Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions

The lakes of the Arctic lowlands are both the unique indicator and the result of climatic and permafrost changes. Remote sensing methods and field measurements were used to consider the patterns and features of the morphometric indicators dynamics of the Anadyr lowland lakes over 65 years. We analyz...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Оleg Tregubov D., Vladimir Glotov E., Pavel Konstantinov Ya., Vladimir Shamov V.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2021
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/2178
https://doi.org/10.24057/2071-9388-2021-030
id ftjges:oai:oai.gesj.elpub.ru:article/2178
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions
spellingShingle Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions
Оleg Tregubov D.
Vladimir Glotov E.
Pavel Konstantinov Ya.
Vladimir Shamov V.
Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions
topic_facet Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions
description The lakes of the Arctic lowlands are both the unique indicator and the result of climatic and permafrost changes. Remote sensing methods and field measurements were used to consider the patterns and features of the morphometric indicators dynamics of the Anadyr lowland lakes over 65 years. We analyzed the parameters of 36 lakes with an area of 0.02–0.3 km2 located in the bottoms of drained lake basins, in river floodplains, on sea-shore terraces. Field studies were conducted on 22 typical lakes. The considered dynamics of seasonal thawing are based on the monitoring of the active layer for 1994–2020. Due to an increase of mean annual air temperature by 1.8 °C, as well as an increase and then a decrease in the mean annual precipitation by 135 mm, the average share of a lake area in the study area decreased by 24%. It is shown for the first time that cryogenic processes of the lacustrine coastal zone affect the change in the area of lakes simultaneously with the influence of precipitation and air temperature. Based on field observations, we considered two causes of natural drainage: discharge of the lakes through newly formed thermokarst and thermoerosional surface flow channels and decrease in suprapermafrost groundwater recharge as a result of changing depth of seasonally thawed active layer in the coastal zone.
format Article in Journal/Newspaper
author Оleg Tregubov D.
Vladimir Glotov E.
Pavel Konstantinov Ya.
Vladimir Shamov V.
author_facet Оleg Tregubov D.
Vladimir Glotov E.
Pavel Konstantinov Ya.
Vladimir Shamov V.
author_sort Оleg Tregubov D.
title Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions
title_short Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions
title_full Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions
title_fullStr Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions
title_full_unstemmed Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions
title_sort hydrological conditions of drained lake basins of the anadyr lowland under changing climatic conditions
publisher Russian Geographical Society
publishDate 2021
url https://ges.rgo.ru/jour/article/view/2178
https://doi.org/10.24057/2071-9388-2021-030
long_lat ENVELOPE(177.510,177.510,64.734,64.734)
ENVELOPE(176.233,176.233,64.882,64.882)
geographic Anadyr
Anadyr’
Arctic
geographic_facet Anadyr
Anadyr’
Arctic
genre Anadyr
Anadyr'
Arctic
Arctic
permafrost
Permafrost and Periglacial Processes
Polar Geography
The Cryosphere
Thermokarst
genre_facet Anadyr
Anadyr'
Arctic
Arctic
permafrost
Permafrost and Periglacial Processes
Polar Geography
The Cryosphere
Thermokarst
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 4 (2021); 41-54
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/2178/583
Abramov A., Davydov S., Ivashchenko A., Karelin D., Kholodov A., Kraev G., Lupachev A., Maslakov A., Ostroumov V., Rivkina E., Shmelev D., Sorokovikov V., Tregubov O., Veremeeva A., Zamolodchikov D., Zimov S. (2019). Two decades of active layer thickness monitoring in northeastern Asia // Polar Geography, 42(3), 1-17.
Andresen C.G. and Lougheed V.L. (2015). Disappearing of Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65-year period (1948–2013) // J. Geophys. Res. Biogeosci, 120, 466-479, DOI:10.1002/2014JG002778.
Arp C.D., Jones B.M., Liljedahl A.K., Hinkel K.M., and Welker J.A. (2015). Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes // Water Resources, 51, 9379–9401, DOI:10.1002/2015WR017362.
Boike J., Grau T., Heim B., Günther F. et al. (2016). Satellite-derived changes in the permafrost landscapes of Central Yakutia, 2000–2011: Wetting, drying, and fires // Global Planet. Change, 139, 116–127, DOI:10.1016/j.gloplacha.2016.01.001.
Bryksina N.A., Polishchuk Yu.M. (2015). Analysis of changes in the number of thermokarst lakes in the permafrost zone of Western Siberia based on satellite images // Cryosphere of the Earth, XIX(2), 114-120.[Bryksina N.A., Polishchuk Yu.M. Analiz izmeneniya chislennosti termokarstovykh ozer v zone mnogoletney merzloty Zapadnoy Sibiri na osnove kosmicheskikh snimkov // Kriosfera Zemli. 2015. T. XIX. № 2. C. 114–120.]
Chen M., Rowland J.C., Wilson C.J. et al. (2013). The importance of natural variability in lake areas on the detection of permafrost degradation: a case study in the Yukon Flats, Alaska // Permafrost and Periglacial Processes, 24, 224-240, DOI:10.1002/ppp.1783.
Chukotka: Natural-economic essay (1996). Moscow: «Art-Litex», 370.
Chukotka: Prirodno-ekonomicheskiy ocherk (1996). Moscow: «Art-Litex», 370.
Dneprovskaya V.P., Bryksina N.A., Polishchuk Yu.M. (2009). Izucheniye izmeneniy termokarsta v zone preryvistogo rasprostraneniya vechnoy merzloty Zapadnoy Sibiri na osnove kosmicheskikh snimkov // Issledovaniye zemli iz kosmosa, 4, 1-9.
Dneprovskaya V.P., Bryksina N.A., Polishchuk Yu.M. (2009). Study of changes in thermokarst in the zone of discontinuous distribution of permafrost in Western Siberia on the basis of satellite images // Earth research from space, 4, 1-9.
General Permafrost Science (1978). / Ed. by V.A. Kudryavtseva. – M.: Publishing house of Moscow University, 464.
Geofizika i antropogennyye izmeneniya landshaftov Chukotki (1987). / I.V. Ignatenko, I.M. Papernov, B.A. Pavlov, M.N. Zamoshch, I.N. Skorodumov. Moscow: Nauka, 271.
Geophysics and anthropogenic changes in the landscapes of Chukotka (1987). I.V. Ignatenko, I.M. Papernov, B.A. Pavlov, M.N. Zamoshch, I.N. Skorodumov. Moscow: Nauka, 271.
Hinkel K.M., Frohn R.C., Nelson F.E., Eisner W.R., and Beck R.A. (2005). Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic coastal plain, Alaska // Permafrost and Periglacial Processes, 16(4), 327-341.
Jones B.M., and Arp C.D. (2015). Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska // Permafrost and Periglac. Process, 26, 119-128, DOI:10.1002/ppp.1842.
Jones B.M., Grosse G., Arp C.D., Jones M.C., Anthony K.W., Romanovsky V.E. (2011). Modern thermokarst lake dynamics in the continuous permafrost zone, Northern Seward Peninsula, Alaska // Journal of Geophysical Research, 116: G00M03, DOI:10.1029/2011JG001666.
Kapralova V.N. (2014). Regularities of the development of thermokarst processes within the lacustrine-thermokarst plains (based on the approaches of the mathematical morphology of the landscape): dis. . Cand. geological miner. Sciences: 25.00.36. Moscow, 109.
Kapralova V.N. (2014). Zakonomernosti razvitiya termokarstovykh protsessov v predelakh ozer-no-termokarstovykh ravnin (na osnove podkhodov matematicheskoy morfologii land-shafta): dis. . kand. geol.-miner. nauk: 25.00.36. Moscow, 109.
Kislov A.V., Grebenets V.I., Evstigneev V.M., Konishchev V.N., Sidorova M.V., Surkova G.V., Tumel N.V. (2011). Consequences of possible climate warming in 21st century in the north of Eurasia // Bulletin of Moscow University. Series 5. Geography, 3. [online] URL: https://cyberleninka.ru/article/n/posledstviya-vozmozhnogo-potepleniya-klimata-v-xxi-veke-na-severe-evrazii8 (date of access: 12.07.2021).
Kislov A.V., Grebenets V.I., Yevstigneyev V.M., Konishchev V.N., Sidorova M.V., Surkova G.V., Tumel N.V. (2011). Posledstviya vozmozhnogo potepleniya klimata v XXI veke na severe Yevrazii // Vestnik Moskovskogo universiteta. Seriya 5. Geografiya, 3. [online] URL: https://cyberleninka.ru/article/n/posledstviya-vozmozhnogo-potepleniya-klimata-v-xxi-veke-na-severe-evrazii8 (data obrashcheniya: 12.07.2021).]
Konischev V.N. (2011). Response of permafrost to climate warming // Cryosphere of the Earth, XV(4), 15-18.
Konishchev V.N. (2011). Reaktsiya vechnoy merzloty na potepleniye klimata // Kriosfera Zemli, XV(4), 15-18.
Krivoshchekov V.S. (2000). Land reclamation and land development in Chukotka. Magadan: Chukotka branch of SVKNII FEB RAS, 274.
Krivoshchekov V.S. (2000). Melioratsiya i osvoyeniye zemel na Chukotke. Magadan: Chukotskiy filial SVKNII DVO RAN, 274.
Labrecque S., Lacelle D., Duguay C.R., Lauriol B., Hawkings J. (2009). Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, Northern Yukon, Canada: remote sensing, numerical modeling, and stable isotope analysis // Arctic, 62(2), 225-238.
Lantz T., Turner K. (2015). Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon // J. Geophys. Res. Biogeosci., 120, 513-524, DOI:10.1002/2014JG002744.
Luo J., Niu F., Lin. Z., Liu M., Yin G. (2015). Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai–Tibet Plateau, China // Science Bulletin, 60(5), 556-564, DOI:10.1007/s11434-015-0730-2.
Lyubomirov A.S. (1990). Chukotka permafrost lakes. Yakutsk: Permafrost Institute of the Siberian Branch of the USSR Academy of Sciences, 176.
Lyubomirov A.S. (1990). Ozera kriolitozony Chukotki. Yakutsk: In-t merzlotovedeniya SO AN SSSR, 176.
Marsh P., Russell M., Pohl S., Haywood H., Onclin C. (2009). Changes in thaw lake drainage in the Western Canadian Arctic from 1950 to 2000 // Hydrol. Process, 23, 145-158.
Nesterova N.V., Makarieva O.M., Fedorov A.N., Shikhov A.N. (2020). Geocryological factors of activation of thermokarst processes in Central Yakutia / Collection of reports of FOURTH VINOGRADOVSKIE READINGS. HYDROLOGY FROM KNOWLEDGE TO WORLD VIEW (St. Petersburg, October 23–31, 2020). St. Petersburg: LLC Publishing house VVM, 739–744.
Nesterova N.V., Makaryeva O.M., Fedorov A.N., Shikhov A.N. (2020). Geokriologicheskiye fak-tory aktivizatsii termokarstovykh protsessov v Tsentralnoy Yakutii / Sbornik dokladov CHETVERTYYE VINOGRADOVSKIYE CHTENIYA. GIDROLOGIYA OT POZNANIYA K MIROVOZZRENIYU (Sankt-Peterburg, October 23–31, 2020). Sankt-Peterburg: OOO Izdatelstvo VVM, 739-744.
Newest Deposits and Paleogeography of the Pleistocene of Chukotka (1980). / Ed. by P.A. Kaplina. Moscow: Nauka, 295.
Nitze I., Cooley S. W., Duguay C. R., Jones B. M., and Grosse G. (2020). The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future, The Cryosphere, 14, 4279-4297, DOI:10.5194/tc-14-4279-2020.
Noveyshiye otlozheniya i paleogeografiya pleystotsena Chukotki (1980). / Pod red. P.A. Kaplina. M.: Nauka, 295.
Postnikov A.N. (2014). Distribution of evaporation from the water surface on the territory of Russia // Scientific notes of the Russian State Hydrometeorological University, 36, 22-28.
Postnikov A.N. (2014). O raspredelenii ispareniya s vodnoy poverkhnosti na territorii Rossii // Uchenyye zapiski Rossiyskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 36, 22-28.
Rodionova T.V. (2013) Issledovaniye dinamiki termokarstovykh ozer v razlichnykh rayonakh kriolitozony Rossii po kosmicheskim snimkam: dis. . kand. geogr. nauk: 25.00.33. Moscow, 196.
Rodionova T.V. (2013). Investigation of the dynamics of thermokarst lakes in different regions of the permafrost zone of Russia using satellite images: Thesis of PhD in geography: 25.00.33. Moscow, 196.
Romanenko F.A. (1999). Dinamika ozernykh kotlovin na tsentralnom Yamale // Erozionnyye protsessy tsentralnogo Yamala. SPb., Izd-vo Gomelskogo TSNTDI, 1999. 350
Romanenko F.A. (1999). Dynamics of lake basins in the central Yamal // Erosion processes of central Yamal. St. Petersburg., Publishing house of the Gomel TsNTDI, 350.
Ruzanov V.T. (2014). Kharakter ozer Anadyrskoy nizmennosti i ikh osvoyeniye // Inzhenernyye izyskaniya, 7, 68-72.
Ruzanov V.T. (2014). The nature of the lakes of the Anadyr lowland and their development // Engineering research, 7. 68-72.
Salva A.M. (2020). Otslezhivaniye uchastkov termokarstovykh proyavleniy po kosmicheskim snimkam (na primere trassy magistralnogo vodovoda v Tsentralnoy Yakutii) // Ark-tika i Antarktika, 2, 126-137.
Salva A.M. (2020). Tracking areas of thermokarst manifestations using satellite images (the case of the main water conduit route in the Central Yakutia) // Arctic and Antarctica, 2, 126-137.
Sannikov G.S. (2012). Cartometric studies of thermokarst lakes on the territory of the Bovanenkovskoye field, Yamal Peninsula // Cryosphere of the Earth, XVI(2), 30-37.
Sannikov G.S. (2012). Kartometricheskiye issledovaniya termokarstovykh ozer na territorii Bovanenkovskogo mestorozhdeniya, poluostrov Yamal // Kriosfera Zemli, XVI(2), 30-37.
Tomirdiaro C.B., Ryabchun V.K. (1973). Ozernyy termokarst na Nizhne-Anadyrskoy nizmenno-sti // Dokl. II Mezhd. konf. po merzlotovedeniyu. Yakutsk, 58-67.
Tomirdiaro C.B., Ryabchun V.K. (1999). Lake thermokarst on the Lower Anadyr lowland // Reports of 2nd Int. conf. on permafrost. Yakutsk, 58-67.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2021-030
https://doi.org/10.1002/2014JG002778
https://doi.org/10.1002/2015WR017362
https://doi.org/10.1016/j.gloplacha.2016.01.001
https://doi.org/10.1002/ppp.1783
https://doi.org/10.1002/ppp.1842
https://doi
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 14
container_issue 4
container_start_page 41
op_container_end_page 54
_version_ 1766380236268634112
spelling ftjges:oai:oai.gesj.elpub.ru:article/2178 2023-05-15T13:24:33+02:00 Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions Оleg Tregubov D. Vladimir Glotov E. Pavel Konstantinov Ya. Vladimir Shamov V. 2021-12-28 application/pdf https://ges.rgo.ru/jour/article/view/2178 https://doi.org/10.24057/2071-9388-2021-030 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/2178/583 Abramov A., Davydov S., Ivashchenko A., Karelin D., Kholodov A., Kraev G., Lupachev A., Maslakov A., Ostroumov V., Rivkina E., Shmelev D., Sorokovikov V., Tregubov O., Veremeeva A., Zamolodchikov D., Zimov S. (2019). Two decades of active layer thickness monitoring in northeastern Asia // Polar Geography, 42(3), 1-17. Andresen C.G. and Lougheed V.L. (2015). Disappearing of Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65-year period (1948–2013) // J. Geophys. Res. Biogeosci, 120, 466-479, DOI:10.1002/2014JG002778. Arp C.D., Jones B.M., Liljedahl A.K., Hinkel K.M., and Welker J.A. (2015). Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes // Water Resources, 51, 9379–9401, DOI:10.1002/2015WR017362. Boike J., Grau T., Heim B., Günther F. et al. (2016). Satellite-derived changes in the permafrost landscapes of Central Yakutia, 2000–2011: Wetting, drying, and fires // Global Planet. Change, 139, 116–127, DOI:10.1016/j.gloplacha.2016.01.001. Bryksina N.A., Polishchuk Yu.M. (2015). Analysis of changes in the number of thermokarst lakes in the permafrost zone of Western Siberia based on satellite images // Cryosphere of the Earth, XIX(2), 114-120.[Bryksina N.A., Polishchuk Yu.M. Analiz izmeneniya chislennosti termokarstovykh ozer v zone mnogoletney merzloty Zapadnoy Sibiri na osnove kosmicheskikh snimkov // Kriosfera Zemli. 2015. T. XIX. № 2. C. 114–120.] Chen M., Rowland J.C., Wilson C.J. et al. (2013). The importance of natural variability in lake areas on the detection of permafrost degradation: a case study in the Yukon Flats, Alaska // Permafrost and Periglacial Processes, 24, 224-240, DOI:10.1002/ppp.1783. Chukotka: Natural-economic essay (1996). Moscow: «Art-Litex», 370. Chukotka: Prirodno-ekonomicheskiy ocherk (1996). Moscow: «Art-Litex», 370. Dneprovskaya V.P., Bryksina N.A., Polishchuk Yu.M. (2009). Izucheniye izmeneniy termokarsta v zone preryvistogo rasprostraneniya vechnoy merzloty Zapadnoy Sibiri na osnove kosmicheskikh snimkov // Issledovaniye zemli iz kosmosa, 4, 1-9. Dneprovskaya V.P., Bryksina N.A., Polishchuk Yu.M. (2009). Study of changes in thermokarst in the zone of discontinuous distribution of permafrost in Western Siberia on the basis of satellite images // Earth research from space, 4, 1-9. General Permafrost Science (1978). / Ed. by V.A. Kudryavtseva. – M.: Publishing house of Moscow University, 464. Geofizika i antropogennyye izmeneniya landshaftov Chukotki (1987). / I.V. Ignatenko, I.M. Papernov, B.A. Pavlov, M.N. Zamoshch, I.N. Skorodumov. Moscow: Nauka, 271. Geophysics and anthropogenic changes in the landscapes of Chukotka (1987). I.V. Ignatenko, I.M. Papernov, B.A. Pavlov, M.N. Zamoshch, I.N. Skorodumov. Moscow: Nauka, 271. Hinkel K.M., Frohn R.C., Nelson F.E., Eisner W.R., and Beck R.A. (2005). Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic coastal plain, Alaska // Permafrost and Periglacial Processes, 16(4), 327-341. Jones B.M., and Arp C.D. (2015). Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska // Permafrost and Periglac. Process, 26, 119-128, DOI:10.1002/ppp.1842. Jones B.M., Grosse G., Arp C.D., Jones M.C., Anthony K.W., Romanovsky V.E. (2011). Modern thermokarst lake dynamics in the continuous permafrost zone, Northern Seward Peninsula, Alaska // Journal of Geophysical Research, 116: G00M03, DOI:10.1029/2011JG001666. Kapralova V.N. (2014). Regularities of the development of thermokarst processes within the lacustrine-thermokarst plains (based on the approaches of the mathematical morphology of the landscape): dis. . Cand. geological miner. Sciences: 25.00.36. Moscow, 109. Kapralova V.N. (2014). Zakonomernosti razvitiya termokarstovykh protsessov v predelakh ozer-no-termokarstovykh ravnin (na osnove podkhodov matematicheskoy morfologii land-shafta): dis. . kand. geol.-miner. nauk: 25.00.36. Moscow, 109. Kislov A.V., Grebenets V.I., Evstigneev V.M., Konishchev V.N., Sidorova M.V., Surkova G.V., Tumel N.V. (2011). Consequences of possible climate warming in 21st century in the north of Eurasia // Bulletin of Moscow University. Series 5. Geography, 3. [online] URL: https://cyberleninka.ru/article/n/posledstviya-vozmozhnogo-potepleniya-klimata-v-xxi-veke-na-severe-evrazii8 (date of access: 12.07.2021). Kislov A.V., Grebenets V.I., Yevstigneyev V.M., Konishchev V.N., Sidorova M.V., Surkova G.V., Tumel N.V. (2011). Posledstviya vozmozhnogo potepleniya klimata v XXI veke na severe Yevrazii // Vestnik Moskovskogo universiteta. Seriya 5. Geografiya, 3. [online] URL: https://cyberleninka.ru/article/n/posledstviya-vozmozhnogo-potepleniya-klimata-v-xxi-veke-na-severe-evrazii8 (data obrashcheniya: 12.07.2021).] Konischev V.N. (2011). Response of permafrost to climate warming // Cryosphere of the Earth, XV(4), 15-18. Konishchev V.N. (2011). Reaktsiya vechnoy merzloty na potepleniye klimata // Kriosfera Zemli, XV(4), 15-18. Krivoshchekov V.S. (2000). Land reclamation and land development in Chukotka. Magadan: Chukotka branch of SVKNII FEB RAS, 274. Krivoshchekov V.S. (2000). Melioratsiya i osvoyeniye zemel na Chukotke. Magadan: Chukotskiy filial SVKNII DVO RAN, 274. Labrecque S., Lacelle D., Duguay C.R., Lauriol B., Hawkings J. (2009). Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, Northern Yukon, Canada: remote sensing, numerical modeling, and stable isotope analysis // Arctic, 62(2), 225-238. Lantz T., Turner K. (2015). Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon // J. Geophys. Res. Biogeosci., 120, 513-524, DOI:10.1002/2014JG002744. Luo J., Niu F., Lin. Z., Liu M., Yin G. (2015). Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai–Tibet Plateau, China // Science Bulletin, 60(5), 556-564, DOI:10.1007/s11434-015-0730-2. Lyubomirov A.S. (1990). Chukotka permafrost lakes. Yakutsk: Permafrost Institute of the Siberian Branch of the USSR Academy of Sciences, 176. Lyubomirov A.S. (1990). Ozera kriolitozony Chukotki. Yakutsk: In-t merzlotovedeniya SO AN SSSR, 176. Marsh P., Russell M., Pohl S., Haywood H., Onclin C. (2009). Changes in thaw lake drainage in the Western Canadian Arctic from 1950 to 2000 // Hydrol. Process, 23, 145-158. Nesterova N.V., Makarieva O.M., Fedorov A.N., Shikhov A.N. (2020). Geocryological factors of activation of thermokarst processes in Central Yakutia / Collection of reports of FOURTH VINOGRADOVSKIE READINGS. HYDROLOGY FROM KNOWLEDGE TO WORLD VIEW (St. Petersburg, October 23–31, 2020). St. Petersburg: LLC Publishing house VVM, 739–744. Nesterova N.V., Makaryeva O.M., Fedorov A.N., Shikhov A.N. (2020). Geokriologicheskiye fak-tory aktivizatsii termokarstovykh protsessov v Tsentralnoy Yakutii / Sbornik dokladov CHETVERTYYE VINOGRADOVSKIYE CHTENIYA. GIDROLOGIYA OT POZNANIYA K MIROVOZZRENIYU (Sankt-Peterburg, October 23–31, 2020). Sankt-Peterburg: OOO Izdatelstvo VVM, 739-744. Newest Deposits and Paleogeography of the Pleistocene of Chukotka (1980). / Ed. by P.A. Kaplina. Moscow: Nauka, 295. Nitze I., Cooley S. W., Duguay C. R., Jones B. M., and Grosse G. (2020). The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future, The Cryosphere, 14, 4279-4297, DOI:10.5194/tc-14-4279-2020. Noveyshiye otlozheniya i paleogeografiya pleystotsena Chukotki (1980). / Pod red. P.A. Kaplina. M.: Nauka, 295. Postnikov A.N. (2014). Distribution of evaporation from the water surface on the territory of Russia // Scientific notes of the Russian State Hydrometeorological University, 36, 22-28. Postnikov A.N. (2014). O raspredelenii ispareniya s vodnoy poverkhnosti na territorii Rossii // Uchenyye zapiski Rossiyskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 36, 22-28. Rodionova T.V. (2013) Issledovaniye dinamiki termokarstovykh ozer v razlichnykh rayonakh kriolitozony Rossii po kosmicheskim snimkam: dis. . kand. geogr. nauk: 25.00.33. Moscow, 196. Rodionova T.V. (2013). Investigation of the dynamics of thermokarst lakes in different regions of the permafrost zone of Russia using satellite images: Thesis of PhD in geography: 25.00.33. Moscow, 196. Romanenko F.A. (1999). Dinamika ozernykh kotlovin na tsentralnom Yamale // Erozionnyye protsessy tsentralnogo Yamala. SPb., Izd-vo Gomelskogo TSNTDI, 1999. 350 Romanenko F.A. (1999). Dynamics of lake basins in the central Yamal // Erosion processes of central Yamal. St. Petersburg., Publishing house of the Gomel TsNTDI, 350. Ruzanov V.T. (2014). Kharakter ozer Anadyrskoy nizmennosti i ikh osvoyeniye // Inzhenernyye izyskaniya, 7, 68-72. Ruzanov V.T. (2014). The nature of the lakes of the Anadyr lowland and their development // Engineering research, 7. 68-72. Salva A.M. (2020). Otslezhivaniye uchastkov termokarstovykh proyavleniy po kosmicheskim snimkam (na primere trassy magistralnogo vodovoda v Tsentralnoy Yakutii) // Ark-tika i Antarktika, 2, 126-137. Salva A.M. (2020). Tracking areas of thermokarst manifestations using satellite images (the case of the main water conduit route in the Central Yakutia) // Arctic and Antarctica, 2, 126-137. Sannikov G.S. (2012). Cartometric studies of thermokarst lakes on the territory of the Bovanenkovskoye field, Yamal Peninsula // Cryosphere of the Earth, XVI(2), 30-37. Sannikov G.S. (2012). Kartometricheskiye issledovaniya termokarstovykh ozer na territorii Bovanenkovskogo mestorozhdeniya, poluostrov Yamal // Kriosfera Zemli, XVI(2), 30-37. Tomirdiaro C.B., Ryabchun V.K. (1973). Ozernyy termokarst na Nizhne-Anadyrskoy nizmenno-sti // Dokl. II Mezhd. konf. po merzlotovedeniyu. Yakutsk, 58-67. Tomirdiaro C.B., Ryabchun V.K. (1999). Lake thermokarst on the Lower Anadyr lowland // Reports of 2nd Int. conf. on permafrost. Yakutsk, 58-67. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 4 (2021); 41-54 2542-1565 2071-9388 Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjges https://doi.org/10.24057/2071-9388-2021-030 https://doi.org/10.1002/2014JG002778 https://doi.org/10.1002/2015WR017362 https://doi.org/10.1016/j.gloplacha.2016.01.001 https://doi.org/10.1002/ppp.1783 https://doi.org/10.1002/ppp.1842 https://doi 2022-01-04T17:42:59Z The lakes of the Arctic lowlands are both the unique indicator and the result of climatic and permafrost changes. Remote sensing methods and field measurements were used to consider the patterns and features of the morphometric indicators dynamics of the Anadyr lowland lakes over 65 years. We analyzed the parameters of 36 lakes with an area of 0.02–0.3 km2 located in the bottoms of drained lake basins, in river floodplains, on sea-shore terraces. Field studies were conducted on 22 typical lakes. The considered dynamics of seasonal thawing are based on the monitoring of the active layer for 1994–2020. Due to an increase of mean annual air temperature by 1.8 °C, as well as an increase and then a decrease in the mean annual precipitation by 135 mm, the average share of a lake area in the study area decreased by 24%. It is shown for the first time that cryogenic processes of the lacustrine coastal zone affect the change in the area of lakes simultaneously with the influence of precipitation and air temperature. Based on field observations, we considered two causes of natural drainage: discharge of the lakes through newly formed thermokarst and thermoerosional surface flow channels and decrease in suprapermafrost groundwater recharge as a result of changing depth of seasonally thawed active layer in the coastal zone. Article in Journal/Newspaper Anadyr Anadyr' Arctic Arctic permafrost Permafrost and Periglacial Processes Polar Geography The Cryosphere Thermokarst Geography, Environment, Sustainability (E-Journal) Anadyr ENVELOPE(177.510,177.510,64.734,64.734) Anadyr’ ENVELOPE(176.233,176.233,64.882,64.882) Arctic GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 14 4 41 54