Genetic Identification Of Ground Ice By Petrographic Method

The advantages and limitations of the petrography method and the relevance of its use for the study of natural ice are reviewed in the present work. The petrographic method of ground ice study is often used for solving paleogeographic issues. The petrofabric analysis of ground ice is not only useful...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Yana Tikhonravova V., Viktor Rogov V., Elena Slagoda A.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2021
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/2177
https://doi.org/10.24057/2071-9388-2021-063
id ftjges:oai:oai.gesj.elpub.ru:article/2177
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic ice texture
ice appearance
polarized light
ice crystallography
spellingShingle ice texture
ice appearance
polarized light
ice crystallography
Yana Tikhonravova V.
Viktor Rogov V.
Elena Slagoda A.
Genetic Identification Of Ground Ice By Petrographic Method
topic_facet ice texture
ice appearance
polarized light
ice crystallography
description The advantages and limitations of the petrography method and the relevance of its use for the study of natural ice are reviewed in the present work. The petrographic method of ground ice study is often used for solving paleogeographic issues. The petrofabric analysis of ground ice is not only useful for descriptive purposes but, like the study of cryostructures, helps to infer growth processes and conditions. Different types of natural ice have specific features that can help us to determine ice genesis. Surface ice, such as glacier ice is often presented by foliation formed by large crystals (50-60 mm); lake ice is characterised by the upper zone of small (6 mm x 3 mm) dendritic and equigranular crystals, which change with increasing depth to large (may exceed 200 mm) columnar and prismatic crystals; segregated ice is composed by crystals forming foliation. Ground ice, such as ice wedge is presented by vertical-band appearance and small crystals (2-2.5 mm); closed-cavity ice is often distinguished by radial-ray appearance produced by elongated ice crystals; injection ice is composed by anhedral crystals, showing the movement of water; snowbank ice is presented by a high concentration of circular bubbles and small (0.1-1 mm) equigranular crystals; icing is described by foliation and mostly columnar crystals. Identification of the origin of ground ice is a complicated task for geocryology because it is difficult to distinguish different types of ground ice based on only visual explorations. The simplest way to get an ice texture pattern is by using polarized light. Distinctions between genetic types of ground ice are not always made in studies, and that can produce erroneous inferences. Petrography studies of an ice object are helpful to clarify the data interpretation, e.g., of isotopic analyses. It is particularly relevant for heterogeneous ice wedges’ study.
format Article in Journal/Newspaper
author Yana Tikhonravova V.
Viktor Rogov V.
Elena Slagoda A.
author_facet Yana Tikhonravova V.
Viktor Rogov V.
Elena Slagoda A.
author_sort Yana Tikhonravova V.
title Genetic Identification Of Ground Ice By Petrographic Method
title_short Genetic Identification Of Ground Ice By Petrographic Method
title_full Genetic Identification Of Ground Ice By Petrographic Method
title_fullStr Genetic Identification Of Ground Ice By Petrographic Method
title_full_unstemmed Genetic Identification Of Ground Ice By Petrographic Method
title_sort genetic identification of ground ice by petrographic method
publisher Russian Geographical Society
publishDate 2021
url https://ges.rgo.ru/jour/article/view/2177
https://doi.org/10.24057/2071-9388-2021-063
genre Antarctica Journal
Arctic
Journal of Glaciology
Permafrost and Periglacial Processes
genre_facet Antarctica Journal
Arctic
Journal of Glaciology
Permafrost and Periglacial Processes
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 4 (2021); 20-32
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/2177/582
Bonath V., Petrich C., Sand B., Fransson L. and Cwirzen A. (2018). Morphology, internal structure and formation of ice ridges in the sea around Svalbard. Cold Regions Science and Technology, 155, 263-279, DOI:10.1016/j.coldregions.2018.08.011.
Bruneau S., Sullivan A., Zhang Z. and Colborne B. (2015). Ice-microtome design for procurement and crystal analysis of ice thin sections. 25th CANCAM.
Calmels F., Clavano W.R. and Froese D.G. (2010). Progress on X-ray computed tomography ( CT) scanning in permfrost studies. 63rd Canadian Geotechnical Conference & 6th Canadian Permafrost Conference, January, 1353-1358.
Coulombe S. and Fortier D. (2015). Cryofacies and cryostructures of massive ice found on Bylot Island , Nunavut. 68e Conférence Canadienne de Géotechnique et 7e Conférence Canadienne Sur Le Pergélisol, 20 Au 23 Septembre 2015, Québec, Québec., August 2016.
Coulombe S., Fortier D., Lacelle D., Kanevskiy M. and Shur Y. (2019). Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada). Cryosphere, 13(1), 97-111, DOI:10.5194/tc-13-97-2019.
Dillon M., Fortier D., Kanevskiy M. and Shur Y. (2008). Dillon-2008. Ninth International Conference on Permafrost, 361-366.
Diprinzio C.L., Wilen L.A., Alley R.B., Fitzpatrick J.J., Spencer M.K. and Gow A.J. (2005). Fabric and texture at Siple Dome, Antarctica. Journal of Glaciology, 51(173), 281-290, DOI:10.3189/172756505781829359.
Everdingen, R. O. van, ed. (2005). IPA – Multi-language glossary of permafrost and related ground - ice terms.
Faria S.H., Weikusat I. and Azuma N. (2014a). The microstructure of polar ice. Part I: Highlights from ice core research. Journal of Structural Geology, 61, 2–20, DOI:10.1016/j.jsg.2013.09.010.
Faria S.H., Weikusat I. and Azuma N. (2014b). The microstructure of polar ice. Part II: State of the art. Journal of Structural Geology, 61, 21-49, DOI:10.1016/j.jsg.2013.11.003.
Fortier D., Kanevskiy M., Shur Y., Stephani E., Dillon M. and Jorgenson M.T. (2012). Cryostructures of Basal Glacier Ice as an Object of Permafrost Study: Observations from the Matanuska Glacier, Alaska. 10th International Conference on Permafrost, 107-112, DOI:10.13140/2.1.4876.2569.
French H.M. (2007). The Periglacial Environment. In: Angewandte Chemie International Edition, 6(11), 951-952. , third. Addison Wesley Longman Limited, John Wiley and Sons; Hoboken.
French H.M. and Harry D.G. (1988). Nature and origin of ground ice, Sandhills Moraine, southwest Banks Island, Western Canadian Arctic. Journal of Quaternary Science, 3(1), 19-30, DOI:10.1002/jqs.3390030105.
French H.M. and Harry D.G. (1990). Observations on buried glacier ice and massive segregated ice, western arctic coast, Canada. Permafrost and Periglacial Processes, 1(1), 31-43, DOI:10.1002/ppp.3430010105.
French H.M. and Pollard W.H. (1986). Ground-ice investigations, Klondike District, Yukon Territory. Canadian Journal of Earth Sciences, 23, 550-560.
Galanin A.A. (2021). About the incorrectness of Yu.K. Vasil’chuk’s method for the reconstruction of paleotemperatures using isotope composition of wedge ice. Review of the article by Yu.K. Vasil’chuk, A.C. Vasil’chuk “Air January paleotemperature reconstruction 48–15 calibrat. Earth’s Cryosphere, 2, 62–75, DOI:10.15372/KZ20210206 (in Russian with English summary).
Gell A.W. (1973). Ice petrofabrics, Tuktoyaktuk, N.W.T., Canada. Liverpool University.
Gell A.W. (1975). Underground ice in permafrost, Mackenzie. Delta -Tyktoyaktuk Peninsula. N.W.T. the University of British Columbia.
Gilbert G.L., Kanevskiy M. and Murton J.B. (2016). Recent Advances (2008–2015) in the Study of Ground Ice and Cryostratigraphy. Permafrost and Periglacial Processes, 27(4), 377-389, DOI:10.1002/ppp.1912.
Golubev V.N. (2000). Structural Glaciology. Cogelation ice structure. MSU. (In Russian).
Golubev V.N. (2014). Formation of ice cover on fresh-water reservoirs and water courses. Vestnik MGU. Series 5. Geography, 2, 9-16. (In Russian).
Gorgutsa R., Ksenofontova D. and Sokolov A. (2016). The Effect of S alinity and Structure of Ice on Its Strength. Polar Mekhanics, 43–53. (In Russian).
Gow A.J., Meese D.A., Alley R.B., Fitzpatrick J.J., Anandakrishnan S., Woods G.A. and Elder B.C. (1997). Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review. Journal of Geophysical Research: Oceans, 102(C12), 26559-26575, DOI:10.1029/97JC00165.
Hill J.R. and Lasca N.P. (1975). An improved method for determining ice fabrics. Journal of Glaciology, 10(58), 113-138.
Hudleston P.J. (2015). Structures and fabrics in glacial ice: A review. Journal of Structural Geology, 81, 1-27, DOI:10.1016/j.jsg.2015.09.003.
Kanevskiy M., Shur Y., Jorgenson T., Brown D.R.N., Moskalenko N., Brown J., Walker D.A., Raynolds M.K. and Buchhorn M. (2017). Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology, 297, 20-42, DOI:10.1016/j.geomorph.2017.09.001.
Katasonov E. and Ivanov M. (1973). Cryolithology of Central Yakutia. Guidebook of 2nd International Conference on Permafrost. (In Russian).
Katasonov E.M. (1975). Frozen-ground and facial analysis of Pleistocene deposits and paleogeography of Central Yakutia. Biuletyn Peryglacjalny, 24, 33-40. (In Russian).
Kawano Y. and Ohashi T. (2006). Numerical simulation of development of sea ice microstructure by Voronoi dynamics technique. The 18th IAHR International Symposium on Ice, 97-103.
Kipfstuhl S., Hamann I., Lambrecht A., Freitag J., Faria S.H., Grigoriev D. and Azuma N. (2006). Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale. Journal of Glaciology, 52(178), 398-406, DOI:10.3189/172756506781828647.
Kotlyakov V.M., ed. (1984). Glaciological dictionary. Gidrometeoizdat. (In Russian).
Lachenbruch A.H. (1962). Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geological Society of America Special Papers, 70, 69.
Langway C.C. (1958). Ice fabrics and the universal stage. In: US Amy, Snow and Ice Research Establishment, 62.
Leffingwell E.K. (1915). Ground Ice-Wedge – the Dominant Form of Ground Ice on the North Coast of Alaska. J. Geol., 23(7), 635-654.
Lein A.Y., A.S. S., Leibman M.O. and Perednya D.D. (2005). Ice Record: an Example of Deciphering Using Isotopic Tracers. Priroda, 7, 25-34.
Mackay J.R. (2000). Thermally induced movements in ice-wedge polygons, western Arctic coast: a long-term study. Geographie Physique et Quaternaire, 54(1), 41-68.
Minchew B.M., Meyer C.R., Robel A.A., Gudmundsson G.H. and Simons M. (2018). Processes controlling the downstream evolution of ice rheology in glacier shear margins: case study on Rutford Ice Stream, West Antarctica. Journal of Glaciology, 64(246), 583-594, DOI:10.1017/jog.2018.47.
Murton J. (2013). Permafrost and periglacial features: ice wedges and ice-wedge casts. In: Encyclopedia of Quaternary Science, 436-451. Elsevier, DOI:10.1016/b978-0-444-53643-3.00097-2.
Opel T., Meyer H., Wetterich S., Laepple T., Dereviagin A. and Murton J. (2018). Ice wedges as archives of winter paleoclimate: A review. Permafrost and Periglacial Processes, 29(3), 199-209, DOI:10.1002/ppp.1980.
Orekhov P.T., Popov K.A., Slagoda E.A., Kurchatova A.N., Tikhonravova Y.V., Opokina O.L., Simonova G.V. and Melkov V.N. (2017). Frost mounds of bely island in coastal marine settings of the Kara Sea. Earth’s Cryosphere, 21(1), 46-56, DOI:10.21782/KZ1560-7496-2017-1(46-56). (In Russian).
Ostrem G. (1963). Comparative crystallographic studies on ice from ice-cored moraines, snowbanks and glaciers. Geografiska Annaler, 45(4), 210-240.
Petrich C. and Eicken H. (2010). Growth, Structure and Properties of Sea Ice. In: N. T. David and S. D. Gerhard eds., Sea Ice , Second, 23-78. Blackwell.
Pewe T.L. (1967). Quaternary geology of Alaska. In: Angewandte Chemie International Edition, 6(11), 951-952. United States Government Printing Office, DOI:10.3133/pp835.
Pollard W. (1990). The nature and origin of ground ice in the Herschel Island area, Yukon Territory. The Fifth Canadian Conference on Permafrost, 23-30. http://pubs.aina.ucalgary.ca/cpc/CPC5-23.pdf.
Pollard W.H. and French H.M. (1985). The Internal Structure and Ice Crystallography of Seasonal Frost Mounds. Journal of Glaciology, 31(108), 157-162, DOI:10.3189/s0022143000006407.
Popov A.I. (1955). The origin and development of a thick fossil ice. USSR Academy of Sciences. (In Russian).
Popov A.I., Rozembaum G.E. and Tumel’ N.V. (1985). Cryolithology. MSU. (In Russian).
Rogov V.V. (1996). Classification of structures of ground ice. Vestnik MGU. Series 5. Geography, 3, 93-101. (In Russian).
Rogov V.V. (2009). Fundamentals of Cryogenesis. Geo. (In Russian).
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2021-063
https://doi.org/10.1016/j.coldregions.2018.08.011
https://doi.org/10.5194/tc-13-97-2019
https://doi.org/10.3189/172756505781829359
https://doi.org/10.1016/j.jsg.2013.09.010
https://doi.org/10.1016/j.js
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 14
container_issue 4
container_start_page 20
op_container_end_page 32
_version_ 1766287263195463680
spelling ftjges:oai:oai.gesj.elpub.ru:article/2177 2023-05-15T14:14:53+02:00 Genetic Identification Of Ground Ice By Petrographic Method Yana Tikhonravova V. Viktor Rogov V. Elena Slagoda A. 2021-12-28 application/pdf https://ges.rgo.ru/jour/article/view/2177 https://doi.org/10.24057/2071-9388-2021-063 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/2177/582 Bonath V., Petrich C., Sand B., Fransson L. and Cwirzen A. (2018). Morphology, internal structure and formation of ice ridges in the sea around Svalbard. Cold Regions Science and Technology, 155, 263-279, DOI:10.1016/j.coldregions.2018.08.011. Bruneau S., Sullivan A., Zhang Z. and Colborne B. (2015). Ice-microtome design for procurement and crystal analysis of ice thin sections. 25th CANCAM. Calmels F., Clavano W.R. and Froese D.G. (2010). Progress on X-ray computed tomography ( CT) scanning in permfrost studies. 63rd Canadian Geotechnical Conference & 6th Canadian Permafrost Conference, January, 1353-1358. Coulombe S. and Fortier D. (2015). Cryofacies and cryostructures of massive ice found on Bylot Island , Nunavut. 68e Conférence Canadienne de Géotechnique et 7e Conférence Canadienne Sur Le Pergélisol, 20 Au 23 Septembre 2015, Québec, Québec., August 2016. Coulombe S., Fortier D., Lacelle D., Kanevskiy M. and Shur Y. (2019). Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada). Cryosphere, 13(1), 97-111, DOI:10.5194/tc-13-97-2019. Dillon M., Fortier D., Kanevskiy M. and Shur Y. (2008). Dillon-2008. Ninth International Conference on Permafrost, 361-366. Diprinzio C.L., Wilen L.A., Alley R.B., Fitzpatrick J.J., Spencer M.K. and Gow A.J. (2005). Fabric and texture at Siple Dome, Antarctica. Journal of Glaciology, 51(173), 281-290, DOI:10.3189/172756505781829359. Everdingen, R. O. van, ed. (2005). IPA – Multi-language glossary of permafrost and related ground - ice terms. Faria S.H., Weikusat I. and Azuma N. (2014a). The microstructure of polar ice. Part I: Highlights from ice core research. Journal of Structural Geology, 61, 2–20, DOI:10.1016/j.jsg.2013.09.010. Faria S.H., Weikusat I. and Azuma N. (2014b). The microstructure of polar ice. Part II: State of the art. Journal of Structural Geology, 61, 21-49, DOI:10.1016/j.jsg.2013.11.003. Fortier D., Kanevskiy M., Shur Y., Stephani E., Dillon M. and Jorgenson M.T. (2012). Cryostructures of Basal Glacier Ice as an Object of Permafrost Study: Observations from the Matanuska Glacier, Alaska. 10th International Conference on Permafrost, 107-112, DOI:10.13140/2.1.4876.2569. French H.M. (2007). The Periglacial Environment. In: Angewandte Chemie International Edition, 6(11), 951-952. , third. Addison Wesley Longman Limited, John Wiley and Sons; Hoboken. French H.M. and Harry D.G. (1988). Nature and origin of ground ice, Sandhills Moraine, southwest Banks Island, Western Canadian Arctic. Journal of Quaternary Science, 3(1), 19-30, DOI:10.1002/jqs.3390030105. French H.M. and Harry D.G. (1990). Observations on buried glacier ice and massive segregated ice, western arctic coast, Canada. Permafrost and Periglacial Processes, 1(1), 31-43, DOI:10.1002/ppp.3430010105. French H.M. and Pollard W.H. (1986). Ground-ice investigations, Klondike District, Yukon Territory. Canadian Journal of Earth Sciences, 23, 550-560. Galanin A.A. (2021). About the incorrectness of Yu.K. Vasil’chuk’s method for the reconstruction of paleotemperatures using isotope composition of wedge ice. Review of the article by Yu.K. Vasil’chuk, A.C. Vasil’chuk “Air January paleotemperature reconstruction 48–15 calibrat. Earth’s Cryosphere, 2, 62–75, DOI:10.15372/KZ20210206 (in Russian with English summary). Gell A.W. (1973). Ice petrofabrics, Tuktoyaktuk, N.W.T., Canada. Liverpool University. Gell A.W. (1975). Underground ice in permafrost, Mackenzie. Delta -Tyktoyaktuk Peninsula. N.W.T. the University of British Columbia. Gilbert G.L., Kanevskiy M. and Murton J.B. (2016). Recent Advances (2008–2015) in the Study of Ground Ice and Cryostratigraphy. Permafrost and Periglacial Processes, 27(4), 377-389, DOI:10.1002/ppp.1912. Golubev V.N. (2000). Structural Glaciology. Cogelation ice structure. MSU. (In Russian). Golubev V.N. (2014). Formation of ice cover on fresh-water reservoirs and water courses. Vestnik MGU. Series 5. Geography, 2, 9-16. (In Russian). Gorgutsa R., Ksenofontova D. and Sokolov A. (2016). The Effect of S alinity and Structure of Ice on Its Strength. Polar Mekhanics, 43–53. (In Russian). Gow A.J., Meese D.A., Alley R.B., Fitzpatrick J.J., Anandakrishnan S., Woods G.A. and Elder B.C. (1997). Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review. Journal of Geophysical Research: Oceans, 102(C12), 26559-26575, DOI:10.1029/97JC00165. Hill J.R. and Lasca N.P. (1975). An improved method for determining ice fabrics. Journal of Glaciology, 10(58), 113-138. Hudleston P.J. (2015). Structures and fabrics in glacial ice: A review. Journal of Structural Geology, 81, 1-27, DOI:10.1016/j.jsg.2015.09.003. Kanevskiy M., Shur Y., Jorgenson T., Brown D.R.N., Moskalenko N., Brown J., Walker D.A., Raynolds M.K. and Buchhorn M. (2017). Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology, 297, 20-42, DOI:10.1016/j.geomorph.2017.09.001. Katasonov E. and Ivanov M. (1973). Cryolithology of Central Yakutia. Guidebook of 2nd International Conference on Permafrost. (In Russian). Katasonov E.M. (1975). Frozen-ground and facial analysis of Pleistocene deposits and paleogeography of Central Yakutia. Biuletyn Peryglacjalny, 24, 33-40. (In Russian). Kawano Y. and Ohashi T. (2006). Numerical simulation of development of sea ice microstructure by Voronoi dynamics technique. The 18th IAHR International Symposium on Ice, 97-103. Kipfstuhl S., Hamann I., Lambrecht A., Freitag J., Faria S.H., Grigoriev D. and Azuma N. (2006). Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale. Journal of Glaciology, 52(178), 398-406, DOI:10.3189/172756506781828647. Kotlyakov V.M., ed. (1984). Glaciological dictionary. Gidrometeoizdat. (In Russian). Lachenbruch A.H. (1962). Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geological Society of America Special Papers, 70, 69. Langway C.C. (1958). Ice fabrics and the universal stage. In: US Amy, Snow and Ice Research Establishment, 62. Leffingwell E.K. (1915). Ground Ice-Wedge – the Dominant Form of Ground Ice on the North Coast of Alaska. J. Geol., 23(7), 635-654. Lein A.Y., A.S. S., Leibman M.O. and Perednya D.D. (2005). Ice Record: an Example of Deciphering Using Isotopic Tracers. Priroda, 7, 25-34. Mackay J.R. (2000). Thermally induced movements in ice-wedge polygons, western Arctic coast: a long-term study. Geographie Physique et Quaternaire, 54(1), 41-68. Minchew B.M., Meyer C.R., Robel A.A., Gudmundsson G.H. and Simons M. (2018). Processes controlling the downstream evolution of ice rheology in glacier shear margins: case study on Rutford Ice Stream, West Antarctica. Journal of Glaciology, 64(246), 583-594, DOI:10.1017/jog.2018.47. Murton J. (2013). Permafrost and periglacial features: ice wedges and ice-wedge casts. In: Encyclopedia of Quaternary Science, 436-451. Elsevier, DOI:10.1016/b978-0-444-53643-3.00097-2. Opel T., Meyer H., Wetterich S., Laepple T., Dereviagin A. and Murton J. (2018). Ice wedges as archives of winter paleoclimate: A review. Permafrost and Periglacial Processes, 29(3), 199-209, DOI:10.1002/ppp.1980. Orekhov P.T., Popov K.A., Slagoda E.A., Kurchatova A.N., Tikhonravova Y.V., Opokina O.L., Simonova G.V. and Melkov V.N. (2017). Frost mounds of bely island in coastal marine settings of the Kara Sea. Earth’s Cryosphere, 21(1), 46-56, DOI:10.21782/KZ1560-7496-2017-1(46-56). (In Russian). Ostrem G. (1963). Comparative crystallographic studies on ice from ice-cored moraines, snowbanks and glaciers. Geografiska Annaler, 45(4), 210-240. Petrich C. and Eicken H. (2010). Growth, Structure and Properties of Sea Ice. In: N. T. David and S. D. Gerhard eds., Sea Ice , Second, 23-78. Blackwell. Pewe T.L. (1967). Quaternary geology of Alaska. In: Angewandte Chemie International Edition, 6(11), 951-952. United States Government Printing Office, DOI:10.3133/pp835. Pollard W. (1990). The nature and origin of ground ice in the Herschel Island area, Yukon Territory. The Fifth Canadian Conference on Permafrost, 23-30. http://pubs.aina.ucalgary.ca/cpc/CPC5-23.pdf. Pollard W.H. and French H.M. (1985). The Internal Structure and Ice Crystallography of Seasonal Frost Mounds. Journal of Glaciology, 31(108), 157-162, DOI:10.3189/s0022143000006407. Popov A.I. (1955). The origin and development of a thick fossil ice. USSR Academy of Sciences. (In Russian). Popov A.I., Rozembaum G.E. and Tumel’ N.V. (1985). Cryolithology. MSU. (In Russian). Rogov V.V. (1996). Classification of structures of ground ice. Vestnik MGU. Series 5. Geography, 3, 93-101. (In Russian). Rogov V.V. (2009). Fundamentals of Cryogenesis. Geo. (In Russian). Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 4 (2021); 20-32 2542-1565 2071-9388 ice texture ice appearance polarized light ice crystallography info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjges https://doi.org/10.24057/2071-9388-2021-063 https://doi.org/10.1016/j.coldregions.2018.08.011 https://doi.org/10.5194/tc-13-97-2019 https://doi.org/10.3189/172756505781829359 https://doi.org/10.1016/j.jsg.2013.09.010 https://doi.org/10.1016/j.js 2022-01-04T17:42:59Z The advantages and limitations of the petrography method and the relevance of its use for the study of natural ice are reviewed in the present work. The petrographic method of ground ice study is often used for solving paleogeographic issues. The petrofabric analysis of ground ice is not only useful for descriptive purposes but, like the study of cryostructures, helps to infer growth processes and conditions. Different types of natural ice have specific features that can help us to determine ice genesis. Surface ice, such as glacier ice is often presented by foliation formed by large crystals (50-60 mm); lake ice is characterised by the upper zone of small (6 mm x 3 mm) dendritic and equigranular crystals, which change with increasing depth to large (may exceed 200 mm) columnar and prismatic crystals; segregated ice is composed by crystals forming foliation. Ground ice, such as ice wedge is presented by vertical-band appearance and small crystals (2-2.5 mm); closed-cavity ice is often distinguished by radial-ray appearance produced by elongated ice crystals; injection ice is composed by anhedral crystals, showing the movement of water; snowbank ice is presented by a high concentration of circular bubbles and small (0.1-1 mm) equigranular crystals; icing is described by foliation and mostly columnar crystals. Identification of the origin of ground ice is a complicated task for geocryology because it is difficult to distinguish different types of ground ice based on only visual explorations. The simplest way to get an ice texture pattern is by using polarized light. Distinctions between genetic types of ground ice are not always made in studies, and that can produce erroneous inferences. Petrography studies of an ice object are helpful to clarify the data interpretation, e.g., of isotopic analyses. It is particularly relevant for heterogeneous ice wedges’ study. Article in Journal/Newspaper Antarctica Journal Arctic Journal of Glaciology Permafrost and Periglacial Processes Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 14 4 20 32