Automated Monitoring The Temperature Under Buildings With Pile Foundations In Salekhard (Preliminary Results)

In the paper, we consider a method of ground temperature monitoring using the thermometric boreholes and computer modeling the residential buildings with the pile foundation in the city of Salekhard; note that it is located in the permafrost zone. Construction of the residential buildings and indust...

Full description

Bibliographic Details
Published in:Frontiers in Marine Science
Main Authors: Yaroslav Kamnev K., Mikhail Filimonov Yu., Aleksandr Shein N., Nataliia Vaganova A.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2021
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/2070
https://doi.org/10.24057/2071-9388-2021-021
id ftjges:oai:oai.gesj.elpub.ru:article/2070
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic permafrost
remote monitoring
thermometry
computer modelling
climate warming
spellingShingle permafrost
remote monitoring
thermometry
computer modelling
climate warming
Yaroslav Kamnev K.
Mikhail Filimonov Yu.
Aleksandr Shein N.
Nataliia Vaganova A.
Automated Monitoring The Temperature Under Buildings With Pile Foundations In Salekhard (Preliminary Results)
topic_facet permafrost
remote monitoring
thermometry
computer modelling
climate warming
description In the paper, we consider a method of ground temperature monitoring using the thermometric boreholes and computer modeling the residential buildings with the pile foundation in the city of Salekhard; note that it is located in the permafrost zone. Construction of the residential buildings and industrial structures in the permafrost zone and their operation is carried out according to the principle of preserving the frozen state of foundations. For ground temperature monitoring, thermometric boreholes are used. In a given time period, the measured temperatures are transferred to a server for further processing. Information about the temperature is an important factor for the safety of the buildings and it can be used to evaluate the piles bearing capacity. It allows to propose options for the soil thermal stabilization or to eliminate the detected technogenic heat sources. An approach of mathematical modeling to reconstruct the temperature fields in the pile foundation base of a building is discussed taking into account the data of temperature monitoring. 24 boreholes were equipped with more than 400 in-borehole thermal sensors for testing the method under the residential building I. The preliminary modeling is carried out for December and January 2020 for the contact thermal conductivity model with phase transition with the upper part of the geological section typical for Salekhard (the sandy soils). The modeling describes the freezing processes during the months in detail. The thermal monitoring allows to say that the ground in the base of the Residential building I is stable. But there are detected heat transfers near the borehole T1 at the depth of 12–14 m. The combination of monitoring and computer modeling makes it possible to assess the safety of the operation of the residential buildings in cities located in the permafrost zones.
format Article in Journal/Newspaper
author Yaroslav Kamnev K.
Mikhail Filimonov Yu.
Aleksandr Shein N.
Nataliia Vaganova A.
author_facet Yaroslav Kamnev K.
Mikhail Filimonov Yu.
Aleksandr Shein N.
Nataliia Vaganova A.
author_sort Yaroslav Kamnev K.
title Automated Monitoring The Temperature Under Buildings With Pile Foundations In Salekhard (Preliminary Results)
title_short Automated Monitoring The Temperature Under Buildings With Pile Foundations In Salekhard (Preliminary Results)
title_full Automated Monitoring The Temperature Under Buildings With Pile Foundations In Salekhard (Preliminary Results)
title_fullStr Automated Monitoring The Temperature Under Buildings With Pile Foundations In Salekhard (Preliminary Results)
title_full_unstemmed Automated Monitoring The Temperature Under Buildings With Pile Foundations In Salekhard (Preliminary Results)
title_sort automated monitoring the temperature under buildings with pile foundations in salekhard (preliminary results)
publisher Russian Geographical Society
publishDate 2021
url https://ges.rgo.ru/jour/article/view/2070
https://doi.org/10.24057/2071-9388-2021-021
long_lat ENVELOPE(66.602,66.602,66.530,66.530)
geographic Salekhard
geographic_facet Salekhard
genre Arctic
permafrost
Polar Geography
genre_facet Arctic
permafrost
Polar Geography
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 4 (2021); 75-82
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/2070/589
Aalto J., Karjalainen O., Hjort J. and Luoto M. (2018). Statistical forecasting of current and future circum – Arctic ground temperatures and active layer thickness. Geophysical Research Letters, 45(10), 4889-4898, DOI:10.1029/2018GL078007.
Anisimov Oleg A. and Nelson Frederick E. (1996). Permafrost distribution in the Northern Hemisphere under scenarios of climatic change. Global and Planetary Change, 14(1–2), 59-72, DOI:10.1016/0921-8181(96)00002-1.
Arhgeo.com (2021). Automated system for collecting and transmitting geotechnical monitoring data [online] Available at: http://arhgeo.com/home/geo/data/ [Accessed 15 Feb. 2021 in Russian].
BBC News. Russian Arctic oil spill pollutes big lake near Norilsk (2020). [online] Available at: https://www.bbc.com/russian/features-52926977 [Accessed 15 Feb. 2021].
BBC News. Norway landslide: Buildings swept away in Alta disaster (2020). [online] Available at: https://www.bbc.com/news/av/worldeurope-52920766 [Accessed 15 Feb. 2021].
Brown J., Ferrians Jr, O.J., Heginbottom J.A. and Melnikov E.S. (1997). Circum-Arctic map of permafrost and ground-ice conditions. Reston, VA: US Geological Survey, 45.
Brown J., Ferrians, Heginbottom J.A. and Melnikov E. (2002). Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2. [online]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, DOI:10.7265/skbg-kf16. [Accessed 15 Feb. 2021].
Filimonov M. and Vaganova N. (2017). Permafrost thawing from different technical systems in Arctic regions. IOP Conf. Series: Earth and Environmental Science, 72, 012006, DOI:10.1088/1755-1315/72/1/012006.
Filimonov M. and Vaganova N. (2013). Simulation of thermal stabilization of soil around various technical systems operating in permafrost. Applied Mathematical Sciences, 7(141-144), 7151-7160, DOI:10.12988/ams.2013.311669.
Grebenets V., Streletskiy D. and Shiklomanov N. (2012). Geotechnical safety issues in the cities of Polar Regions. Geography, Environment, Sustainability, 5(3), 104-119, DOI:10.15356/2071-9388_03v05_2012_08.
Gromadsky A.N, Arefiev S.V., Volkov N.G., Kamnev Y.K. and Sinitsky A.I. (2019). Remote temperature regime monitoring of permafrost soils under the buildings in Salekhard. Scientific Bulletin of the Yamal-Nenets Autonomous District, 104(3), 17-21, DOI:10.26110/ARCTIC.2019.104.3.003. (in Russian with English summary).
Hjort J., Karjalainen O., Aalto J., Westermann S., Romanovsky V.E., Nelson F.E., Bernd Etzelmüller and Luoto M. (2018). Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature communications, 9(1), 1-9, DOI:10.1038/s41467-018-07557-4.
Kiselyov F. and Sergeyev F. (2020). Prediction of construction bases frozen soil temperature development under intense heating. Journal of Physics: Conference Series, 1425, 012208, DOI:10.1088/1742-6596/1425/1/012208.
KrioLab. Equipment for geotechnical monitoring [online] Available at: https://kriolab.ru/ [Accessed 30 June 2021 in Russian].
Kuzin I.L. (1963). Geomorphological levels of the north of Western Siberia. Geology and oil-and-gas potential of the north of Western Siberia, Proceedings of VNIGRI, 225, 330-339.
McClymont A.F., Hayashi M., Bentley L.R. and Christensen B.S. (2013). Geophysical imaging and thermal modeling of subsurface morphology and thaw evolution of discontinuous permafrost. Journal of Geophysical Research: Earth Surface, 118(3), 1826-1837, DOI:10.1002/jgrf.20114.
Msu-geophysics. Geotechnical monitoring. [online] Available at: http://www.msu-geophysics.ru/uslugi/geotexnicheskij-monitoring [Accessed 30 June 2021 in Russian].
Nelson F.E., Anisimov O.A. and Shiklomanov N.I. (2001). Subsidence risk from thawing permafrost. Nature, 410, 889-890, DOI:10.1038/35073746.
Nelson F.E., Anisimov O.A. and Shiklomanov N.I. (2002). Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions. Natural Hazards, 26, 203-225, DOI:10.1023/A:1015612918401.
Olenchenko V.V., Kartoziya A.A., Tsibizov L.V., Osipova P.S. and Esin E.I. (2019). Geoelectrical characteristics of Samoylov Island coastline (Lena River delta). Russian Journal of geophysical technologies, (4), 39-49, DOI:10.18303/2619–1563–2018–4–5.
Pugach V.N. and Boiychov S.V. (2019). Experience in the application and development of systems for monitoring the temperature of permafrost soils production of JSC research-and-industrial enterprise «Etalon». Materials of the III International Scientific and Practical Conference. Architectural, construction and road transport complexes: problems, prospects, innovations, 262-268. (in Russian with English summary).
Resolution of the State Construction Committee of the Russian Federation of 27.09.2003 N 170 «On approval of the Rules and norms of technical operation of housing» [online] Available at: http://www.consultant.ru/document/cons_doc_LAW_44772/ [Accessed 15 Feb. 2021 in Russian].
Rivkin F.M. (2020) Changes in geocryological conditions in the foundations of buildings and structures in the Arctic and Subarctic. Bulletin of Engineering Surveys, 45(6), 18-22 (in Russian).
Romanovsky V.E. and Osterkamp T.E. (2001) Permafrost: Changes and impacts / In R. Paepe & V. Melnikov (eds), Permafrost Response on Economic Development, Environmental Security and Natural Resources, Dordrecht, Netherlands: Kluwer Academic Publishers, 297-315.
RUSGEOTECH. Realization of solutions in the field of geotechnical monitoring. [online] Available at: https://www.rgtekh.ru/ [Accessed 30 June 2021 in Russian].
Permafrost-engineering.com (2021). Services in geotechnics on permafrost LLC PermafrostEngineering [online] Available at: http://permafrost-engineering.com/ [Accessed 15 Feb. 2021 in Russian].
Shein A.N. and Kamnev Y.K. (2020). Review of Scientific Publications and Industrial Works Devoted to the Study of Permafrost Formations in Natural and Anthropogenic Conditions. Scientific Bulletin of the Yamal-Nenets Autonomous District, 108(3), 42-50, DOI:10.26110/ARCTIC.2020.108.3.007 (in Russian with English summary).
SP 25.13330.2012 (2012). Construction Regulations. Soil bases and foundations on permafrost soil . Updated version SNiP 2.02.04–88 Construction Norms and Regulations for Foundations on Permafrost. Ministry of Regional Development of the Russian Federation. Moscow, Russia. (in Russian).
Streletskiy D.A., Shiklomanov N.I. and Grebenets, V.I. (2012). Changes of foundation bearing capacity due to climate warming in Northwest Siberia. Earth Cryosphere, 16(1), 22-32. (in Russian with English summary).
Streletskiy D.A., Suter L.J., Shiklomanov N.I., Porfiriev B.N. and Eliseev D.O. (2019). Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environmental Research Letters, 14(2), 025003, DOI:10.1088/1748-9326/aaf5e6.
Suter L., Streletskiy D. and Shiklomanov N. (2019). Assessment of the cost of climate change impacts on critical infrastructure in the circumpolar Arctic. Polar Geography, 42(4), 267-286, DOI:10.1080/1088937X.2019.1686082.
System of automated geocryological monitoring (2021). [online] Available at: https://monitoring.arctic.yanao.ru/ [Accessed 15 Feb. 2021 in Russian].
The Siberian Times. Two-storey residential building breaks apart in Yakutsk, Russia’s permafrost capital (2020). [online] Available at: https://siberiantimes.com/other/others/news/two-storey-residential-building-breaks-apart-in-yakutsk-russias-permafrost-capital/ [Accessed 15 Feb. 2021].
Vaganova N.A. and Filimonov M.Yu (2019). Simulation of Cooling Devices and Effect for Thermal Stabilization of Soil in a Cryolithozone with Anthropogenic Impact. Lecture Notes in Computer Science, 11386, 580-587, DOI:10.1007/978-3-030-11539-5_68.
Vaganova N. and Filimonov M. (2017). Simulation of freezing and thawing of soil in Arctic regions. IOP Conf. Ser.: Earth Environ, 72, 012006, DOI:10.1088/1755-1315/72/1/012005.
Yeltsov I.N., Olenchenko V.V. and Faguet A.N. (2017). Electrotomography in the Russian Arctic based on field studies and threedimensional numerical modeling. Business magazine Neftegaz. RU, (2), 54-64 (in Russian).
You Y., Yu Q., Pan X., Wang X. and Guo L. (2013). Application of electrical resistivity tomography in investigating depth of permafrost base and permafrost structure in Tibetan Plateau. Cold Regions Science and Technology, 87, 19-26, DOI:10.1016/j.coldregions.2012.11.004.
Zhang T., Barry R.G., Knowles K., Heginbottom J.A. and Brown J. (1999). Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography, 23(2), 132-154, DOI:10.1080/10889379909377670.
Zhang Y., Chen W. and Cihlar J. (2003). A process-based model for quantifying the impact of climate change on permafrost thermal regimes. J. Geophys. Res., 108(D22), 4695, DOI:10.1029/2002JD003354.
https://ges.rgo.ru/jour/article/view/2070
doi:10.24057/2071-9388-2021-021
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2021-021
https://doi.org/10.1029/2018GL078007
https://doi.org/10.1016/0921-8181(96)00002-1
https://doi.org/10.7265/skbg-kf16
https://doi.org/10.1088/1755-1315/72/1/012006
https://doi.org/10.12988/ams.2013.31166
container_title Frontiers in Marine Science
container_volume 8
_version_ 1766301431692787712
spelling ftjges:oai:oai.gesj.elpub.ru:article/2070 2023-05-15T14:27:37+02:00 Automated Monitoring The Temperature Under Buildings With Pile Foundations In Salekhard (Preliminary Results) Yaroslav Kamnev K. Mikhail Filimonov Yu. Aleksandr Shein N. Nataliia Vaganova A. 2021-10-12 application/pdf https://ges.rgo.ru/jour/article/view/2070 https://doi.org/10.24057/2071-9388-2021-021 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/2070/589 Aalto J., Karjalainen O., Hjort J. and Luoto M. (2018). Statistical forecasting of current and future circum – Arctic ground temperatures and active layer thickness. Geophysical Research Letters, 45(10), 4889-4898, DOI:10.1029/2018GL078007. Anisimov Oleg A. and Nelson Frederick E. (1996). Permafrost distribution in the Northern Hemisphere under scenarios of climatic change. Global and Planetary Change, 14(1–2), 59-72, DOI:10.1016/0921-8181(96)00002-1. Arhgeo.com (2021). Automated system for collecting and transmitting geotechnical monitoring data [online] Available at: http://arhgeo.com/home/geo/data/ [Accessed 15 Feb. 2021 in Russian]. BBC News. Russian Arctic oil spill pollutes big lake near Norilsk (2020). [online] Available at: https://www.bbc.com/russian/features-52926977 [Accessed 15 Feb. 2021]. BBC News. Norway landslide: Buildings swept away in Alta disaster (2020). [online] Available at: https://www.bbc.com/news/av/worldeurope-52920766 [Accessed 15 Feb. 2021]. Brown J., Ferrians Jr, O.J., Heginbottom J.A. and Melnikov E.S. (1997). Circum-Arctic map of permafrost and ground-ice conditions. Reston, VA: US Geological Survey, 45. Brown J., Ferrians, Heginbottom J.A. and Melnikov E. (2002). Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2. [online]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, DOI:10.7265/skbg-kf16. [Accessed 15 Feb. 2021]. Filimonov M. and Vaganova N. (2017). Permafrost thawing from different technical systems in Arctic regions. IOP Conf. Series: Earth and Environmental Science, 72, 012006, DOI:10.1088/1755-1315/72/1/012006. Filimonov M. and Vaganova N. (2013). Simulation of thermal stabilization of soil around various technical systems operating in permafrost. Applied Mathematical Sciences, 7(141-144), 7151-7160, DOI:10.12988/ams.2013.311669. Grebenets V., Streletskiy D. and Shiklomanov N. (2012). Geotechnical safety issues in the cities of Polar Regions. Geography, Environment, Sustainability, 5(3), 104-119, DOI:10.15356/2071-9388_03v05_2012_08. Gromadsky A.N, Arefiev S.V., Volkov N.G., Kamnev Y.K. and Sinitsky A.I. (2019). Remote temperature regime monitoring of permafrost soils under the buildings in Salekhard. Scientific Bulletin of the Yamal-Nenets Autonomous District, 104(3), 17-21, DOI:10.26110/ARCTIC.2019.104.3.003. (in Russian with English summary). Hjort J., Karjalainen O., Aalto J., Westermann S., Romanovsky V.E., Nelson F.E., Bernd Etzelmüller and Luoto M. (2018). Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature communications, 9(1), 1-9, DOI:10.1038/s41467-018-07557-4. Kiselyov F. and Sergeyev F. (2020). Prediction of construction bases frozen soil temperature development under intense heating. Journal of Physics: Conference Series, 1425, 012208, DOI:10.1088/1742-6596/1425/1/012208. KrioLab. Equipment for geotechnical monitoring [online] Available at: https://kriolab.ru/ [Accessed 30 June 2021 in Russian]. Kuzin I.L. (1963). Geomorphological levels of the north of Western Siberia. Geology and oil-and-gas potential of the north of Western Siberia, Proceedings of VNIGRI, 225, 330-339. McClymont A.F., Hayashi M., Bentley L.R. and Christensen B.S. (2013). Geophysical imaging and thermal modeling of subsurface morphology and thaw evolution of discontinuous permafrost. Journal of Geophysical Research: Earth Surface, 118(3), 1826-1837, DOI:10.1002/jgrf.20114. Msu-geophysics. Geotechnical monitoring. [online] Available at: http://www.msu-geophysics.ru/uslugi/geotexnicheskij-monitoring [Accessed 30 June 2021 in Russian]. Nelson F.E., Anisimov O.A. and Shiklomanov N.I. (2001). Subsidence risk from thawing permafrost. Nature, 410, 889-890, DOI:10.1038/35073746. Nelson F.E., Anisimov O.A. and Shiklomanov N.I. (2002). Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions. Natural Hazards, 26, 203-225, DOI:10.1023/A:1015612918401. Olenchenko V.V., Kartoziya A.A., Tsibizov L.V., Osipova P.S. and Esin E.I. (2019). Geoelectrical characteristics of Samoylov Island coastline (Lena River delta). Russian Journal of geophysical technologies, (4), 39-49, DOI:10.18303/2619–1563–2018–4–5. Pugach V.N. and Boiychov S.V. (2019). Experience in the application and development of systems for monitoring the temperature of permafrost soils production of JSC research-and-industrial enterprise «Etalon». Materials of the III International Scientific and Practical Conference. Architectural, construction and road transport complexes: problems, prospects, innovations, 262-268. (in Russian with English summary). Resolution of the State Construction Committee of the Russian Federation of 27.09.2003 N 170 «On approval of the Rules and norms of technical operation of housing» [online] Available at: http://www.consultant.ru/document/cons_doc_LAW_44772/ [Accessed 15 Feb. 2021 in Russian]. Rivkin F.M. (2020) Changes in geocryological conditions in the foundations of buildings and structures in the Arctic and Subarctic. Bulletin of Engineering Surveys, 45(6), 18-22 (in Russian). Romanovsky V.E. and Osterkamp T.E. (2001) Permafrost: Changes and impacts / In R. Paepe & V. Melnikov (eds), Permafrost Response on Economic Development, Environmental Security and Natural Resources, Dordrecht, Netherlands: Kluwer Academic Publishers, 297-315. RUSGEOTECH. Realization of solutions in the field of geotechnical monitoring. [online] Available at: https://www.rgtekh.ru/ [Accessed 30 June 2021 in Russian]. Permafrost-engineering.com (2021). Services in geotechnics on permafrost LLC PermafrostEngineering [online] Available at: http://permafrost-engineering.com/ [Accessed 15 Feb. 2021 in Russian]. Shein A.N. and Kamnev Y.K. (2020). Review of Scientific Publications and Industrial Works Devoted to the Study of Permafrost Formations in Natural and Anthropogenic Conditions. Scientific Bulletin of the Yamal-Nenets Autonomous District, 108(3), 42-50, DOI:10.26110/ARCTIC.2020.108.3.007 (in Russian with English summary). SP 25.13330.2012 (2012). Construction Regulations. Soil bases and foundations on permafrost soil . Updated version SNiP 2.02.04–88 Construction Norms and Regulations for Foundations on Permafrost. Ministry of Regional Development of the Russian Federation. Moscow, Russia. (in Russian). Streletskiy D.A., Shiklomanov N.I. and Grebenets, V.I. (2012). Changes of foundation bearing capacity due to climate warming in Northwest Siberia. Earth Cryosphere, 16(1), 22-32. (in Russian with English summary). Streletskiy D.A., Suter L.J., Shiklomanov N.I., Porfiriev B.N. and Eliseev D.O. (2019). Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environmental Research Letters, 14(2), 025003, DOI:10.1088/1748-9326/aaf5e6. Suter L., Streletskiy D. and Shiklomanov N. (2019). Assessment of the cost of climate change impacts on critical infrastructure in the circumpolar Arctic. Polar Geography, 42(4), 267-286, DOI:10.1080/1088937X.2019.1686082. System of automated geocryological monitoring (2021). [online] Available at: https://monitoring.arctic.yanao.ru/ [Accessed 15 Feb. 2021 in Russian]. The Siberian Times. Two-storey residential building breaks apart in Yakutsk, Russia’s permafrost capital (2020). [online] Available at: https://siberiantimes.com/other/others/news/two-storey-residential-building-breaks-apart-in-yakutsk-russias-permafrost-capital/ [Accessed 15 Feb. 2021]. Vaganova N.A. and Filimonov M.Yu (2019). Simulation of Cooling Devices and Effect for Thermal Stabilization of Soil in a Cryolithozone with Anthropogenic Impact. Lecture Notes in Computer Science, 11386, 580-587, DOI:10.1007/978-3-030-11539-5_68. Vaganova N. and Filimonov M. (2017). Simulation of freezing and thawing of soil in Arctic regions. IOP Conf. Ser.: Earth Environ, 72, 012006, DOI:10.1088/1755-1315/72/1/012005. Yeltsov I.N., Olenchenko V.V. and Faguet A.N. (2017). Electrotomography in the Russian Arctic based on field studies and threedimensional numerical modeling. Business magazine Neftegaz. RU, (2), 54-64 (in Russian). You Y., Yu Q., Pan X., Wang X. and Guo L. (2013). Application of electrical resistivity tomography in investigating depth of permafrost base and permafrost structure in Tibetan Plateau. Cold Regions Science and Technology, 87, 19-26, DOI:10.1016/j.coldregions.2012.11.004. Zhang T., Barry R.G., Knowles K., Heginbottom J.A. and Brown J. (1999). Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography, 23(2), 132-154, DOI:10.1080/10889379909377670. Zhang Y., Chen W. and Cihlar J. (2003). A process-based model for quantifying the impact of climate change on permafrost thermal regimes. J. Geophys. Res., 108(D22), 4695, DOI:10.1029/2002JD003354. https://ges.rgo.ru/jour/article/view/2070 doi:10.24057/2071-9388-2021-021 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 4 (2021); 75-82 2542-1565 2071-9388 permafrost remote monitoring thermometry computer modelling climate warming info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjges https://doi.org/10.24057/2071-9388-2021-021 https://doi.org/10.1029/2018GL078007 https://doi.org/10.1016/0921-8181(96)00002-1 https://doi.org/10.7265/skbg-kf16 https://doi.org/10.1088/1755-1315/72/1/012006 https://doi.org/10.12988/ams.2013.31166 2022-01-04T17:42:59Z In the paper, we consider a method of ground temperature monitoring using the thermometric boreholes and computer modeling the residential buildings with the pile foundation in the city of Salekhard; note that it is located in the permafrost zone. Construction of the residential buildings and industrial structures in the permafrost zone and their operation is carried out according to the principle of preserving the frozen state of foundations. For ground temperature monitoring, thermometric boreholes are used. In a given time period, the measured temperatures are transferred to a server for further processing. Information about the temperature is an important factor for the safety of the buildings and it can be used to evaluate the piles bearing capacity. It allows to propose options for the soil thermal stabilization or to eliminate the detected technogenic heat sources. An approach of mathematical modeling to reconstruct the temperature fields in the pile foundation base of a building is discussed taking into account the data of temperature monitoring. 24 boreholes were equipped with more than 400 in-borehole thermal sensors for testing the method under the residential building I. The preliminary modeling is carried out for December and January 2020 for the contact thermal conductivity model with phase transition with the upper part of the geological section typical for Salekhard (the sandy soils). The modeling describes the freezing processes during the months in detail. The thermal monitoring allows to say that the ground in the base of the Residential building I is stable. But there are detected heat transfers near the borehole T1 at the depth of 12–14 m. The combination of monitoring and computer modeling makes it possible to assess the safety of the operation of the residential buildings in cities located in the permafrost zones. Article in Journal/Newspaper Arctic permafrost Polar Geography Geography, Environment, Sustainability (E-Journal) Salekhard ENVELOPE(66.602,66.602,66.530,66.530) Frontiers in Marine Science 8