Climatic Factor Impact On the Height Growth Of Lapland Pine in The Northwestern Russia

Lapland pine (Pinus sylvestris var. lapponica Hartm.) is a geographical and climatic ecotype and subspecies of Pinus sylvestris L. It is widespread in the north of Eurasia. Its height growth is interconnected with both climatic parameters and the state of the habitat of pine trees. Long-term data on...

Full description

Bibliographic Details
Published in:International Journal for Parasitology: Parasites and Wildlife
Main Authors: Elena Popova N., Anna Koukhta E., Igor Popov O.
Other Authors: The authors express their gratitude to the heads of the surveyed specially protected natural territories (Reserves) for their help and assistance in the fieldwork. The study was carried out in the framework of the state assignments of the Institute of Geography of the Russian Academy of Sciences no. АААА-А19-119021990093-8 (FMGE-2019- 0007) “Assessment of geographical, hydrological and biotic environmental changes and their effects for the development of a basis for stable environmental management” - data processing and analysis of the results, and АААА-А19-119022190173-2 (FMGE-2019-0009) “Climate Change and Consequences for the Environment and Population Life and Activities on the Territory of Russia” – climate data analysis, and the themes of Roshydromet no. 3.2 for 2020–2024 “Monitoring of the Global Climate and the Climate of the Russian Federation and Its Regions Including the Arctic: Development and Modernization of Monitoring Technologies” - climate data processing, and no. АААА-А20-120013190049-4 - data collection from Lapland pine stand
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2022
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/2332
https://doi.org/10.24057/2071-9388-2021-055
id ftjges:oai:oai.gesj.elpub.ru:article/2332
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic Lapland pine
height growth
climatic factors
soils
cluster analysis
spellingShingle Lapland pine
height growth
climatic factors
soils
cluster analysis
Elena Popova N.
Anna Koukhta E.
Igor Popov O.
Climatic Factor Impact On the Height Growth Of Lapland Pine in The Northwestern Russia
topic_facet Lapland pine
height growth
climatic factors
soils
cluster analysis
description Lapland pine (Pinus sylvestris var. lapponica Hartm.) is a geographical and climatic ecotype and subspecies of Pinus sylvestris L. It is widespread in the north of Eurasia. Its height growth is interconnected with both climatic parameters and the state of the habitat of pine trees. Long-term data on height growth indices of Lapland pine from various humid biogeocenoses of three specially protected natural territories of Northwestern Russia were studied. Also, sixteen basic climatic parameters averaged over the growth period of the examined trees were calculated for these regions. The comparison of different climatic parameters and pine stand height growth in various biogeocenoses was made using cluster analysis. It was established that the mean daily average temperature in January (-9.4°C, -10.4°C, -16.1°C in the Kivach, Polar Circle and Pechora-Ilych Reserves respectively) and the amount of precipitation in spring and early summer periods have a primary influence on the cluster similarity of the Lapland pine height growth in Northwestern Russia. The similarity of soil and biocenotic conditions also influenced the similarity of Lapland pine height growth indices, but had a lower rank within the two main clusters distinguished by climatic values. Our studies showed that it is possible to identify the rank influence of the most significant climatic factors and biogeocenotic conditions on the pine height growth using cluster analysis.
author2 The authors express their gratitude to the heads of the surveyed specially protected natural territories (Reserves) for their help and assistance in the fieldwork. The study was carried out in the framework of the state assignments of the Institute of Geography of the Russian Academy of Sciences no. АААА-А19-119021990093-8 (FMGE-2019- 0007) “Assessment of geographical, hydrological and biotic environmental changes and their effects for the development of a basis for stable environmental management” - data processing and analysis of the results, and АААА-А19-119022190173-2 (FMGE-2019-0009) “Climate Change and Consequences for the Environment and Population Life and Activities on the Territory of Russia” – climate data analysis, and the themes of Roshydromet no. 3.2 for 2020–2024 “Monitoring of the Global Climate and the Climate of the Russian Federation and Its Regions Including the Arctic: Development and Modernization of Monitoring Technologies” - climate data processing, and no. АААА-А20-120013190049-4 - data collection from Lapland pine stand
format Article in Journal/Newspaper
author Elena Popova N.
Anna Koukhta E.
Igor Popov O.
author_facet Elena Popova N.
Anna Koukhta E.
Igor Popov O.
author_sort Elena Popova N.
title Climatic Factor Impact On the Height Growth Of Lapland Pine in The Northwestern Russia
title_short Climatic Factor Impact On the Height Growth Of Lapland Pine in The Northwestern Russia
title_full Climatic Factor Impact On the Height Growth Of Lapland Pine in The Northwestern Russia
title_fullStr Climatic Factor Impact On the Height Growth Of Lapland Pine in The Northwestern Russia
title_full_unstemmed Climatic Factor Impact On the Height Growth Of Lapland Pine in The Northwestern Russia
title_sort climatic factor impact on the height growth of lapland pine in the northwestern russia
publisher Russian Geographical Society
publishDate 2022
url https://ges.rgo.ru/jour/article/view/2332
https://doi.org/10.24057/2071-9388-2021-055
genre Pechora
Lapland
genre_facet Pechora
Lapland
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 15, No 1 (2022); 122-129
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/2332/632
Alisov B.P. (1956). Climate of the USSR. Publishing house of Moscow University, Moscow (in Russian).
BCNKC (2020). The Basin Council of North Karelian Coast. Non-Profit Corp. [online] Available at: https://www.kareliacoast.org. [Accessed 18 Mar. 2020].
Bonan G.B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320(5882),1444–1449, DOI:10.1126/science.1155121.
Chernogaeva G.M. and Kuhta A.E. (2018). The Response of Boreal Forest Stands to Recent Climate Change in the North of the European Part of Russia. Russian Meteorology and Hydrology, 43(6), 418-424, DOI:10.3103/S1068373918060109.
Degteva S.V. and Lapteva E.M. (eds) (2013). Soils and soil cover of the Pechora-Ilych Reserve (Northern Urals). Syktyvkar, ISBN:978-5- 89606-513-5 (in Russian).
Dobbertin M., Eilmann B., Bleuler P., Giuggiola A., Graf-Pannatier E., Landolt W., Schleppi P., Rigling A. (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol., 30, 346–360. DOI:10.1093/treephys/tpp123.
Dobrovol’skii G.V. and Urusevskaya I.S. (2004). Soil geography. Second Edition. Publishing house of Moscow University, Moscow ISBN:5- 211-04481-9, KolosC, Moscow ISBN:5-9532-0254-7 (in Russian).
Egorov V.V., Fridland V.M., Ivanova E.N., Rozov N.N., Nosin V.A., Friev T.A. (1977). Classification and diagnostics of soils in the USSR. Kolos, Moscow (in Russian).
Elagin I.N. (1976). Seasonal development of pine forests. Nauka, Novosibirsk (in Russian).
Fedorets N.G., Morozova R.M., Bakhmet O.N., Solodovnikov A.N. (2006). Soils and soil cover of the Kivach reserve. Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences, Petrozavodsk 10, 131-152 (in Russian with English summary).
Gitis L. (2003). Statistical classification and cluster analysis. Publishing House of Moscow State Mining University, Moscow ISBN:5-7418- 0010-6 (in Russian).
Gymnosperm DB (2022). The Gymnosperm Database. [online] Available at: https://www.conifers.org/pi/Pinus_sylvestris.php. [Accessed 4 Jan. 2022].
Jansons A., Matisons R., Baumanis I., Purina L. (2013a). Effect of climatic factors on height increment of Scots pine in experimental plantation in Kalsnava, Latvia. Forest Ecology and Management, 306, 185–191. DOI:10.1016/j.foreco.2013.06.039.
Jansons A., Matisons R., Lībiete-Zālīte Z., Baders E., Rieksts-Riekstinёš R. (2013b). Relationships of height growth of lodgepole pine (Pinus contorta var. latifolia) and Scots pine (Pinus sylvestris) with climatic factors in Zvirgzde, Latvia. Baltic Forestry, 19(2), 236–244.
Kishchenko I.T. (2019). Seasonal formation of aboveground phytomass of middle-aged pine stands of various types of forest in the middle taiga. Lesovedenie (Forestry), 1, 19-28 (in Russian with English summary), DOI:10.1134/S002411481901008X.
KNR (2020). Kivach Nature Reserve. Official Website. [online] Available at: https://zapkivach.ru. [Accessed 20 Mar. 2020].
Koukhta A.E. (2003). Linear growth of trees as an indicator of the state of the environment. Siberian ecological journal, 6, 767-771 (in Russian with English summary).
Koukhta A.E. and Titkina S.N. (2005). Climatogenic variations in linear increment of Scots pine juvenile plants in model stands in the Penza region. Problems of ecological monitoring and modeling of ecosystems, 20, 251-261 (in Russian with English summary).
McCarroll D., Jalkanen R., Hicks S., Tuovinen M., Gagen M., Pawellek F., Eckstein D., Schmitt U., Autio J., Heikkinen O. (2003). Multiproxy dendroclimatology: a pilot study in northern Finland. Holocene, 13, 829–838, DOI:10.1191/0959683603hl668rp.
Misi D., Puchałka R., Pearson C., Robertson I., Koprowski M. (2019). Differences in the Climate-Growth Relationship of Scots Pine: A Case Study from Poland and Hungary. Forests, 243(10), 1-12, DOI:10.3390/f10030243.
Mutke S., Gordo J., Climent J., Gil L. (2003). Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Ann. For. Sci., 60, 527–537, DOI:10.1051/forest:2003046.
Nikolaeva S.A. and Savchuk D.A. (2008). Climatogenic response of pine trees in the south of the Tomsk region. J. of the Siberian Federal University, Biology, 1(4), 400-413 (in Russian with English summary).
Pensa M., Salminen H., Jalkanen R. (2005). A 250-year-long height-increment chronology for Pinus sylvestris at the northern coniferous timberline: a novel tool for reconstructing past summer temperatures? Dendrochronologia, 22, 75–81, DOI:10.1016/j.dendro.2005.02.005.
PISNBR (2020). Pechora-Ilych State Nature Biosphere Reserve. Official Website. [online] Available at: https://www.pechora-reserve.ru. [Accessed 22 Mar. 2020].
Plant List (2022). The Plant List. [online] Available at: http://www.theplantlist.org. [Accessed 4 Jan. 2022].
Popova E.N., Yasyukevich V.V., Popov I.O. (2017). On the correct use of cumulative applied climate indices for studying biological objects. Russian Meteorology and Hydrology, 42(10), 661–664, DOI:10.3103/S1068373917100053.
Pozdnyakova E.A., Volkova G.L., Koukhta A.E. (2019). Variability of Scots pine linear increment in different types of biotopes of the European part of Russia. Lesnoy Vestnik (Forestry bulletin), 23(2), 61–69 (in Russian with English summary), DOI:10.18698/2542-1468-2019-2-61-69.
Pravdin L.F. (1964). Pinus sylvestris. Variability, intraspecific taxonomy and selection. Nauka, Moscow (in Russian).
Raschka S. and Mirjalili V. (2017). Python Machine Learning - Second Edition. Packt Publishing Ltd. ISBN:9781787125933.
RSRIHI-WDC (2014). All Russian Research Institute of Hydrometeorological Information - World Data Center. Official Website. [online] Available at: http://www.meteo.ru. [Accessed 10 Feb 2014].
Rumyantsev D.E. (2004). Diagnostics of the growth features of pine and spruce in South Karelia using dendrochronological methods. Dissertation. candidate of biological sciences, Moscow State Forest University, Moscow (in Russian).
Rysin L.P. and Savelyeva L.I. (2008). Pine forests of Russia. Partnership of scientific publications “KMK”, Moscow, ISBN:978-5-87317-512-3 (in Russian).
Salminen H. and Jalkanen R. (2005). Modelling the effect of temperature on height increment of Scots pine at high latitudes. Silva Fennica, 39, 497–508. Available at: http://www.metla.fi/silvafennica/full/sf39/sf394497.pdf. [Accessed 10 Apr. 2020].
Sánchez-Salguero R., Camarero J.J., Hevia A., Madrigal-González J., Linares J.C., Ballesteros-Canovas J.A., Sánchez-Miranda A., AlfaroSánchez R. (2015). What drives growth of Scots pine in continental Mediterranean climates: Drought, low temperatures or both? Agric. For. Meteorol., 206, 151–162, DOI:10.1016/j.agrformet.2015.03.004.
Selyaninov G.T. (1928). On agricultural assessment of climate. Works on agricultural meteorology. Issue 20, 169-178 (in Russian).
Shestakova T.A., Voltas J., Saurer M., Siegwolf R.T.W., Kirdyanov A.V. (2017). Warming effects on Pinus sylvestris in the cold–dry Siberian forest–steppe: positive or negative balance of trade? Forests, 8(12), 1-21, DOI:10.3390/f8120490.
Sirotenko O.D. and Pavlova V.N. (2012). Methods for assessing the impact of climate change on agricultural productivity. In: Semenov S.M., Popova E.N., Trifonova-Yakovleva A.M., Yasukevich V.V. (eds). Methods for assessment of climate change consequences for physical and biological systems, Roshydromet, Moscow, pp. 165-189. ISBN:978-5-904206-10-9 (in Russian).
SPTsR (2020). Specially protected territories of Russia. Official Website. [online] Available at: http://oopt.aari.ru. [Accessed 20 Aug. 2020] (in Russian).
Sukachev V.N. (1972). Selected works in three volumes. In: Lavrenko E.M. (ed). Vol. 1: Fundamentals of forest typology and biogeocenology. Nauka, Leningrad (in Russian).
Thabeet A., Vennetier M., Gadbin-Henry C., Dendelle N., Roux M., Caraglio Y., Vila B. (2009). Response of Pinus sylvestris L. to recent climatic events in the French Mediterranean region. Trees – Structure and Function, 23, 843–853, DOI:10.1007/s00468-009-0326-z.
van der Maaten E., Mehl A., Wilmking M., van der Maaten-Theunissen M. (2017). Tapping the tree-ring archive for studying effects of resin extraction on the growth and climate sensitivity of Scots pine. Forest ecosystems, 4(7), 1-7, DOI:10.1186/s40663-017-0096-9.
Voronov A.G., Drozdov N.N., Krivolutsky D.A., Myalo E.G. (2002). Biogeography with the basics of ecology. Publishing house of Moscow State University, Moscow, ISBN:5-211-04664-1, Publishing house «Higher school», Moscow ISBN:5-06-004341-X (in Russian).
Zhou Y., Lei Z., Zhou F., Han Y., Yu D., Zhang Y. (2019). Impact of climate factors on height growth of Pinus sylvestris var. mongolica. PloS ONE, 14(3), e0213509, DOI:10.1371/journal.pone.0213509.
https://ges.rgo.ru/jour/article/view/2332
doi:10.24057/2071-9388-2021-055
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2021-055
https://doi.org/10.1126/science.1155121
https://doi.org/10.3103/S1068373918060109
https://doi.org/10.1093/treephys/tpp123
https://doi.org/10.1016/j.foreco.2013.06.039
https://doi.org/10.1134/S002411481
container_title International Journal for Parasitology: Parasites and Wildlife
container_volume 17
container_start_page 211
op_container_end_page 217
_version_ 1766162877524213760
spelling ftjges:oai:oai.gesj.elpub.ru:article/2332 2023-05-15T17:55:00+02:00 Climatic Factor Impact On the Height Growth Of Lapland Pine in The Northwestern Russia Elena Popova N. Anna Koukhta E. Igor Popov O. The authors express their gratitude to the heads of the surveyed specially protected natural territories (Reserves) for their help and assistance in the fieldwork. The study was carried out in the framework of the state assignments of the Institute of Geography of the Russian Academy of Sciences no. АААА-А19-119021990093-8 (FMGE-2019- 0007) “Assessment of geographical, hydrological and biotic environmental changes and their effects for the development of a basis for stable environmental management” - data processing and analysis of the results, and АААА-А19-119022190173-2 (FMGE-2019-0009) “Climate Change and Consequences for the Environment and Population Life and Activities on the Territory of Russia” – climate data analysis, and the themes of Roshydromet no. 3.2 for 2020–2024 “Monitoring of the Global Climate and the Climate of the Russian Federation and Its Regions Including the Arctic: Development and Modernization of Monitoring Technologies” - climate data processing, and no. АААА-А20-120013190049-4 - data collection from Lapland pine stand 2022-03-28 application/pdf https://ges.rgo.ru/jour/article/view/2332 https://doi.org/10.24057/2071-9388-2021-055 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/2332/632 Alisov B.P. (1956). Climate of the USSR. Publishing house of Moscow University, Moscow (in Russian). BCNKC (2020). The Basin Council of North Karelian Coast. Non-Profit Corp. [online] Available at: https://www.kareliacoast.org. [Accessed 18 Mar. 2020]. Bonan G.B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320(5882),1444–1449, DOI:10.1126/science.1155121. Chernogaeva G.M. and Kuhta A.E. (2018). The Response of Boreal Forest Stands to Recent Climate Change in the North of the European Part of Russia. Russian Meteorology and Hydrology, 43(6), 418-424, DOI:10.3103/S1068373918060109. Degteva S.V. and Lapteva E.M. (eds) (2013). Soils and soil cover of the Pechora-Ilych Reserve (Northern Urals). Syktyvkar, ISBN:978-5- 89606-513-5 (in Russian). Dobbertin M., Eilmann B., Bleuler P., Giuggiola A., Graf-Pannatier E., Landolt W., Schleppi P., Rigling A. (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol., 30, 346–360. DOI:10.1093/treephys/tpp123. Dobrovol’skii G.V. and Urusevskaya I.S. (2004). Soil geography. Second Edition. Publishing house of Moscow University, Moscow ISBN:5- 211-04481-9, KolosC, Moscow ISBN:5-9532-0254-7 (in Russian). Egorov V.V., Fridland V.M., Ivanova E.N., Rozov N.N., Nosin V.A., Friev T.A. (1977). Classification and diagnostics of soils in the USSR. Kolos, Moscow (in Russian). Elagin I.N. (1976). Seasonal development of pine forests. Nauka, Novosibirsk (in Russian). Fedorets N.G., Morozova R.M., Bakhmet O.N., Solodovnikov A.N. (2006). Soils and soil cover of the Kivach reserve. Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences, Petrozavodsk 10, 131-152 (in Russian with English summary). Gitis L. (2003). Statistical classification and cluster analysis. Publishing House of Moscow State Mining University, Moscow ISBN:5-7418- 0010-6 (in Russian). Gymnosperm DB (2022). The Gymnosperm Database. [online] Available at: https://www.conifers.org/pi/Pinus_sylvestris.php. [Accessed 4 Jan. 2022]. Jansons A., Matisons R., Baumanis I., Purina L. (2013a). Effect of climatic factors on height increment of Scots pine in experimental plantation in Kalsnava, Latvia. Forest Ecology and Management, 306, 185–191. DOI:10.1016/j.foreco.2013.06.039. Jansons A., Matisons R., Lībiete-Zālīte Z., Baders E., Rieksts-Riekstinёš R. (2013b). Relationships of height growth of lodgepole pine (Pinus contorta var. latifolia) and Scots pine (Pinus sylvestris) with climatic factors in Zvirgzde, Latvia. Baltic Forestry, 19(2), 236–244. Kishchenko I.T. (2019). Seasonal formation of aboveground phytomass of middle-aged pine stands of various types of forest in the middle taiga. Lesovedenie (Forestry), 1, 19-28 (in Russian with English summary), DOI:10.1134/S002411481901008X. KNR (2020). Kivach Nature Reserve. Official Website. [online] Available at: https://zapkivach.ru. [Accessed 20 Mar. 2020]. Koukhta A.E. (2003). Linear growth of trees as an indicator of the state of the environment. Siberian ecological journal, 6, 767-771 (in Russian with English summary). Koukhta A.E. and Titkina S.N. (2005). Climatogenic variations in linear increment of Scots pine juvenile plants in model stands in the Penza region. Problems of ecological monitoring and modeling of ecosystems, 20, 251-261 (in Russian with English summary). McCarroll D., Jalkanen R., Hicks S., Tuovinen M., Gagen M., Pawellek F., Eckstein D., Schmitt U., Autio J., Heikkinen O. (2003). Multiproxy dendroclimatology: a pilot study in northern Finland. Holocene, 13, 829–838, DOI:10.1191/0959683603hl668rp. Misi D., Puchałka R., Pearson C., Robertson I., Koprowski M. (2019). Differences in the Climate-Growth Relationship of Scots Pine: A Case Study from Poland and Hungary. Forests, 243(10), 1-12, DOI:10.3390/f10030243. Mutke S., Gordo J., Climent J., Gil L. (2003). Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Ann. For. Sci., 60, 527–537, DOI:10.1051/forest:2003046. Nikolaeva S.A. and Savchuk D.A. (2008). Climatogenic response of pine trees in the south of the Tomsk region. J. of the Siberian Federal University, Biology, 1(4), 400-413 (in Russian with English summary). Pensa M., Salminen H., Jalkanen R. (2005). A 250-year-long height-increment chronology for Pinus sylvestris at the northern coniferous timberline: a novel tool for reconstructing past summer temperatures? Dendrochronologia, 22, 75–81, DOI:10.1016/j.dendro.2005.02.005. PISNBR (2020). Pechora-Ilych State Nature Biosphere Reserve. Official Website. [online] Available at: https://www.pechora-reserve.ru. [Accessed 22 Mar. 2020]. Plant List (2022). The Plant List. [online] Available at: http://www.theplantlist.org. [Accessed 4 Jan. 2022]. Popova E.N., Yasyukevich V.V., Popov I.O. (2017). On the correct use of cumulative applied climate indices for studying biological objects. Russian Meteorology and Hydrology, 42(10), 661–664, DOI:10.3103/S1068373917100053. Pozdnyakova E.A., Volkova G.L., Koukhta A.E. (2019). Variability of Scots pine linear increment in different types of biotopes of the European part of Russia. Lesnoy Vestnik (Forestry bulletin), 23(2), 61–69 (in Russian with English summary), DOI:10.18698/2542-1468-2019-2-61-69. Pravdin L.F. (1964). Pinus sylvestris. Variability, intraspecific taxonomy and selection. Nauka, Moscow (in Russian). Raschka S. and Mirjalili V. (2017). Python Machine Learning - Second Edition. Packt Publishing Ltd. ISBN:9781787125933. RSRIHI-WDC (2014). All Russian Research Institute of Hydrometeorological Information - World Data Center. Official Website. [online] Available at: http://www.meteo.ru. [Accessed 10 Feb 2014]. Rumyantsev D.E. (2004). Diagnostics of the growth features of pine and spruce in South Karelia using dendrochronological methods. Dissertation. candidate of biological sciences, Moscow State Forest University, Moscow (in Russian). Rysin L.P. and Savelyeva L.I. (2008). Pine forests of Russia. Partnership of scientific publications “KMK”, Moscow, ISBN:978-5-87317-512-3 (in Russian). Salminen H. and Jalkanen R. (2005). Modelling the effect of temperature on height increment of Scots pine at high latitudes. Silva Fennica, 39, 497–508. Available at: http://www.metla.fi/silvafennica/full/sf39/sf394497.pdf. [Accessed 10 Apr. 2020]. Sánchez-Salguero R., Camarero J.J., Hevia A., Madrigal-González J., Linares J.C., Ballesteros-Canovas J.A., Sánchez-Miranda A., AlfaroSánchez R. (2015). What drives growth of Scots pine in continental Mediterranean climates: Drought, low temperatures or both? Agric. For. Meteorol., 206, 151–162, DOI:10.1016/j.agrformet.2015.03.004. Selyaninov G.T. (1928). On agricultural assessment of climate. Works on agricultural meteorology. Issue 20, 169-178 (in Russian). Shestakova T.A., Voltas J., Saurer M., Siegwolf R.T.W., Kirdyanov A.V. (2017). Warming effects on Pinus sylvestris in the cold–dry Siberian forest–steppe: positive or negative balance of trade? Forests, 8(12), 1-21, DOI:10.3390/f8120490. Sirotenko O.D. and Pavlova V.N. (2012). Methods for assessing the impact of climate change on agricultural productivity. In: Semenov S.M., Popova E.N., Trifonova-Yakovleva A.M., Yasukevich V.V. (eds). Methods for assessment of climate change consequences for physical and biological systems, Roshydromet, Moscow, pp. 165-189. ISBN:978-5-904206-10-9 (in Russian). SPTsR (2020). Specially protected territories of Russia. Official Website. [online] Available at: http://oopt.aari.ru. [Accessed 20 Aug. 2020] (in Russian). Sukachev V.N. (1972). Selected works in three volumes. In: Lavrenko E.M. (ed). Vol. 1: Fundamentals of forest typology and biogeocenology. Nauka, Leningrad (in Russian). Thabeet A., Vennetier M., Gadbin-Henry C., Dendelle N., Roux M., Caraglio Y., Vila B. (2009). Response of Pinus sylvestris L. to recent climatic events in the French Mediterranean region. Trees – Structure and Function, 23, 843–853, DOI:10.1007/s00468-009-0326-z. van der Maaten E., Mehl A., Wilmking M., van der Maaten-Theunissen M. (2017). Tapping the tree-ring archive for studying effects of resin extraction on the growth and climate sensitivity of Scots pine. Forest ecosystems, 4(7), 1-7, DOI:10.1186/s40663-017-0096-9. Voronov A.G., Drozdov N.N., Krivolutsky D.A., Myalo E.G. (2002). Biogeography with the basics of ecology. Publishing house of Moscow State University, Moscow, ISBN:5-211-04664-1, Publishing house «Higher school», Moscow ISBN:5-06-004341-X (in Russian). Zhou Y., Lei Z., Zhou F., Han Y., Yu D., Zhang Y. (2019). Impact of climate factors on height growth of Pinus sylvestris var. mongolica. PloS ONE, 14(3), e0213509, DOI:10.1371/journal.pone.0213509. https://ges.rgo.ru/jour/article/view/2332 doi:10.24057/2071-9388-2021-055 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 15, No 1 (2022); 122-129 2542-1565 2071-9388 Lapland pine height growth climatic factors soils cluster analysis info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftjges https://doi.org/10.24057/2071-9388-2021-055 https://doi.org/10.1126/science.1155121 https://doi.org/10.3103/S1068373918060109 https://doi.org/10.1093/treephys/tpp123 https://doi.org/10.1016/j.foreco.2013.06.039 https://doi.org/10.1134/S002411481 2022-04-05T16:45:34Z Lapland pine (Pinus sylvestris var. lapponica Hartm.) is a geographical and climatic ecotype and subspecies of Pinus sylvestris L. It is widespread in the north of Eurasia. Its height growth is interconnected with both climatic parameters and the state of the habitat of pine trees. Long-term data on height growth indices of Lapland pine from various humid biogeocenoses of three specially protected natural territories of Northwestern Russia were studied. Also, sixteen basic climatic parameters averaged over the growth period of the examined trees were calculated for these regions. The comparison of different climatic parameters and pine stand height growth in various biogeocenoses was made using cluster analysis. It was established that the mean daily average temperature in January (-9.4°C, -10.4°C, -16.1°C in the Kivach, Polar Circle and Pechora-Ilych Reserves respectively) and the amount of precipitation in spring and early summer periods have a primary influence on the cluster similarity of the Lapland pine height growth in Northwestern Russia. The similarity of soil and biocenotic conditions also influenced the similarity of Lapland pine height growth indices, but had a lower rank within the two main clusters distinguished by climatic values. Our studies showed that it is possible to identify the rank influence of the most significant climatic factors and biogeocenotic conditions on the pine height growth using cluster analysis. Article in Journal/Newspaper Pechora Lapland Geography, Environment, Sustainability (E-Journal) International Journal for Parasitology: Parasites and Wildlife 17 211 217