T.K. (1999). Zones and types of altitudinal zonation of vegetation of Russia and adjacent territories. Scale 1: 8 000 000. Moscow. Otto-Bliesner B.L., Brady E.C., Clauzet G., Tomas R., Levis S. and Kothavala Z. (2006). Last glacial maximum and Holocene climate in CCSM3. Journal of Climate, 19, 11, 2526-2544, DOI:10.1175/JCLI3748.1. Polikarpov N.P., Chebakova N.M. and Nazimova D.I. (1986). Climate and mountain forests of Southern Siberia. Novosibirsk, 225. (in Russian). Qian H., Fridley J.D. and Palmer M.W. (2007). The latitudinal gradient of species-area relationship for vascular plants of North America // American Naturalist, 170, 5, 690-701. Guo Q., Kelt D., Sun Z., Liu H., Hu L., Ren H. and Wen J. (2013). Global variation in elevational diversity patterns // Scientific Reports, 8, 1-7, DOI:10.1038/srep03007. Rahman I.U., Khan N., Ali K. and Ahmad S. (2020). Vegetation-environment relationship in Pinus wallichiana forests of the Swat Hindukush range of Pakistan. J. For. Res., 31, 185-195, DOI:10.1007/s11676-018-0864-6. Ramachandran R.M., Roy P.S., Chakravarthi V., Joshi P.K., Sanjay J. (2020). Land use and climate change impacts on distribution of plant species of conservation value in Eastern Ghats, India: a simulation study. Environmental Monitoring and Assessment, 192, 86, DOI:10.1007/s10661-019-8044-5 Rivas-Martinez S., Penas A. and Diaz T.E. (2004). Bioclimatic map of Europe, thermoclimatic belts. Cartographic Service. University of Leon, Spain. Rivas-Martinez S., Rivas Saenz S. and Penas A. (2011). World-wide bioclimatic classification system. Global Geobotany, 1(1), 1-634. Sang W. (2009). Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecological Research, 24, 303-314, DOI:10.1007/s11284-008-0507-z. Sedel’nikov V.P. (1988). High mountain vegetation of the Altai-Sayan mountainous region. Novosibirsk, 222. (in Russian). Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 15, No 4 (2022); 17-31 2542-1565 2071-9388 ordination biodiversity bioclimate altitudinal zonality mountain territories info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjges https://doi.org/10.24057/2071-9388-2022-043 https://doi.org/10.1111/gcb.12181 https://doi.org/10.1007/s10531-012-0328-9 https://doi.org/10.24057/2071-9388-2018-11-4-67-84 https://doi.org/10.1134/S1995425519030028 https://doi.org/10.1134/S2079096 2023-01-24T17:49:42Z An analysis of the spatial organization of vegetation cover has been carried out for the Altai-Sayan orobiome in connection with climatic conditions in the Southern Siberian mountains based on original relevés of plant communities at the 4 altitudinal spectra. Basic bioclimatic parameters on the altitudinal spectra of vegetation have been determined according to latitudinal and longitudinal differentiation of climate. Correlation and discriminate analyses allowed to identify the regional features of altitudinal gradients in species diversity of the spectra as well as the role of parameters in the structure of typological diversity of vegetation for belts of high-mountain tundra, alpine and subalpine meadows and sparse forests, dark coniferous mountain taiga forests, chern-taiga forests, small leave – light coniferous subtaiga forests, forest-steppe. A compiled bioclimatic scheme characterizes the spatial organization of orobiome’s vegetation by basic bioclimatic parameters on the regional level (continentality index, average temperature of January). This scheme shows regional features of the diversity of vegetation in Southern Siberia, in adjacent plain and mountain regions according to climatic conditions. Identified patterns determine unity of the Altai-Sayan orobiome as well as regional differentiation that reflected on the development of types of vegetation zonality. They can be used to analysis of vegetation forming in different mountain systems. Article in Journal/Newspaper taiga Tundra Siberia Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 15 4 17 31