Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia

This paper provides information on active layer thickness (ALT) dynamics, or seasonal thawing above permafrost, from a Circumpolar Active Layer Monitoring (CALM) site near the city of Norilsk on the Taimyr Peninsula (north-central Siberia) and the influences of meteorological and landscape propertie...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Valery Grebenets I., Vasily Tolmanov A., Dmitry Streletskiy A.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2021
Subjects:
Ice
Online Access:https://ges.rgo.ru/jour/article/view/2179
https://doi.org/10.24057/2071-9388-2021-073
id ftjges:oai:oai.gesj.elpub.ru:article/2179
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic Active Layer Thickness (ALT)
permafrost
thaw subsidence
CALM (Circumpolar Active Layer Monitoring) program
Russia
Taymyr Peninsula
spellingShingle Active Layer Thickness (ALT)
permafrost
thaw subsidence
CALM (Circumpolar Active Layer Monitoring) program
Russia
Taymyr Peninsula
Valery Grebenets I.
Vasily Tolmanov A.
Dmitry Streletskiy A.
Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia
topic_facet Active Layer Thickness (ALT)
permafrost
thaw subsidence
CALM (Circumpolar Active Layer Monitoring) program
Russia
Taymyr Peninsula
description This paper provides information on active layer thickness (ALT) dynamics, or seasonal thawing above permafrost, from a Circumpolar Active Layer Monitoring (CALM) site near the city of Norilsk on the Taimyr Peninsula (north-central Siberia) and the influences of meteorological and landscape properties on these dynamics under a warming climate, from 2005 to 2020. The average ALT in loamy soils at this 1 ha CALM site over the past 16 years was 96 cm, higher than previous studies from 1980s conducted at the same location, which estimated ALT to be 80 cm. Increasing mean annual air temperatures in Norilsk correspond with the average ALT increasing trend of 1 cm/year for the observation period. Active layer development depends on summer thermal and precipitation regimes, time of snowmelt, micro-landscape conditions, the cryogenic structure (ice content) of soils, soil water content leading up to the freezing period, drainage, and other factors. Differences in ALT, within various micro landscape conditions can reach 200% in each of the observation periods.
format Article in Journal/Newspaper
author Valery Grebenets I.
Vasily Tolmanov A.
Dmitry Streletskiy A.
author_facet Valery Grebenets I.
Vasily Tolmanov A.
Dmitry Streletskiy A.
author_sort Valery Grebenets I.
title Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia
title_short Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia
title_full Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia
title_fullStr Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia
title_full_unstemmed Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia
title_sort active layer dynamics near norilsk, taimyr peninsula, russia
publisher Russian Geographical Society
publishDate 2021
url https://ges.rgo.ru/jour/article/view/2179
https://doi.org/10.24057/2071-9388-2021-073
long_lat ENVELOPE(88.203,88.203,69.354,69.354)
ENVELOPE(89.987,89.987,68.219,68.219)
geographic Norilsk
Taymyr
geographic_facet Norilsk
Taymyr
genre Active layer monitoring
Active layer thickness
Arctic
Arctic and Alpine Research
Ice
norilsk
permafrost
Permafrost and Periglacial Processes
Polar Geography
Polar Research
Taimyr
Taymyr
Taymyr Peninsula
Siberia
genre_facet Active layer monitoring
Active layer thickness
Arctic
Arctic and Alpine Research
Ice
norilsk
permafrost
Permafrost and Periglacial Processes
Polar Geography
Polar Research
Taimyr
Taymyr
Taymyr Peninsula
Siberia
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 4 (2021); 55-66
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/2179/584
Alaska, U.S.A., in Proceedings of the Seventh International Conference.
Abramov A., Davydov S., Ivashchenko A., Karelin D., Kholodov A., Kraev G., Lupachev A., Maslakov A., Ostroumov V., Rivkina E., Shmelev D., Sorokovikov V., Tregubov O., Veremeeva A., Zamolodchikov D., and Zimov S. (2019). Two decades of active layer thickness monitoring in northeastern Asia. Polar Geography, 0(0), 1-17, DOI:10.1080/1088937X.2019.1648581.
Bonnaventure P.P. and Lamoureux S.F. (2013). The active layer: A conceptual reviewof monitoring, modelling techniques and changes in a warming climate. Progress in Physical Geography, DOI:10.1177/0309133313478314.
Boyd D.W. (1973). Normal freezing and thawing degree days for Canada: 1931–1960. Downsview. Ontario, Canada: CLI 473 Publ.
Brown J., Nelson F.E. and Hinkel K.M. (2000). The circumpolar active layer monitoring (CALM) program research designs and initial results. Polar Geography, 3, 165-258.
Fagan J.E. and Nelson F.E. (2017). Sampling designs in the circumpolar active layer monitoring (CALM) program. Permafrost and Periglacial Processes, 28(1), 42-51.
French H.M. (1999) Past and present permafrost as an indicator of climate.
Change. Polar Research, 18:2, 269-274, DOI:10.3402/polar.v18i2.6584.
Frost G.V., Epstein H.E., Walker D.A., Matyshak G. and Ermokhina K. (2018). Seasonal and long-term changes in active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems, 21(3), 507-520.
Gmurman V.E. (2010). Probability theory and mathematical statistics: Textbook for universities. Moscow, Russia: Vyshaya shkola Publ. (In Russian) Golden Software, Inc., SURFER for Windows, version 7 User’s Guide, Golden, Colo., 1999.
Grebenets V.I., Streletskiy D.A., Shiklomanov N.I., Kerimov A.G., Ostroumova E.A., Konovalov Y.V. and Andruschenko F.D. (2016). Thermal state dynamics of permafrost basement on engineering objects in cryolithozone of Russia. (2016). In: Book of abstracts of XI International Conference On Permafrost Exploring Permafrost in a Future Earth. Potsdam, Germany: Bibliothek Wissenschaftspark Albert Einstein Telegrafenberg, 1080-1083, DOI:10.2312/GFZ.LIS.2016.001.
Harlan R.L. and Nixon J.F. (1978). Ground thermal regime. In: O. Andersland and D. Anderson ed., Geotechnical Engineering for Cold Regions. New York: Mc Craw Hill, 103-163.
Hinkel K.M. and Nelson F.E. (2003). Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska, 1995–2000. Journal of Geophysical Research, 108(D2), 8168, DOI:10.1029/2001JD000927.
Ivchenko G.I. and Medvedev Y.I. (2010). Introduction to mathematical statistics. Moscow: LKI Publ. (In Russian).
Kaverin D.A., Pastukhov A. V. and Mazhitova G.G. (2014). Temperature regime of tundra soils and underlying permafrost (Northeastern European Russia). Earth’s Cryosphere, 18(3), 23-32. (In Russian).
Kaverin D.A., Pastukhov A.V., Novakovsky A.B., Biasi K., Maruschak M. and Elsakov V.V. (2019). Landscape and climatic factors impacting the thaw depth in soils of permafrost peat plateaus (on the example of Calm R52 site). Earth’s Cryosphere, 23(2), 62-71, DOI:10.21782/KZ1560-7496-2019-2(62-71) (In Russian).
Kirdyanov A.V., Hagedorn F., Knorre A.A., Fedotova E.V., Vaganov E.A., Naurzbaev M.M. and Rigling A. (2012). 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia, Boreas, 41(1), 56-67.
Konischev V.N. (2011). The response of permafrost to climate warming. Earth’s Cryosphere, 15(4), 15-18 (In Russian with English summary).
Kudryavtsev V. (1954). Thermal regime of the upper horizons of rocks Moscow: Publ. of the Academy of Sciences of the USSR (In Russian).
Kudryavtsev V. and Dostovalov V. (1967). Obschee merzlotovedenie. Moscow: Publ. of Moscow State University (In Russian).
Laval, Laval, Quebec, 1998
Luo D., Wu Q., Jin H., Marchenko S.S., Lü L. and Gao S. (2016). Recent changes in the active layer thickness across the northern hemisphere. Environmental Earth Sciences, 75(7), DOI:10.1007/s12665-015-5229-2.
Maslakov A., Shabanova N., Zamolodchikov D., Volobuev V. and Kraev G. (2017). Permafrost Degradation within Eastern Chukotka CALM Sites in the 21st Century Based on CMIP5 Climate Models. Geosciences, 9(5), 232, DOI:10.3390/geosciences9050232.
Mazhitova G.G. and Kaverin D.A. (2007). Thaw depth dynamics and soil surface subsidence at a Circumpolar Active Layer Monitoring (CALM) site, the European North of Russia. Earth’s Cryosphere, 11, 20-30 (In Russian).
Mazhitova G.G. & Kaverin Dmitry. (2007). Thaw depth dynamics and soil surface subsidence at a Circumpolar Active Layer Monitoring (CALM) site, the European North of Russia. Earth’s Cryosphere. 11. 20-30. Miller L.L., K.M. Hinkel, F.E. Nelson, R.F. Paetzold and S.I. Outcalt, Miller L. L., K. M. Hinkel F. E. Nelson R. F. Paetzold and S. I. Outcalt,ТMoskalenko N.G. (1999). Anthropogenic dynamics of vegetation of the plains of the permafrost zone of Russia. Novosibirsk: Nauka Publ. (In Russian)
Nelson F.E. and Outcalt S.I. (1987). A computational method for prediction and regionalization of permafrost. Arctic and Alpine Research, 19(3), 279-288.
Nelson F.E., Outcalt S.I., Brown J., Shiklomanov N.I. and Hinkel K.M. (1998). Spatial and Temporal Attributes of the Active-Layer Thickness Record, Barrow, Alaska, U.S.A. Permafrost – 7th International Conference, 55, 797-802.
Nyland K.E., Shiklomanov N.I. and Streletskiy D.A. (2017) Climatic – and anthropogenic-induced land cover change around Norilsk, Russia, Polar Geography, 40(4), 257-272, DOI:10.1080/1088937X.2017.1370503.
General Permafrost Science (geocryology). (1978). Moscow: Publ. of Moscow State University (In Russian).
General Permafrost Science. (1974). Novosibirsk: Nauka Publ. (In Russian) on Permafrost, vol. 1, pp. 731 – 737, Cent. d’Etud. Nordiques, Univ.
Popov A.I., Arkhangelov A.A., Velikotsky M.A., Zhigarev L.A., Konishchev V.N., Marakhtanov V.P., Tumel N.V. and Shpolyanskaya N.A. (1989). Regional cryolithology. Moscow: Publ. of Moscow State University (In Russian)
Sheveleva N.S. and Homichevskaya L.S. (1967). Geocryological conditions of the Yenisei north. Moscow: Nauka Publ. (In Russian)
Shiklomanov N., Streletskiy D., Little J. and Nelson F. (2013). Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophysical Research Letters, 40, 6356-6361.
Smith S.L., Wolfe S.A., Riseborough D.W. and Nixon M. (2009) Active-Layer Characteristics and Summer Climatic Indices, Mackenzie Valley, Northwest Territories, Canada. Permafrost and Periglacial processes, 20, 201-220
SP 25.13330.2012 Basements and foundations on permafrost soils (In Russian) Spatial and temporal patterns of soil moisture and thaw depth at Barrow,
Streletskiy D.A., Shiklomanov N.I., Little J.D. and Nelson F.E. (2017). Thaw subsidence in undisturbed tundra landscapes, Barrow, Alaska, 1962–2015. Permafrost and Periglacial Processes, 28(3), 566-572.
Streletskiy D.A., Sherstiukov A.B., Frauenfeld O.W. and Nelson F.E. (2015). Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environmental Research Letters, 10(12), 125005.
SURFER for Windows, version 7 User’s Guide. (1999). Colorado: Golden Software Inc.
GWU.еdu/calм (2021). СALM program web-site. [online] Available at: https://www2.gwu.edu/~calm/ [Accessed 1 May 2021].
ArсtiсDаta.iо (2021). Arctic Data Center. [online] Available at: https://arcticdata.io/catalog/view/doi:10.18739/A2KP7TS45 [Accessed 1 May 2021].
https://ges.rgo.ru/jour/article/view/2179
doi:10.24057/2071-9388-2021-073
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2021-073
https://doi.org/10.1080/1088937X.2019.1648581
https://doi.org/10.1177/0309133313478314
https://doi.org/10.3402/polar.v18i2.6584
https://doi.org/10.2312/GFZ.LIS.2016.001
https://doi.org/10.1029/2001JD00
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 14
container_issue 4
container_start_page 55
op_container_end_page 66
_version_ 1766313129176727552
spelling ftjges:oai:oai.gesj.elpub.ru:article/2179 2023-05-15T13:02:36+02:00 Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia Valery Grebenets I. Vasily Tolmanov A. Dmitry Streletskiy A. 2021-12-28 application/pdf https://ges.rgo.ru/jour/article/view/2179 https://doi.org/10.24057/2071-9388-2021-073 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/2179/584 Alaska, U.S.A., in Proceedings of the Seventh International Conference. Abramov A., Davydov S., Ivashchenko A., Karelin D., Kholodov A., Kraev G., Lupachev A., Maslakov A., Ostroumov V., Rivkina E., Shmelev D., Sorokovikov V., Tregubov O., Veremeeva A., Zamolodchikov D., and Zimov S. (2019). Two decades of active layer thickness monitoring in northeastern Asia. Polar Geography, 0(0), 1-17, DOI:10.1080/1088937X.2019.1648581. Bonnaventure P.P. and Lamoureux S.F. (2013). The active layer: A conceptual reviewof monitoring, modelling techniques and changes in a warming climate. Progress in Physical Geography, DOI:10.1177/0309133313478314. Boyd D.W. (1973). Normal freezing and thawing degree days for Canada: 1931–1960. Downsview. Ontario, Canada: CLI 473 Publ. Brown J., Nelson F.E. and Hinkel K.M. (2000). The circumpolar active layer monitoring (CALM) program research designs and initial results. Polar Geography, 3, 165-258. Fagan J.E. and Nelson F.E. (2017). Sampling designs in the circumpolar active layer monitoring (CALM) program. Permafrost and Periglacial Processes, 28(1), 42-51. French H.M. (1999) Past and present permafrost as an indicator of climate. Change. Polar Research, 18:2, 269-274, DOI:10.3402/polar.v18i2.6584. Frost G.V., Epstein H.E., Walker D.A., Matyshak G. and Ermokhina K. (2018). Seasonal and long-term changes in active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems, 21(3), 507-520. Gmurman V.E. (2010). Probability theory and mathematical statistics: Textbook for universities. Moscow, Russia: Vyshaya shkola Publ. (In Russian) Golden Software, Inc., SURFER for Windows, version 7 User’s Guide, Golden, Colo., 1999. Grebenets V.I., Streletskiy D.A., Shiklomanov N.I., Kerimov A.G., Ostroumova E.A., Konovalov Y.V. and Andruschenko F.D. (2016). Thermal state dynamics of permafrost basement on engineering objects in cryolithozone of Russia. (2016). In: Book of abstracts of XI International Conference On Permafrost Exploring Permafrost in a Future Earth. Potsdam, Germany: Bibliothek Wissenschaftspark Albert Einstein Telegrafenberg, 1080-1083, DOI:10.2312/GFZ.LIS.2016.001. Harlan R.L. and Nixon J.F. (1978). Ground thermal regime. In: O. Andersland and D. Anderson ed., Geotechnical Engineering for Cold Regions. New York: Mc Craw Hill, 103-163. Hinkel K.M. and Nelson F.E. (2003). Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska, 1995–2000. Journal of Geophysical Research, 108(D2), 8168, DOI:10.1029/2001JD000927. Ivchenko G.I. and Medvedev Y.I. (2010). Introduction to mathematical statistics. Moscow: LKI Publ. (In Russian). Kaverin D.A., Pastukhov A. V. and Mazhitova G.G. (2014). Temperature regime of tundra soils and underlying permafrost (Northeastern European Russia). Earth’s Cryosphere, 18(3), 23-32. (In Russian). Kaverin D.A., Pastukhov A.V., Novakovsky A.B., Biasi K., Maruschak M. and Elsakov V.V. (2019). Landscape and climatic factors impacting the thaw depth in soils of permafrost peat plateaus (on the example of Calm R52 site). Earth’s Cryosphere, 23(2), 62-71, DOI:10.21782/KZ1560-7496-2019-2(62-71) (In Russian). Kirdyanov A.V., Hagedorn F., Knorre A.A., Fedotova E.V., Vaganov E.A., Naurzbaev M.M. and Rigling A. (2012). 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia, Boreas, 41(1), 56-67. Konischev V.N. (2011). The response of permafrost to climate warming. Earth’s Cryosphere, 15(4), 15-18 (In Russian with English summary). Kudryavtsev V. (1954). Thermal regime of the upper horizons of rocks Moscow: Publ. of the Academy of Sciences of the USSR (In Russian). Kudryavtsev V. and Dostovalov V. (1967). Obschee merzlotovedenie. Moscow: Publ. of Moscow State University (In Russian). Laval, Laval, Quebec, 1998 Luo D., Wu Q., Jin H., Marchenko S.S., Lü L. and Gao S. (2016). Recent changes in the active layer thickness across the northern hemisphere. Environmental Earth Sciences, 75(7), DOI:10.1007/s12665-015-5229-2. Maslakov A., Shabanova N., Zamolodchikov D., Volobuev V. and Kraev G. (2017). Permafrost Degradation within Eastern Chukotka CALM Sites in the 21st Century Based on CMIP5 Climate Models. Geosciences, 9(5), 232, DOI:10.3390/geosciences9050232. Mazhitova G.G. and Kaverin D.A. (2007). Thaw depth dynamics and soil surface subsidence at a Circumpolar Active Layer Monitoring (CALM) site, the European North of Russia. Earth’s Cryosphere, 11, 20-30 (In Russian). Mazhitova G.G. & Kaverin Dmitry. (2007). Thaw depth dynamics and soil surface subsidence at a Circumpolar Active Layer Monitoring (CALM) site, the European North of Russia. Earth’s Cryosphere. 11. 20-30. Miller L.L., K.M. Hinkel, F.E. Nelson, R.F. Paetzold and S.I. Outcalt, Miller L. L., K. M. Hinkel F. E. Nelson R. F. Paetzold and S. I. Outcalt,ТMoskalenko N.G. (1999). Anthropogenic dynamics of vegetation of the plains of the permafrost zone of Russia. Novosibirsk: Nauka Publ. (In Russian) Nelson F.E. and Outcalt S.I. (1987). A computational method for prediction and regionalization of permafrost. Arctic and Alpine Research, 19(3), 279-288. Nelson F.E., Outcalt S.I., Brown J., Shiklomanov N.I. and Hinkel K.M. (1998). Spatial and Temporal Attributes of the Active-Layer Thickness Record, Barrow, Alaska, U.S.A. Permafrost – 7th International Conference, 55, 797-802. Nyland K.E., Shiklomanov N.I. and Streletskiy D.A. (2017) Climatic – and anthropogenic-induced land cover change around Norilsk, Russia, Polar Geography, 40(4), 257-272, DOI:10.1080/1088937X.2017.1370503. General Permafrost Science (geocryology). (1978). Moscow: Publ. of Moscow State University (In Russian). General Permafrost Science. (1974). Novosibirsk: Nauka Publ. (In Russian) on Permafrost, vol. 1, pp. 731 – 737, Cent. d’Etud. Nordiques, Univ. Popov A.I., Arkhangelov A.A., Velikotsky M.A., Zhigarev L.A., Konishchev V.N., Marakhtanov V.P., Tumel N.V. and Shpolyanskaya N.A. (1989). Regional cryolithology. Moscow: Publ. of Moscow State University (In Russian) Sheveleva N.S. and Homichevskaya L.S. (1967). Geocryological conditions of the Yenisei north. Moscow: Nauka Publ. (In Russian) Shiklomanov N., Streletskiy D., Little J. and Nelson F. (2013). Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophysical Research Letters, 40, 6356-6361. Smith S.L., Wolfe S.A., Riseborough D.W. and Nixon M. (2009) Active-Layer Characteristics and Summer Climatic Indices, Mackenzie Valley, Northwest Territories, Canada. Permafrost and Periglacial processes, 20, 201-220 SP 25.13330.2012 Basements and foundations on permafrost soils (In Russian) Spatial and temporal patterns of soil moisture and thaw depth at Barrow, Streletskiy D.A., Shiklomanov N.I., Little J.D. and Nelson F.E. (2017). Thaw subsidence in undisturbed tundra landscapes, Barrow, Alaska, 1962–2015. Permafrost and Periglacial Processes, 28(3), 566-572. Streletskiy D.A., Sherstiukov A.B., Frauenfeld O.W. and Nelson F.E. (2015). Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environmental Research Letters, 10(12), 125005. SURFER for Windows, version 7 User’s Guide. (1999). Colorado: Golden Software Inc. GWU.еdu/calм (2021). СALM program web-site. [online] Available at: https://www2.gwu.edu/~calm/ [Accessed 1 May 2021]. ArсtiсDаta.iо (2021). Arctic Data Center. [online] Available at: https://arcticdata.io/catalog/view/doi:10.18739/A2KP7TS45 [Accessed 1 May 2021]. https://ges.rgo.ru/jour/article/view/2179 doi:10.24057/2071-9388-2021-073 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 4 (2021); 55-66 2542-1565 2071-9388 Active Layer Thickness (ALT) permafrost thaw subsidence CALM (Circumpolar Active Layer Monitoring) program Russia Taymyr Peninsula info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjges https://doi.org/10.24057/2071-9388-2021-073 https://doi.org/10.1080/1088937X.2019.1648581 https://doi.org/10.1177/0309133313478314 https://doi.org/10.3402/polar.v18i2.6584 https://doi.org/10.2312/GFZ.LIS.2016.001 https://doi.org/10.1029/2001JD00 2022-01-04T17:42:59Z This paper provides information on active layer thickness (ALT) dynamics, or seasonal thawing above permafrost, from a Circumpolar Active Layer Monitoring (CALM) site near the city of Norilsk on the Taimyr Peninsula (north-central Siberia) and the influences of meteorological and landscape properties on these dynamics under a warming climate, from 2005 to 2020. The average ALT in loamy soils at this 1 ha CALM site over the past 16 years was 96 cm, higher than previous studies from 1980s conducted at the same location, which estimated ALT to be 80 cm. Increasing mean annual air temperatures in Norilsk correspond with the average ALT increasing trend of 1 cm/year for the observation period. Active layer development depends on summer thermal and precipitation regimes, time of snowmelt, micro-landscape conditions, the cryogenic structure (ice content) of soils, soil water content leading up to the freezing period, drainage, and other factors. Differences in ALT, within various micro landscape conditions can reach 200% in each of the observation periods. Article in Journal/Newspaper Active layer monitoring Active layer thickness Arctic Arctic and Alpine Research Ice norilsk permafrost Permafrost and Periglacial Processes Polar Geography Polar Research Taimyr Taymyr Taymyr Peninsula Siberia Geography, Environment, Sustainability (E-Journal) Norilsk ENVELOPE(88.203,88.203,69.354,69.354) Taymyr ENVELOPE(89.987,89.987,68.219,68.219) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 14 4 55 66